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Abstract: Considering the spatial and temporal correlation of traffic flow data is essential to improve
the accuracy of traffic flow prediction. This paper proposes a traffic flow prediction model named
Dual Spatial Convolution Gated Recurrent Unit (DSC-GRU). In particular, the GRU is embedded with
the DSC unit to enable the model to synchronously capture the spatiotemporal dependence. When
considering spatial correlation, current prediction models consider only nearest-neighbor spatial
features and ignore or simply overlay global spatial features. The DSC unit models the adjacent
spatial dependence by the traditional static graph and the global spatial dependence through a novel
dependency graph, which is generated by calculating the correlation between nodes based on the
correlation coefficient. More than that, the DSC unit quantifies the different contributions of the
adjacent and global spatial correlation with a modified gated mechanism. Experimental results based
on two real-world datasets show that the DSC-GRU model can effectively capture the spatiotemporal
dependence of traffic data. The prediction precision is better than the baseline and state-of-the-art
models.

Keywords: traffic flow prediction; graph convolution network; gated mechanism; recurrent neural
network; spatiotemporal dependence

1. Introduction

AS people’s standards of living improve, their desire for a better life becomes increas-
ingly strong. The convenience of commuting and traveling attracts more and more families
to choose cars as their mode of transportation. In most cities across the country, road
occupancy rate continues to increase. while the average driving speed during rush peak
hours has sustained a decrease. This leads to the deterioration of urban road operations.
In this case, not only the efficiency of urban road use will be significantly reduced but also
fuel cannot be completely burned when cars drive at a low speed. This shortens the service
life of the engine and produces a lot of harmful gas pollution, both of which increase the
cost of car maintenance and environmental management [1]. As an integral component
of an Intelligent Transportation System (ITS), how to improve the accuracy of traffic flow
prediction and use it as the basis for rational route planning to reduce road congestion has
emerged as a research focal point [2].

In order to enhance the precision of traffic flow prediction, many scholars in the field
of traffic flow prediction have proposed various prediction models in recent years. These
models for predicting traffic flow can be generally categorized into three groups, including
statistical analysis models, machine learning models, and deep learning models. Statistical
analysis models commonly used in traffic flow prediction include the Historical Average
model(HA) [3], the Autoregressive Integrated Moving Average model(ARIMA) [4], and the
Kalman filtering model [5]. These models can achieve better results when dealing with
static data. However, traffic flow data change dynamically over time and have strong
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spatial dependence. Statistical analysis methods are insensitive to these types of data;
so, these models often fail to achieve the desired results when performing traffic flow
prediction tasks [6]. Machine learning models for traffic flow prediction are introduced to
solve the above problem, such as the K-Nearest Neighbor model (KNN) [7], the support
vector regression model [8], and the Bayesian network model [9]. For the sake of achieving
superior predictions from machine learning models, it is necessary to set appropriate
parameters for the models based on a large amount of a priori knowledge. It is difficult and
laborious to set the optimal hyperparameters of the model artificially; so, the power of the
model is often not fully exploited. As artificial intelligence is increasingly applied to various
fields, deep learning is receiving more and more attention. Deep-learning-based traffic flow
prediction models stack multiple layers of neural network to capture various dependence
of the traffic data. The effect of hyperparameters is weakened [10], and the influence
of human factors is reduced [11]. For example, recurrent neural networks (RNNs) [12]
and their variant long short-term memory (LSTM) [13], as well as Gated Recurrent Units
(GRUs) [14], have achieved great results in performing temporal features extraction [15].
Graph convolutional networks (GCNs) [16], which evolved from convolutional neural
networks (CNNs) [17], are commonly used for learning the temporal features of traffic data.

The main challenges of traffic prediction task originate from the spatial and temporal
dependencies inherent in traffic flow data [18]:

(1) Spatial dependence: The layout of the nodes in the urban road network is generally
an irregular graphical topological structure, as shown as Figure 1.

Figure 1. Effect of the topological structure. Similar trends exist between nodes.

Such a spatial structure will make the traffic state between the nodes interfere with
each other. The traffic state of upstream and downstream nodes in the same segment has
different effects on the target node [19]. It is also found that even if the node is far from
the target node in the road network space, it will affect the prediction of future traffic flow
at the target node [20]. As shown in Figure 1, it can be observed that certain segments of
the time series share similar trends, as indicated by the circled areas. Additionally, both
upstream and downstream traffic flow data exhibit similar patterns, albeit with a delay in
the downstream traffic flow changes. This suggests a correlation between the two types
of traffic flow and a potential lag effect in the downstream traffic flow. Moreover, these
nodes with high spatial correlation have some kind of correlational relationship or common
influencing factors that lead to changes in traffic status with similar trends (e.g., Related
Stream). How to exploit the existing relationship between spatial nodes is important to
improve the accuracy of traffic flow prediction.
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(2) Temporal dependence: Temporal modeling of traffic flow data requires considera-
tion of the inherent properties of traffic flows.

The traffic flow data of each node in the urban road network vary dynamically and
periodically with time [21]. Meanwhile, traffic flow data at urban road network nodes can
also be subject to many uncertainties (e.g., weather, traffic accidents, etc.) [22].

Figure 2, where ¬, , ®, and ¯ represent the traffic flow data of one workday, weekend,
holiday, and week, respectively, demonstrates that the traffic flow data have the following
characteristics in the time dimension. First, traffic flow data have obvious daily periodicity
(e.g., ¬ and ) and weekly periodicity (e.g., ®), and the change pattern of weekdays is
significantly different from that of weekends. Second, since the change pattern of traffic
data on holidays is different from that of weekdays, it will break the periodicity of traffic
state change (e.g., ¯). To meet the requirement of prediction accuracy, the above dynamic
change patterns must be fully considered.

(a)

(b)

1

2

3

4

(a)

(b)

1

2

3

4

Figure 2. Periodicity of traffic flow data: (a) Daily periodicity. (b) Weekly periodicity. ¬ traffic flow
data of a workday.  traffic flow data of a weekday. ® traffic flow data of a holiday. ¯ traffic flow
data of one week.

To address the challenges in traffic flow prediction, the main contributions of this
work are as follows:

(1) We propose a new traffic flow prediction model, termed Dual Spatial Convolution
Gated Recurrent Unit (DSC-GRU), which considers the spatiotemporal dependence of the
traffic flow data and achieves a more accurate prediction result.

(2) Based on the R-Square (R2), we design a correlation matrix that reflects whether the
nodes are spatially related or not, allowing the graph convolution network to be aware of
global features, and develop a gated-mechanism-based spatial graph convolution module
that integrates the neighborhood and global features through a learnable parameter matrix.

(3) The proposed model is capable of synchronously incorporating both temporal
and spatial correlations of traffic flow data. This capability is achieved by embedding a
Dual Spatial Convolution (DSC) module into the GRU architecture. The DSC facilitates
the integration of spatial information into the state of the GRU without compromising its
ability to learn the complex temporal dynamics of the traffic flow data.

Our model is evaluated on two real-world traffic datasets. Compared with the baseline
and state-of-art models, the results show that the DSC-GRU outperforms all of them.
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The rest of this paper is organized as follows. Section 2 presents related work and
introduces various existing models used for traffic flow prediction; Section 3 is the problem
description, which defines the traffic flow prediction problem; Section 4 is the methodology,
which presents the details of the proposed model; Section 5 is the experimental setting,
which presents the relevant details of the experiments; Section 6 is the experimental results
and analysis, and it visualizes the results; and Section 7 concludes the whole paper.

2. Related Work

Facing the high-dimensional temporal data of traffic flow, the performance of tradi-
tional statistical analysis models and machine learning models are increasingly unable to
meet the accuracy requirement of traffic flow prediction. Meanwhile, with the improvement
of information collection technology and computer processing power, many researchers
have turned their attention to deep-learning-based traffic flow prediction methods [23].

Deep learning methods commonly used in traffic flow prediction can be broadly
classified into two categories: temporal feature extraction models and spatiotemporal
feature extraction models.

(1) Temporal feature extraction model:
A fundamental feature of time series data is that data at historical moments will

affect the pattern of data changes at future moments. Wang et al. [24] designed a traffic
flow prediction model based on back propagation neural network. The predicted value is
obtained after a series of nonlinear variations in the input data. Huang et al. [25] proposed
the deep belief network model, consisting of a deep belief network for unsupervised traffic
flow feature learning and a multitasks regression layer for supervised prediction. Lv
et al. [26] used a stacked autoencoder to learn traffic flow features, and it was trained
bottom-up layer by layer with the greedy wolf algorithm. Logistic regression was used to
complete the traffic flow prediction task. These models ignore the sequential relationship
in the time series. The output corresponding to the input of each moment is not affected by
the previous input. As a result, the prediction accuracy of these models is not satisfactory.
To consider the sequential relationship of time series data, RNNs have been proposed. As a
classical model for time series processing, RNNs can handle the sequential relationship
in the time series. However, they have some defects, such as gradient disappearance
and gradient explosion. Many improvements on RNN models have overcome the above
problems and achieved better results in time series prediction, such as Ma et al. [27],
who were the first to apply LSTM to traffic flow prediction. The error decay problem in
the backpropagation process has been overcome. Sun et al. [28] stacked multiple GRUs
to enhance the ability to extract the temporal features. In addition, the Seq2Seq model
provided a novel idea for traffic flow prediction. The Seq2Seq model was first proposed
to solve the machine translation problem [29]. Sutskever et al. [30] created an end-to-end
sequence learning method based on the Seq2Seq model. The encoder and decoder are
formed by stacking multilayer LSTMs. The encoder encodes the input sequence into a
vector of fixed dimensions, and the decoder subsequently decodes the vector to obtain the
target sequence.

(2) Spatiotemporal feature extraction model:
With the iterative upgrade of deep learning techniques, researchers increasingly feel

that simple time series prediction models cannot meet the accuracy requirement of traffic
flow prediction task. Since the topological structure of the road network affects the traffic
state of the nodes, researchers have begun to turn their attention to prediction models with
the fusion of spatiotemporal features [31]. CNNs point the way to learning spatial features
for traffic flow prediction models [32]. The ConvLSTM model created by Shi et al. [33]
combined a CNN with LSTM for the first time to address the prediction problem. The CNN
can handle the graph structure of Euclidean space well, but it is hard for it to process the
graph structure of the road network, which belongs to non-Euclidean space. The GCN was
raised to map the traffic road network to Euclidean space for processing. Zhao et al. [34]
designed a Temporal Graph Convolutional Network (T-GCN) which used the GCN model
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to learn the complex spatial topological structure in the road network space and used
GRU to obtain the time dependence of the traffic data. The attention mechanism is also
widely used in traffic flow prediction tasks. Guo et al. [35] proposed the attention-based
spatiotemporal graph convolutional network. The attention mechanism is introduced to
model three types of temporal dependence. Much research has been conducted to overcome
the drawback that the GCN can only consider the information of adjacent nodes and give
equal weight to neighboring nodes. Huang et al. [36] developed a diffusion convolutional
recurrent neural network model to integrate the information of all nodes within n-hops by
means of random wandering. Bao et al. [37] designed a spatial–temporal complex graph
convolution network which considers the influence of external factors such as weather
and facilities around the nodes. Wu et al. [38] raised the Graph WaveNet. The adaptive
dependency matrix is used to capture the temporal dependence accurately. Song et al. [39]
designed a spatiotemporal synchronous modeling mechanism to effectively capture the
complex localized spatiotemporal dependence. The improvements on the road network
graph structure have become the mainstream methods to capture the spatial dependence
of traffic data.

Motivated by the above method, the R2 correlation matrix is designed to learn the
global spatial dependence of the traffic data, which enhances the spatiotemporal feature
capturing ability of our proposed DSC-GRU model.

3. Problem Description

The traffic flow prediction task aims at predicting the traffic state of the urban road
network at a future moment using historical traffic flow data [40]. Traffic flow data includes
vehicle speed, traffic flow, and road network density [41]. In this study, we use traffic flow
as an example to elaborate the model.

Traffic road network: The road network G = (V, E) is used to describe the spatial
topology structure of the urban road network. V = {ν1, ν2, · · · , νN} denotes the set of road
network nodes, and N is the number of nodes. Since the graph used in our model is an
undirected graph, E is the set of edges connected by any two road network nodes.

Feature matrix: The traffic flow data X ∈ RN×L, where L represents the length of the
time series collected at each node; then, the traffic flow data at the time t is Xt ∈ RN×1.
Based on the above definitions, the traffic sequences input to the model and the predicted
sequences output from the model are given as Xin = {Xt−h+1, Xt−h+2, · · · , Xt} ∈ RN×h

and Xout = {Xt, Xt1, · · · , Xt+p} ∈ RN×p, respectively, where h denotes the length of the
historical time series used for prediction, and p represents the size of the predicting window.

Mapping function: The traffic flow prediction task can be described as a process of
training a mapping function f from input to output, which takes historical traffic flow data
Xin with known graph structures G as input and calculates the traffic flow values in the
following p moments, as shown in Equation (1).

Xout = f (Xin; G) (1)

4. Methodology

This section explains how the DSC-GRU model can consider spatiotemporal features
and complete the traffic prediction task.

4.1. Overview

The DSC-GRU model consists of a GRU embedded with a DSC. The framework of
our proposed model is shown in Figure 3, where B, H, and P represent the batch size of
data used to train the prediction model once, the length of the input model’s historical
data, and the length of the model’s output prediction data, respectively. And sampling
refers to dividing the feature matrix into a number of H-length matrix blocks along the L
dimension and randomly selecting the B-matrix blocks as the input data to the model for a
training epoch.
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Figure 3. Framework of the DSC-GRU model.

Based on the existing graph structure Ga and Gr, the DSG-GRU model is used to
extract the spatial and temporal features of the traffic flow data. The DSC-GRU model
retains the ability of the GRU to extract dynamic time series features. The embedded
DSC is used to obtain the spatial topological structure of the urban road network, thus
capturing the spatial characteristics of the traffic data. Finally, the output prediction results
are obtained through a fully connected layer.

The core ideas of the DSC-GRU can be summarized into three aspects: (1) Spatial
correlation matrix: design a correlation matrix based on the correlation coefficient to
learn the spatial correlation of the traffic road network. (2) Spatial features fusion: a
gated mechanism is introduced to integrate adjacent features and global features of the
traffic road network to optimize the prediction performance of the network. (3) Temporal
features extraction: adopt the GRU network to capture the temporal correlation of the
traffic flow data.

4.2. Spatial Dependence Modeling

Obtaining the spatial features of urban road network is a critical problem that has
long plagued traffic flow prediction. Although CNN models can capture spatial features in
Euclidean space well, the complex topological structure of urban road network belongs to
non-Euclidean space, so CNNs cannot accurately capture the spatial dependencies of traffic
data [42]. In recent years, the GCN model, which evolved from CNNs, has been widely
used in computer vision [43], biochemistry [44], and other fields with good results due to
its great ability to handle various graph structures.

4.2.1. Graph Data Definition

In order to more accurately capture the spatial dependencies in traffic flow data,
the GCN model maps the spatial topology of the traffic road network from a non-Euclidean
space to a Euclidean space. However, our proposed model involves two distinct scales of
spatial structures; so, it is necessary to define the spatial structure graph data separately.
Figure 4a,b show the distribution of aggregation nodes in the adjacency graph and the
global graph, respectively.

The adjacency graph, which is mapped to Euclidean space to obtain the adjacency ma-
trix Aa ∈ RN×N , characterizes the spatial structure of adjacent nodes. The adjacency matrix
denotes that the connection relationship in the set of edges E is defined in Equation (2),

Aaij =

{
1
(
eij ∈ E

)
0
(
eij /∈ E

) (2)

where Aaij = 1 represents node i connected to node j and Aaij = 0 vice versa.
The adjacency matrix Aa used in traditional graph convolution can generally only ag-

gregate the spatial structure within the adjacent nodes or n-hop nodes of the road network.
These simple graphs are based on the assumption that the upstream and downstream traffic
states on the same road section have a strong influence on the traffic state of the target node,
which neglect the topological structure of the whole urban road network.
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Figure 4. Node distribution: (a) Adjacent space. (b) Global space.

In order to obtain the spatial feature of the whole road network, some studies used
the KNN [45] algorithm to calculate the correlation between the two time series so that
the topological structure of the urban road network can be fully explored. The KNN
algorithm selects K nodes with the highest relevance to the target node in the entire road
network. It may happen that nodes are not actually strongly correlated but are identified
as strongly correlated by the KNN algorithm. From such nodes, the model will learn a lot
of useless information.

To make spatial information aggregation more flexible and accurate, the correlation
coefficient R2 is introduced to quantify the correlation between different nodes. The R2 is
derived as follows:

SST =
L

∑
k=0

(Xk
i − Xi)

2 (3)

SSR =
L

∑
k=0

(Xk
j − Xi)

2 (4)

SSE =
L

∑
k=0

(
Xk

i − Xk
j

)2
(5)

R2
ij = 1− SSE

SST
=

SSR
SST

(6)

where SST, SSR, and SSE refer to Sum of Squares Total, Sum of Squares Regression, and Sum
of Squares Error, respectively, R2

ij represents the correlation between the node i and the

node j, the value closer to 1 means the greater correlation, and Xk
i and Xi represent the

traffic flow value and the average traffic flow value of the node i at the time k, respectively.
The relationship between the R2 correlation coefficient and correlation strength is shown in
Table 1 below.

Table 1. The relationship between the R2 correlation coefficient and correlation strength.

The Value Range of R2 Correlation Strength

R2 < 0.2 None
0.2 ∼ 0.4 Weak
0.4 ∼ 0.6 Moderate
0.6 ∼ 0.8 Strong
0.8 ∼ 1.0 Extreme

The correlation of road network nodes is calculated based on the R2
ij correlation

coefficient. It is assumed that if the correlation coefficient exceeds the threshold, then the
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corresponding nodes are considered to be strongly correlated. On this basis, Ar is defined
as Equation (7),

Arj =

{
1(Rj ≥ threshold)
0(Rj < threshold)

(7)

where Arij = 1 means that the corresponding node is highly correlated and Aaij = 0
vice versa.

4.2.2. Graph Data Processing

The graph structure used in most traffic flow prediction task is often an undirected
graph based on the urban road network. In this case, the GCN network integrates the
characteristics of the nodes and their neighbors based on the weight matrix W and the
adjacency matrix A. The GCN network contains a two-layer structure, which is calculated
as shown below:

GCN(A, X) = softmax
(

AReLU(AXW(0))W(1)
)

(8)

where W(0) and W(1) are the weight matrices of the first and second layer GCN network,
respectively.

Adjacency matrix Ã is defined to merge the node’s own information,

Ã = A + λIN (9)

where IN is an identity matrix with the same dimension as the number of nodes, and λ is
the weight factor and takes a value of 1, indicating that the information of this node is as
important as that of its neighbors.

The GCN model normalizes the rows and columns of the adjacency matrix Ã by the
symmetric normalized Laplacian matrix,

Asys = D−1/2 ÃD−1/2 (10)

where the degree matrix D ∈ RN×N is the diagonal matrix, Dii is the element on the degree
matrix, and aii represents the element of the i row and j column of the matrix A.

Dii =
N

∑
j=1

aij (11)

In summary, the standard format of the GCN network can be described as the following
equation:

GCN(Asys, X) = so f tmax
(

AsysReLU(AsysXW(0))W(1)
)

(12)

By replacing the adjacency matrix A in the traditional GCN network with the adjacent
matrix Aa and correlation matrix Ar, the topological structure information of the adjacent
space and global space can be integrated.

4.2.3. Dual Spatial Convolution

The process of integrating the structural information of the adjacent space and the
global space is shown in Figure 5a,b, respectively.

If the adjacent and global information are simply superimposed, it must be assumed
that their importance is equal. However, it is impossible to artificially judge the significance
of the adjacent and the global information in the traffic flow prediction task. A simple
superposition will seriously reduce the prediction accuracy of the model. The role of the
gated mechanism is that the learning of the weight matrix can adjust the importance of
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the adjacent information and the global information to the target node to achieve better
prediction accuracy.

Figure 5. Integration process: (a) Adjacent space. (b) Global space.

In addition, there is a particular case if the calculated R2 correlation between the
target node and its neighbor exceeds the set threshold. The information of those neighbor
nodes will also be fused when integrating global information. To some extent, it alleviates
the problem that the traditional graph convolution model ignores the differences in the
influence of different neighborhoods on the target node.

The output of the graph convolution operation for Ga and Gr is recorded as GCNa and
GCNr, respectively. They are used as the inputs to the gated unit. The overall structure of
the DSC is shown in Figure 6, where “⊕” and “�” represent the addition and multiplication
of the corresponding elements of the isotype matrix, respectively, and “1−” means 1 minus
the elements of each position of the matrix. σ(·) represents the sigmoid activation function,
which maps the input to the [0, 1] interval. Its forward propagation equations are shown as
Equations (13)–(16):

GCN

GCN

Input

Input

Output

aGCN

rGCN

++

1−1−

++

aG

rG

Fusion

GCN

GCN

Input

Input

Output

aGCN

rGCN

+

1−

+

aG

rG

Fusion

Figure 6. The overall structure of the DSC unit.

GCNa = so f tmax
(

Asys
a ReLU(Asys

a XW(0)
a )W(1)

a

)
(13)

GCNr = so f tmax
(

Asys
r ReLU(Asys

r XW(0)
r )W(1)

r

)
(14)
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Fusion = σ
(
Wo · (GCNa + GCNr) + bo

)
(15)

Ouput = GCNa ∗ (1− Fusion) + GCNr ∗ Fusion (16)

where W and b are the parameter matrix, Output represents the output of the DSC unit,
and Fusion incorporates the spatial information of the adjacent space and the global
space. Fusion is used to adjust the proportion of the importance of the global information.
The closer to 1, the higher the importance of the global information. Then, there is more
focus on the spatial information of the whole road network space when performing the
prediction task and, conversely, focus on the spatial information of the adjacent space.

In summary, the DSC can balance the relative importance relationship between the
adjacent space and the global space through the gated mechanism. This allows the DSC to
better extract the topological structure of the urban road network and capture the spatial
dependence of traffic data.

4.3. Spatiotemporal Dependence Modeling

In the previous subsection, we used the DSC to extract the spatial dependence of
traffic data. Still, another critical issue in the traffic flow prediction task is extracting time
series features. The most commonly used method for processing time series data is the
RNN, and it achieves promising results on many models. Due to the defects of gradient
explosion and gradient disappearance, traditional RNNs cannot obtain the temporal
features of traffic flow data, which has long-term time-dependent data. The LSTM and the
GRU are proposed as variants of the RNN. They provide solutions to the above problems.
The principles of the LSTM and the GRU are similar [46]. Both are based on RNNs and add
a gating mechanism and long-term information memory cells, thus solving the problem of
long-term dependence on time series.

Compared with LSTM, GRUs have fewer parameters, require less computational
power, and are easier to converge during the training process with less risk of overfitting.
Therefore, the spatiotemporal dependence is modeled based on the GRU framework in
this paper.

In order to obtain both the temporal-dependent and spatial-dependent traffic flow
data, the DSC-GRU traffic flow prediction model is proposed by embedding the DSC into
the framework of GRU. The overall prediction process of the DSC-GRU model is shown in
Figure 7, where Ht represents the hidden layer state output by the DSC-GRU cell at the
time step t, and Yout is the final result of the DSC-GRU cell output. rt, ut, and ct are the
calculation results of the reset gate, the update gate, and the candidate hidden state at the
time step t, respectively. The left side is the schematic diagram of the forward propagation
of the model, and the right side is the specific structure of the DSC-GRU.

State
DSC-GRU

Cell

1t hX − +

1t hH − +

DSC-GRU

Cell

2t hX − +

2t hH − +

DSC-GRU

Cell

tX

outY ++

1−1−

Reset Gate Update Gate TanhTanh

1tH −

tX A cell of DSC-GRU

tr tu

tH

tc

DSCDSC

State
DSC-GRU

Cell

1t hX − +

1t hH − +

DSC-GRU

Cell

2t hX − +

2t hH − +

DSC-GRU

Cell

tX

outY +

1−

Reset Gate Update Gate Tanh

1tH −

tX A cell of DSC-GRU

tr tu

tH

tc

DSC

Figure 7. The overall prediction process of the DSC-GRU model.

The DSC-GRU model forward propagation is formulated as Equations (17)∼(20):

rt = σ(Wr · [Xr, Ht−1] + br) (17)
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ut = σ(Wu · [Xr, Ht−1] + bu) (18)

ct = tanh
(
Wc · DSC([Xt, (rt ∗ Ht−1)]) + bc

)
(19)

Ht = ut ∗ Ht−1 + (1− ut) ∗ ct (20)

where W, b is the parameter matrix of each state in the training process, σ(·) has the same
meaning as the previous section, tanh(·) represents the tanh activation function, which
maps the input to the [−1, 1] interval to prevent the gradient explosion due to the large
number of parameters in the backpropagation process, and DSC(·) denotes the result
obtained by DSC cell calculation.

The DSC-GRU model retains the ability of the GRU model to capture the long-term
dependence of the time series by processing the input Xt at the moment t and the hidden
state Ht−1 at the previous moment. The temporal information of the current moment
and the historical moment are fused. The dynamic characteristics of the time series are
preserved. On this basis, the DSC unit is embedded to capture the spatial dependence of the
traffic data. The validity fraction of the historical spatiotemporal information is obtained
through reset gates and passed to the next moment. On the moment t, the input hidden
layer state of the DSC-GRU model already contains both temporal and spatial information
from the previous moment. The DSC fuses valid historical spatiotemporal information
with the input of the current moment. On the one hand, the spatial features of the current
input data are fused. On the other hand, the importance of spatial features in historical
information is strengthened. Up to this point, the embedding of the DSC has added the
spatial information of the urban road network to each state in the GRU model. This spatial
information is passed from the previous time step to the next time step as the GRU model
passes temporal information. Throughout the forward propagation process, the above
operation is repeated several times to continuously reinforce the learning of spatial features
by the DSC to improve the model’s ability to extract spatial dependencies. The pseudocode
of the model is shown in Appendix A.

In summary, the DSC-GRU model can explore the hidden spatial dependence and
temporal dependence of traffic flow data. For one thing, the DSC unit is used to obtain
the topological structure of the whole urban road network and then obtain the spatial
dependence of the traffic flow data. For another, the GRU model is used to obtain the tem-
poral dependence of traffic flow data by considering the long-term temporal relationship
in traffic flow data. Finally, the task of traffic flow prediction is completed.

5. Experiment Setting

In order to verify the effectiveness and generalization ability of the traffic flow predic-
tion model proposed in this paper. The prediction performance of the DSC-GRU model is
evaluated based on two real datasets, and the results are visualized.

5.1. Data Description

In this paper, the PeMS04 and PeMS08 datasets are used to evaluate model perfor-
mance. Both of them are highway datasets collected by the California Department of
Transportation based on the Caltrans Performance Measurement System (PeMS). The sys-
tem collects real-time traffic status at 30 s intervals and aggregates all information collected
at 5 min intervals. All datasets contain three characteristics dimensions: vehicle speed,
traffic flow, and network density. In this paper, the traffic flow is used as the research object.
The training set, validation set, and test set are divided in the ratio of 6:2:2. The differences
between PeMS04 and PeMS08 are as follows:

(1) PeMS04: This dataset contains a total of 307 road nodes. It was collected for 59 days
from 1 January 2018 to 28 February 2018, of which 35 days were used as the training set,
12 days as the validation set, and 12 days as the test set.
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(2) PeMS08: This dataset contains a total of 170 road nodes. It was collected for 62 days
from 1 July 2016 to 31 August 2016, of which 38 days were used as the training set, 12 days
as the validation set, and 12 days as the test set.

5.2. Evaluation Metrics

The predictive performance of our DSC-GRU model is evaluated by the following
four evaluation metrics.

(1) Mean Absolute Error (MAE):

MAE =
1
N

N

∑
i=1

L

∑
j=1

∣∣∣yj
i − ỹj

i

∣∣∣ (21)

(2) Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

L

∑
j=1

(
yj

i − ỹj
i

)2
(22)

(3) Mean Absolute Percentage Error (MAPE):

MAPE =
1
N

N

∑
i=1

L

∑
j=1

∣∣∣yj
i − ỹj

i

∣∣∣∣∣∣yj
i

∣∣∣+ ε
(23)

(4) Coefficient of determination (R2):

R2 = 1−

N
∑

i=1

L
∑

j=1

(
yj

i − ỹj
i

)2

N
∑

i=1

L
∑

j=1

(
yj

i − y
)2

(24)

where yj
i and ỹj

i represent the real traffic state and predicted traffic state of node i at the time
j, respectively, ε is a subsidiary term, and y is the average value of traffic flow data. MAE
and RMSE are used to measure the degree of deviation of the model’s predicted value from
the true value. MAPE indicates the relative size of the deviation of the model’s predicted
value from the true value. R2 weighs the ability of the model’s predicted value to represent
the true value. The smaller the MAE, RMSE, and MAPE and the larger the R2, the better
the prediction performance of the model.

5.3. Loss Function

The goal of training the traffic flow prediction model is to minimize the deviation of
the predicted value from the true value of the traffic flow data, i.e., to minimize the value
of the loss function. The loss function used to train this model is shown in Equation (25),

Loss =

{
0.5
(
y− ŷ

)2/beta, if
∣∣y− ŷ

∣∣ < beta∣∣y− ŷ
∣∣− 0.5 ∗ beta, otherwise

(25)

where y and ŷ represent the true value and predicted value of traffic flow, respectively.
The default value for beta takes 1.

The advantage of this type of loss function is that the curve is relatively smooth. When
the difference between the predicted value and the true value is slight, the gradient will
not be too small. When the difference is significant, it is not easy for gradient explosion to
appear.
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5.4. Parameter Setting

The parameters of the DSC-GRU model include batch size, learning rate, number of
iterations, R2 threshold, historical data length h, prediction length p, and the number of
neurons in the DSC and the GRU hidden layer (dimDSCh and dimGRUh ). In the experimental
process, the batch size is set to 64, the learning rate is set to 0.002, the number of iterations
is set 2000, and the h and p are set to 12, i.e., the historical information of the past hour
is used to predict the traffic flow of the future hour. Furthermore, R2 threshold, dimDSCh ,
and dimGRUh are set to 0.8, 512, and 128, respectively.

In addition, a variable learning rate mechanism is introduced for better learning of
traffic flow data. When the current optimal value does not appear in 10 consecutive training
epochs, the learning rate of the model is considered too large, and the network hovers
around the optimal value. The learning rate is reduced to the original 0.1 so that the model
can learn more carefully. When the current optimal value appears, the learning rate is reset
to 0.002 to make the model converge quickly in the new solution space. And random seeds
are set in the same group of experiments to ensure the same initialization parameters of the
model and reduce the effect of random errors.

5.5. Compared Methods

In order to verify the validity and the advancement of the proposed model, the model
is compared with five baseline models considering a single feature of the traffic flow data as
well as two spatiotemporal models proposed in recent years. These methods are as follows:

(1) HA [3]: The average value of historical traffic flow data is used as the traffic flow
prediction for the next moment.

(2) ARIMA [4]: Traffic flow data are considered as a time series with seasonal pat-
terns. It is possible to separate the signal from the noise and obtain predicted values by
extrapolating the signal to the future.

(3) LSTM [27]: One of the variants of the recurrent neural network, which obtains
long-term dependencies in the time dimension by introducing a gated mechanism. It can
solve the problem of gradient disappearance and gradient explosion in traditional recurrent
neural networks. (4) GRU [28]: The principle is similar to that of LSTM, except that the
number of parameters in the training process is smaller and the computation is simpler.

(5) GCN [16]: Mapping the road network space from non-Euclidean space to Euclidean
space. The spatial features of traffic data are extracted from neighboring nodes in the traffic
road network.

(6) T-GCN [34]: Combines the advantages of both the GCN and the GRU, which
consider the temporal dependence and spatial dependence of traffic data.

(7) Graph WaveNet [38]: The adaptive dependency matrix and the dilated convolution
structure are designed to accurately capture the spatiotemporal dependencies in traffic
flow data.

6. Experiment Result and Analysis

This section tests the prediction performance of the DSC-GRU model by setting
comparison experiments, different R2 thresholds, structural parameters, and ablation ex-
periments.

6.1. Comparison Experiments

The performance of the different models is shown in Table 2, where the bolded parts
are the models proposed in this paper. It is shown that the DSC-GRU model outperformed
all comparison models on the four evaluation metrics.

The experiment results are analyzed in four aspects, as follows. Initially, the reason
why the statistical analysis models (HA and ARIMA) perform worse than the deep learning
models is that these models are insensitive to the dynamically changing traffic flow data and
cannot explore the spatial information of the traffic data. Secondly, either the deep learning
models that consider only temporal dependence (LSTM and GRU) or those that consider
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only spatial dependence (GCN) do not achieve satisfactory prediction results. The reason is
that the traffic data are essentially time series data, which are influenced by the topological
structure of the road network. Neglecting either the temporal or the spatial dependence will
lead to a decrease in prediction accuracy. Thirdly, the spatiotemporal characteristics models
(T-GCN and Graph WaveNet) have significantly better prediction performance than the
LSTM, GRU, and GCN. The improvement in the prediction performance results from these
models taking the spatiotemporal dependence of traffic flow data into consideration rather
than single dependence. This demonstrates that the spatiotemporal dependence of the
traffic data is of great importance for improving prediction accuracy. Finally, the DSC-GRU
model proposed in this paper also considers the spatiotemporal dependence of traffic flow
data simultaneously. As opposed to the above spatiotemporal models that only consider
the spatial characteristics of nodes within a certain range, the DSC-GRU model can capture
the global spatial characteristics of nodes. Therefore, the prediction performance is better
than that of the T-GCN and Graph WaveNet models. Specifically, compared with the
T-GCN and Graph WaveNet, the MAE value is decreased by 10.03% and 6.68%, the MAPE
value is lowered by 13.34% and 5.52% on the PeMS04 dataset, the MAE value is reduced by
13.02% and 12.03%, and the MAPE value is dropped by 13.53% and 9.68% on the PeMS08
dataset, respectively.

Table 2. The performance comparison of different models.

Models
PeMS04 PeMS08

MAE RMSE MAPE R2 MAE RMSE MAPE R2

HA 38.09 54.51 28.38% 0.880 32.14 46.06 20.36% 0.900
ARIMA 35.19 50.05 24.18% 0.889 29.12 41.95 18.32% 0.912
LSTM 25.64 39.13 16.49% 0.937 19.50 30.16 11.45% 0.956
GRU 24.35 37.84 15.50% 0.942 18.97 29.96 11.19% 0.957
GCN 34.98 51.45 23.17% 0.894 28.97 41.55 17.49% 0.923

T-GCN 21.74 34.28 14.02% 0.951 18.05 26.93 10.57% 0.964
Graph WaveNet 20.96 33.94 13.76% 0.956 17.87 26.63 10.12% 0.967

DSC-GRU 19.56 31.44 12.15% 0.960 15.72 25.10 9.14% 0.970

Figures 8 and 9 show the trends of each evaluation metric for different deep learning
models based on the PeMS04 and PeMS08 datasets with different horizons. The DSC-
GRU model outperforms the the comparison models in all horizons, and the curve rises
slowly with the horizon. The experimental results show that our proposed model has
better stability.

(a) (c)(b)(a) (c)(b)

Figure 8. Evaluation metrics at different horizons of the model on PeMS04: (a) MAE. (b) RMSE.
(c) MAPE.
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(a) (c)(b)(a) (c)(b)

Figure 9. Evaluation metrics at different horizons of the model on PeMS08: (a) MAE. (b) RMSE.
(c) MAPE.

To show the prediction effect of the model more intuitively, the real value and predicted
value of the traffic flow data of node 9 for one day and one week in the PeMS04 and PeMS08
datasets are visualized, and the results are shown in Figure 10.

From the visualization results in Figure 10, it can be seen that the model prediction
values always follow the real traffic values regardless of all the horizons of the model
prediction. This indicates that the DSC-GRU model can correctly consider the spatial and
temporal information of the traffic flow data and make predictions.

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figure 10. Visualization of prediction results: (a) One-day traffic flow at node 9 on PeMS04. (b) One-
day traffic flow at node 9 on PeMS08. (c) One-week traffic flow at node 9 on PeMS04. (d) One-week
traffic flow at node 9 on PeMS08.
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6.2. Effect of Hyperparameters

This section discusses the role played by three different hyperparameters in the model.
The effect of hyperparameters on the prediction performance of the model is tested by
altering one of the hyperparameters while ensuring that the other hyperparameters re-
main constant.

6.2.1. Effect of R2 Threshold Value

According to Equation (6), the node correlations in the PeMS04 and PeMS08 datasets
are calculated. The correlations from node 101 to 120 are visualized and shown in Figure 11.

Figure 11. Partial node correlation heat map: (a) Heatmap for PeMS04. (b) Heatmap for PeMS08.

From the figure above, it can be seen that the magnitude of the correlation between
nodes can be effectively quantified by the R2 correlation coefficient. The larger value
indicates that the traffic flow state of the corresponding two nodes is more similar. By setting
the threshold value, the nodes with similar traffic flow characteristics to the target node are
screened out to provide the basis for the model to aggregate the global spatial information
of the road network.

Based on the above analysis, the R2 thresholds affect the information integration of
the global space of the road network. They are set to [0.6, 0.7, 0.8, 0.9] according to the case
of strong correlation only. By setting different thresholds, the proposed model can control
how many nodes are fused to the target node when the global spatial information of the
road network is integrated. The larger the threshold, the higher the learning worth of these
spatial nodes and the less invalid node information aggregated. The smaller the threshold,
the more node information is aggregated, and more spatial information can be obtained.
Therefore, it is worth investigating how to set the threshold value so that the model can
aggregate the high-quality node information as much as possible while obtaining more
spatial information. Therefore, this section tests the model by setting different thresholds
to find a balance between high-quality information and more spatial information. dimDSCh
and dimGRUh are set to 512 and 128, respectively. The experimental results under different
threshold values are shown in Figure 12.

Comparing the experimental results based on the two datasets, it is found that the
change trends of the evaluation metrics are not consistent when the threshold value is
changed. This is reasonable, because PeMS04 and PeMS08 collect traffic state from different
regions. The different spatial characteristics information from the different regions will lead
to differences in the model when aggregating spatial information. In addition, the model
proposed in this paper has a better ability to fit the traffic flow data when the R2 threshold
is set to 0.8.

The experimental results show that in both datasets, setting the R2 threshold too high
or too low will lead to a decrease in the predictive ability of the model. This is due to
the fact that the larger the threshold is set, the less information is aggregated to the target
nodes, which makes the model unable to capture the global spatial structure of the road
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network well. Conversely, the smaller the threshold is set, the more invalid information
is learned by the model, as more information is aggregated to the target node. When the
threshold value is set moderately, the model can better balance the amount of aggregated
information and the effectiveness of the information.

(b)(a) (b)(a)

Figure 12. Evaluation metrics under different R2 threshold values: (a) PeMS04. (b) PeMS08.

6.2.2. Effect of Model Structure Parameters

The number of neurons in the hidden layer will affect the fitting ability of the model.
Too few neurons may lead to the insufficient ability of the model to extract features from
traffic flow data. Too many neurons may increase the burden of the model and make the
model training time costlier [47].

Considering that the GCN network in the DSC processes the entire input data, increas-
ing the number of hidden layer neurons has little impact on the training time of the model;
so, dimDSCh is set to [16, 32, 64, 128, 256, 512]. In addition, the R2 threshold is set to 0.8 and
dimGRUh is set to 128. The experimental results are shown in Figure 13.

(b)(a) (b)(a)

Figure 13. Evaluation metrics under different numbers of DSC hidden layer neurons: (a) PeMS04.
(b) PeMS08.

Similarly, since the GRU must process the input at each time step, increasing the
number of hidden layer neurons will lead to a significant increase in model training time;
so, dimGRUh is set to [8, 16, 32, 64, 128, 256]. In addition, the R2 threshold is set to 0.8 and
dimDSCh is set to 512. The experimental results are shown in Figure 14.

According to the experimental results, we can draw the following conclusions. First
of all, the DSC-GRU model is insensitive to the dimDSCh , but it does decrease slowly.
The GCN in the DSC has the properties of local correlation and shared weight. These
properties allow the DSC to capture structural information between nodes and have some
robustness to changes in hidden layer neurons while maintaining the structure unchanged.
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Simultaneously, as the dimGRUh increases, the prediction accuracy of the model initially
improves rapidly. The GRU introduces gated mechanisms to control the flow of information,
and the parameters of these gated units are learned through the network. When there
is a change in the dimGRUh , it affects the input and output of the gated units, which in
turn affects the flow and storage of information. Therefore, the GRU model is sensitive
to the dimGRUh . After the dimGRUh reaches a certain number, the improvement of model
accuracy by increasing the number of neurons becomes weak. This is because too large
a dimGRUh may lead to overfitting, which limits performance gains. The cost of model
training increases significantly as the number of neurons grows. The other parameters
remain unchanged. When the dimDSCh is set to 512, the training time to an epoch is already
twice as long as when the number of neurons is 16. Similarly, when the dimGRUh is set to
128, the training time to an epoch is already three times as long as that of 8 neurons. It is
undeniable that increasing the number of neurons can improve the accuracy of the model.
Still, it is meaningless to blindly increase the number of neurons wihtout considering the
significant increase in training cost.

(b)(a) (b)(a)

Figure 14. Evaluation metrics under different numbers of GRU hidden layer neurons: (a) PeMS04.
(b) PeMS08.

6.3. Ablation Experiments

The DSC-GRU model consists of two components based on the gated mechanism: the
dual spatial graph convolution and the temporal dependence recurrent neural network.
To explore the performance of each component, the prediction performance is compared
between the DSC-GRU model and its two components.

The ablation experiments are set up as follows. (1) DSC: this model ignores the time
dependence in the traffic data and only considers the entire spatial topological structure of
the road network. (2) GRU: the traditional GRU model considers the long-term temporal
dependence of the traffic data but ignores the spatial topological structure of the road
network. The threshold is set to 0.8, and the dimDSCh and dimGRUh are set to 512 and 128,
respectively. The experimental results are shown in Table 3.

Table 3. The result of ablation experiments.

Models
PeMS04 PeMS08

MAE RMSE MAPE R2 MAE RMSE MAPE R2

DSC 27.13 40.58 17.95% 0.934 22.02 32.82 13.07% 0.949
GRU 24.35 37.84 15.50% 0.942 18.97 29.96 11.19% 0.957

DSC-GRU 19.56 31.44 12.15% 0.960 15.72 25.10 9.14% 0.970

The experiment results show that DSC has the worst prediction accuracy, because traf-
fic flow data are essentially a kind of time series data. The potential time dependence in the



ISPRS Int. J. Geo-Inf. 2023, 12, 366 19 of 22

historical traffic flow data will affect the prediction results. The DSC model only considers
the spatial dependence but ignores the time dependence, and the poor prediction accuracy
is reasonable. The GRU model considers the feature that traffic flow data are highly corre-
lated in the temporal dimension and therefore has better prediction performance compared
with DSC. In addition, since the DSC-GRU considers the spatiotemporal dependence of
traffic flow data, the accuracy of the model is better than any of the components. In the first
place, it proves the significance of considering the spatiotemporal dependence of traffic
data to improve traffic flow prediction accuracy. In the second place, it demonstrates the
effectiveness of the DSC-GRU model for solving the traffic flow prediction task.

7. Conclusions

In this paper, we propose a deep learning model, termed DSC-GRU, which can
simultaneously consider the spatiotemporal characteristics of traffic flow data to deal
with traffic flow prediction task. On the one hand, the DSC unit is used to capture the
topological structure of the road network space and model the spatial dependence of
traffic data. Unlike the traditional graph convolutional networks that only consider the
characteristics of neighbor nodes, the DSC also considers the global characteristics of nodes
in the whole road network space based on the correlation matrix. The gated mechanism is
introduced to control the relative importance relationship between the adjacent information
and the global information. The impact of the spatial dependence of the traffic road network
are fully considered. On the other hand, the GRU is used to capture the characteristics of
dynamic changes in traffic flow and to model the time dependence of traffic data. The DSC
unit is embedded in the GRU network to add spatial information to each state in the
GRU network. Based on two real-world datasets, parametric experiments and ablation
experiments are conducted to select the optimal structure and parameters. Comparison
experiments show that the DSC-GRU model has better prediction performance at different
horizons and outperforms each of the comparison models. In conclusion, the DSC-GRU
can be extended to other prediction tasks with spatiotemporal characteristics.

The DSC-GRU model still has some shortcomings. The influence of external factors
is not considered in the model. The effects of weather, traffic accidents, and surrounding
buildings should be considered to make the predicted traffic flow data more realistic.
In subsequent work, the dataset containing the above information needs to be selected for
further validation of our proposed model.
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Appendix A. The Pseudocode of DSC_GRU Training

Algorithm A1 The training of DSC_GRU

Input: Traffic flow data at t moment Xt. Initial hidden state H1. Traffic flow true value Y.
Traffic road network RN .

Output: Predicted value Yout. Training epochsNepoch.
Initialize: The length of historical data used for prediction h. Hidden layer state

Hi(i ∈ (1, h]). Process the adjacent graph Adjacent(·). Process the global graph R2(·).
Loss function Loss(·).

1: //Processing graph data
2: Ga = Adjacent(RN)
3: Gr = R2(RN)
4: for epoch e = 1 to Nepoch do
5: for timestep i = 1 to h do
6: //Reset gate output
7: ri ← σ(Wr · [Xi, Hi] + br)
8: //Update gate output
9: ui ← σ(Wu · [Xi, Hi] + bu)

10: //Graph Convolution
11: GCNa ← GCN

(
Ga, Xi, (ri ∗ Hi)

)
12: GCNr ← GCN

(
Gr, Xi, (ri ∗ Hi)

)
13: Fusion← σ

(
Wo · (GCNa + GCNr) + bo

)
14: DSC ←

(
GCNa ∗ (1− Fusion)

)
+ (GCNr ∗ Fusion)

15: //Calculate the candidate hidden state
16: ci ← tanh(Wc · DSC + bc)
17: //Calculate the candidate hidden state
18: Hi+1 ← ui ∗ Hi + (1− ui) ∗ ci
19: end for
20: Yout ← tanh(WpHh+1 + bp)
21: //Calculate the loss of DSC-GRU
22: L← Loss(Y, Yout)
23: end for
24: return DSC− GRU
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