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Abstract: The Sensor Web is a growing phenomenon where an increasing number of
sensors are collecting data in the physical world, to be made available over the Internet.
To help realize the Sensor Web, the Open Geospatial Consortium (OGC) has developed
open standards to standardize the communication protocols for sharing sensor data. Spatial
Data Infrastructures (SDIs) are systems that have been developed to access, process, and
visualize geospatial data from heterogeneous sources, and SDIs can be designed specifically
for the Sensor Web. However, there are problems with interoperability associated with a
lack of standardized naming, even with data collected using the same open standard. The
objective of this research is to automatically group similar sensor data layers. We propose
a methodology to automatically group similar sensor data layers based on the phenomenon
they measure. Our methodology is based on a unique bottom-up approach that uses text
processing, approximate string matching, and semantic string matching of data layers. We
use WordNet as a lexical database to compute word pair similarities and derive a set-based
dissimilarity function using those scores. Two approaches are taken to group data layers:
mapping is defined between all the data layers, and clustering is performed to group similar
data layers. We evaluate the results of our methodology.
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1. Introduction

The World Wide Web (WWW) has had a profound impact on almost all aspects of life. Over the past
20 years it came up from obscurity into the general public’s consciences, and rightly so. The WWW
has revolutionized communication. Although the Internet had been around for decades, the web was
realized in the early 1990s. Tim Berners-Lee developed Hyper Text Markup Language (HTML), which
allowed text documents to be shared via hyperlinks. As well, he developed protocols for sharing HTML,
namely Hyper Text Transfer Protocol (HTTP). These technologies were the basis for the WWW, and
with the availability of a user friendly browser, the WWW exploded in 1993. In a similar way, the
realization of the Sensor Web is quickly approaching, and will be an important and defining factor in the
next generation of the Internet.

The term Sensor Web was first used by NASA [1], which was described as “the Sensor Web consists of
a system of wireless, intra-communicating, spatially distributed sensor pods that can be easily deployed
to monitor and explore new environments.” Liang et al. [2] extended the definition of the Sensor Web
to include a wide variety of applications and sensors. They discuss the wide variety of possible sensors,
such as wireless sensor networks, flood gauges, weather towers, air pollution monitors, stress gauges
on bridges, mobile bio-sensors, webcams, and satellite-borne earth imaging devices. As well, they
argue that the Sensor Web can be thought of as a “global sensor” that connects to all sensors and its
observations. We use this notion of the Sensor Web throughout the rest of this paper.

To allow machines to communicate over the Sensor Web, a common language is needed. Just as
the WWW has been successful due to the adaptation of HTML and HTTP, the Sensor Web will have
a set of commonly used standards. The Open Geospatial Consortium (OGC), a standards organization,
has been involved in developing these open standards for many years. They have developed the Sensor
Web Enablement (SWE) standards. These standards define information models and communication
protocols to make sensors accessible and interoperable on the Internet. Botts et al. [3] describe the
impact of the realization of the Sensor Web via the SWE, “This has extraordinary significance for
science, environmental monitoring, transportation management, public safety, facility security, disaster
management, utilities’ Supervisory Control And Data Acquisition (SCADA) operations, industrial
controls, facilities management and many other domains of activity”.

Of particular importance is the Sensor Observation Service (SOS) standard [4]. It is a service to
communicate observations generated from procedures. A procedure is often a sensor, because it produces
an observation based on some physical phenomenon, but a procedure is more general and could be an
equation or system that generates an observation. For brevity, we will use the term sensor throughout
this paper. The SOS standard is a core standard for sharing sensor data. In this paper, the discussion of
sensor data layers refers to data extracted from SOSs. In this paper, we only consider the SOS standard
version 1.0. From here on, any mention of SOS is an abbreviated form of SOS version 1.0. As of 2012,
OGC has published SOS version 2.0. However, since few tools support the new version, we rely on the
existing data and software compliant with version 1.0 to test our methodology.

The nature of the Sensor Web is highly spatial-temporal. All physical sensors have some physical
location, which makes all sensor data highly dependent on the proper modelling and understanding of
location. As well, an observation consists of a value, computed, generated, or collected at some point in
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time, giving all sensor observations a timestamp. Observations and Measurements (O&M) is an OGC
SWE standard for encoding sensor data [5], and the O&M model reinforces this spatial-temporal view
of sensor data. The OM Observation element has multiple time attributes, resultTime, validTime, and
phenomenonTime, and inherits location from the GF FeatureType.

In reaction to the huge amount of data to be generated from the Sensor Web, many research groups
from all around the world are designing and researching systems to handle and process these new data.
Geographic Information System (GIS) is the term commonly used to refer to software packages that
are capable of integrating spatial and non-spatial data to yield the spatial information that is used for
decision making. Nebert [6] explains that the term Spatial Data Infrastructure (SDI) is “often used to
denote the relevant base collection of technologies, policies and institutional arrangements that facilitate
the availability of and access to spatial data.” Coleman and Nebert [7] argue that the main components
of a SDI include data providers, databases and metadata, data networks, technologies, institutional
arrangements, policies and standards, and end-users. Nogueras-Iso et al. [8] explain, “It must be
remarked that spatial data infrastructures are just like other forms of better known infrastructures, such
as roads, power lines or railways. The whole concept of spatial data infrastructures, and other forms
of infrastructure, is that they allow authorized and/or participating members of the community to use
them.” We see that the concept of a SDI encompasses the technologies needed to harness the power of
the Sensor Web.

A SDI that is able to interact with the Sensor Web is a complex system, with many important software
components. The ultimate goal of such a system is to allow users to collect sensor data relevant to their
needs. Typical abilities include being able to visualize data, connect to different data providers, search
by geographic location and by time period. One important use case is to allow users to search for sensor
data, based on the real world phenomenon the sensor measures. This is known as a thematic filter: instead
of removing data outside the location of interest or the time frame of interest, we are removing data that
do not match the user’s thematic request. The phenomenon is only one possible thematic category.

The objective of this research is to provide the functionality of filtering sensor data by the phenomenon
it measures, accomplished by grouping similar sensor data. The notion of a layer is introduced to help
define the objective; a sensor layer is defined as a discrete entity consisting of a collection of sensor data
from one source, based on a single phenomenon. As well, we want to automate the process of grouping
similar sensor data, since the high volume of data will make manual or semi-manual methods too
costly to perform. Therefore, we may reword our objective as defining a methodology for automatically
grouping similar sensor data layers.

1.1. Problems

There are two fundamental problems associated with grouping data layers by their observed property
from different data sources: syntactic interoperability and semantic interoperability. Although the use of
open standards does eliminate many of the problems associated with data transfer, these two problems
must be defined and addressed.

Syntactic interoperability is the first problem of automatically grouping data layers. Bishr [9]
introduced this idea while discussing the heterogeneity in a multi-GIS environment. “Syntactical
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investigation deals with formalizing the grammar of schemata and semantics expressions, without any
reference to what they actually mean. There could be different grammar that results in syntactic
heterogeneity.” In other words, syntactic interoperability arises because observed properties are
represented as text strings, and unless the two sequences of characters match exactly, the computer
considers them as different.

Bishr [9] also defined the idea of semantic interoperability as the goal of interoperating GISs.
Semantic interoperability is described as “...to provide seamless communication between remote GISs
without having prior knowledge of the underlying semantics.” They go on to note that semantic
heterogeneity is when a real world fact may have more than one underlying description. Kuhn [10]
mentions the idea of a semantic reference system and describes semantic interoperability as the capacity
of information systems or services to work together without the need for human intervention. The
problem of semantic interoperability comes from different words or descriptions to represent the same
concept. For example, consider the two strings “precipitation” and “rainfall”. Since rainfall is a type of
precipitation, a user interested in precipitation data would be interested in rainfall, as well as snowfall,
hail, rainfall intensity, and other related observed properties. Although these concepts are intuitively
related to any human, to any computer these are simply different sequences of characters.

These problems make basic string matching ineffective for automatically grouping sensor data layers
together. For example, we describe the variety of assigned names to the observed properties in sensor
data layers, using the SOS standard [11]. Table 1 shows the various observed properties, which all
correspond to the same concept of wind speed. However, different data providers will label their data
differently. This makes it difficult to design systems to simply return to the user all sensor data layers
that measure wind speed.

Table 1. Various observed properties of the concept of wind speed.

1 urn:x-ogc:def:property:OGC::WindSpeed
2 urn:ogc:def:property:universityofsaskatchewan:ip3:windspeed
3 urn:ogc:def:phenomenon:OGC:1.0.30:windspeed
4 urn:ogc:def:phenomenon:OGC:1.0.30:WindSpeeds
5 urn:ogc:def:phenomenon:OGC:windspeed
6 urn:ogc:def:property:geocens:geocensv01:windspeed
7 urn:ogc:def:property:noaa:ndbc:Wind Speed
8 urn:ogc:def:property:OGC::WindSpeed
9 urn:ogc:def:property:ucberkeley:odm:Wind Speed Avg MS
10 urn:ogc:def:property:ucberkeley:odm:Wind Speed Max MS
11 http://marinemetadata.org/cf#wind speed
12 http://mmisw.org/ont/cf/parameter/winds

1.2. Previous Solutions

There have been many different approaches to solving interoperability issues, especially semantic
interoperability. We outline notable and recent solutions to this problem in the context of the
Sensor Web.
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One proposed method for finding and grouping similar sensor data layers is using a Sensor Observable
Registry (SOR) and semantic annotations [12]. The SOR comprises of a dictionary of URNs identifying
observed properties, as well as definitions of the observed properties and references to concepts for
those observed properties in an ontology. This is a practical way to manage sensor data layers, but
requires a certain level of manual work. New observed properties must be manually linked to some
agreed upon ontology. As well, if multiple ontologies are used, then some method of matching different
ontologies must be implemented. This solution fits into the work described in [13]. They describe
a Sensor Plug and Play infrastructure, including a description on semantically-enabled matchmaking.
Although they discuss the use of syntactic metrics for matching, their emphasis is on a large scale
Sensor Web architecture. The focus of this research is on grouping sensor data layers from existing
SOS services, and with minimal help from the data provider. This is based on the assumption that
many sensor data providers will not register or annotate their sensors but rather simply provide the data
according to the SOS specification.

Bermudez [14] defined categories for searching sensor data in the portal. Next, an ontology was
created to represent the concepts used by the service providers. Mapping between the portal categories
and service provider terms was achieved using an ontological mapping tool. This allowed the user to
select a portal category, and the system in turn could filter the results based on the observed property the
user was interested in. This proved to be an effective solution, but requires the data providers or data
integrators to create and maintain ontologies and also trust that the mapping process was effective.

A folksonomy-based recommendation system has been proposed to handle large volumes of sensor
data [15]. Although these systems are very effective, these systems often suffer from cold-start problems.
There is a potential benefit in building hybrid systems that utilize both external knowledge sources and
user defined annotations, but that work is outside the scope of this paper.

We make a key assumption that not all data providers will provide usable ontologies, and also that
not all data providers will follow recommended naming conventions. Based on much of the available
data, this assumption holds true, to the best of our knowledge. Instead of relying on data providers to
offer semantic cues, we propose a methodology that will consume text information directly from open
standard based data services and use that data, along with some general-purpose lexical database, to infer
semantics between data layers.

Another key assumption is that the “title” of the sensor data layer is a concise word or phrase to
describe the data. This assumption is justified because the use of open standards makes sure that we
can expect a certain consistency with the title, even if the data provider does not use or know about a
naming registry.

1.3. Contributions

This paper contributes to the SDI community. Our first and foremost contribution is the evaluation of
various syntactic and semantic string functions for the purpose of grouping similar sensor data layers.
This provides the community with some initial work on using a solid bottom-up string matching approach
for data interoperability. String processing and string matching can be more generally applied to other
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aspects of data interoperability in SDIs, and our evaluation shows how these techniques performed for
our data set.

Another important contribution of this work is that it highlights the current progress of OGC’s SWE,
namely the SOS. This paper discusses the SOS in detail, including example data from currently deployed
SOS data providers. Our work focuses on the current problem in SOS regarding inconsistent naming, and
serves as a record of the current progress of the OGC standard. This could possibly benefit those wishing
to design other open standards for information sharing, both within and outside the GIS community.

A major contribution of this work is the unique data set we use for both clustering and classification.
As far as we know, there is no other research that has attempted to cluster or classify data layers. This
is similar to some of the work done in clustering tags, except that this data set is fundamentally different
from tags. This provides a unique case to those interested in Information Retrieval or data mining, on
how techniques may vary from data set to data set.

2. Related Work

We discuss work relevant to automatic grouping of similar sensor data layers. First, we introduce
Information Retrieval as a general body of work. We then discuss how WordNet can be used as a
semantic resource. Finally, we look at other methodologies for interoperability based on ontologies
in SDIs.

2.1. Information Retrieval

Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually
text) that satisfies an information need from within large collections (usually stored on computers) [16].
We use an IR approach to grouping similar sensor data layers, by treating data layers like documents.
Shehata et al. implement a concept based mining model for clustering text-based documents [17]. We
follow their approach by applying text preprocessing on observed properties, using string functions to
determine data layer similarities, and then clustering data layers into similar groups.

For determining the relationship between two data layers, we rely on text data for cues on how
close the two data layers are. This requires more sophisticated string matching algorithms than exact
string matching. Cohen et al. [18] compare string distance metrics for name-matching tasks. The
authors evaluated three categories of distance metrics: edit-distance like functions, token-based distance
functions, and hybrid functions. Edit-distance functions include Levenshtein distance, Monger–Elkan
distance function, Jaro metric and Jaro–Winkler metric. For token-based functions, they consider Jaccard
similarity, cosine similarity, Jensen–Shannon distance, as well as a method proposed by Fellegi and
Sunter. Overall, they found the best performance from a hybrid scheme combining tf-idf weights with
Jaro–Winkler string distance scheme.

Cruz et al. [19] propose a methodology for ontological alignment that we use as the basis for
our methodology. They design and develop the AgreementMake system for ontological alignment,
based on different techniques for comparing the text in the ontological class elements. Ontological
alignment is based on finding matching classes between two ontologies. They propose a Parametric
String-based Matcher (PSM), where they take sub-elements of the ontology class element (localname,
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label, comments, etc.), normalize them, apply string metrics to develop similarity values, which are then
weighted in a final similarity measure. The string matchers include edit-distance, Jaro–Winkler, and a
substring-based measure devised by them. They also use a Vector-based Multi-word Matcher (VMM),
which tokenizes ontological classes, builds tf-idf vectors and applies a cosine similarity.

2.2. WordNet as a Semantic Resource

In order to define string matching functions that take advantage of the meaning of words, we will use
WordNet [20] as a semantic resource. We utilize the work presented in [21,22], where several different
approaches are used to generate similarities between words using WordNet. Once similarity values for
word pairs are generated, we can then define a semantic dissimilarity function for establishing how
similar two data layers are based on word relationships.

WordNet is a lexical network of English words. Nouns, verbs, adjectives, and adverbs are organized
into sets of synonyms, or synsets. WordNet is commonly used for its extensive structure of nouns. The
backbone of the noun network is the subsumption hierarchy, consisting of parent-child relationships.
Synsets are connected by various relationships, including hyponymy (is-a), its inverse hypernymy, six
meroymic (part-of) relations, and antonymy (complement-of). To use WordNet, we define a global root
element such that all the synsets are contained within a graph.

Many of the word similarity approaches do not have formal names, and so we adapt the naming
convention from [22]. Table 2 is a summary of the abbreviations and approaches used in this paper. The
authors of [22] provide a free tool to calculate word similarities, which is used by our group to compute
all word pair similarities. As well, we introduce our own basic word pair similarity algorithm, named
kno. All these approaches are discussed separately based on their general approach.

Table 2. Summary of approaches to defining word relatedness using WordNet.

Approach Authors Year Acronym

Information Content Approach
Resnik [23] 1995 res

Lin [24] 1998 lin
Jiang and Conrath [25] 1997 jcn

Path Length Approach
Leacock and Chodorow [21] 1998 lch

Wu and Palmer [21] 1994 wup

Word Relatedness Measures
Hirst and St-Onge [26] 1998 hso

Banerjee and Pedersen [27] 2003 lesk
Patwardhan [22] 2003 vector

Proposed Knoechel 2012 kno

There are three approaches based on information content, res [23], lin [24], and jcn [25]. These
approaches use a corpus to generate the frequency a given word will appear, and combine that
information with the length between two concept’s lowest common parent. The basic idea is that as
one moves upwards through a taxonomy, the probability of encountering a concept increases. The
information content of general high-level concepts is therefore quite low, because they are related to
many other concepts.
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There are two approaches based on path lengths between concepts, lch [21] and wup [21]. These are
two measures based on the path length between two concepts.

There are three approaches based on word relatedness measures, hso [26], lesk [27], and vector. Hirst
and St-Onge’s approach, or hso, is based on path length, and also paths having direction based on the
nature of the relationship between two concepts. The lesk is a semantic relatedness measure that is based
on the number of shared words in their glosses [27]. A gloss is defined here as an alternative word for
the description or definition of a word. The vector measure creates a co-occurrence matrix from a corpus
made up of the WordNet glosses, defining each concept as a gloss vector. The relatedness between
concepts is found by computing the cosine between a pair of gloss vectors.

The approach kno was devised with a simple strategy. It assigns a word pair similarity of one to parent-
child relationships, and a zero to all other word pairs. This is useful because it helps define obvious and
useful relationships, and ignores all other relationships between words. This is an overly-simplified word
pair similarity score to help evaluate the effectiveness of the other strategies.

WordNet is an expansive database of English words, but in our research there are tokens that WordNet
does not recognize. These are often abbreviations, acronyms, or slang (e.g., “tempc” as an abbreviation
for “temperature Celsius”). If a token is not identified as a word according to WordNet, then a similarity
score of zero is assigned to any word pair that contains this unknown token.

2.3. Ontology-Based SDIs

We look at other researchers who use ontologies in their SDI, as this has been the preferred
methodology for achieving semantic interoperability. We select the most relevant papers, with systems
closest to our work.

Henson et al. designed a system to add intelligence to sensor data [28]. They semantically enable SOS
by adding semantic annotations to sensor data and using ontology models to reason over observations.
Their system architecture has a SOS front end connected to a SPARQL Query Engine, linked to their
knowledge base. To make our system as usable and practical as possible, we focus on a bottom-up
approach that does not necessitate large, complex ontologies from domain experts. We only use word
semantics to provide groups of related data layers.

Janowicz et al. [29] discuss the semantics of similarity, in a geographic information retrieval context.
Their framework can be used to specify the semantics of similarity. They argue that semantic similarity
can only be computed between concepts, often derived from an ontology. In this context, a bottom-up
approach would be a sophisticated syntactic similarity measure. However, since ontologies are not
available from a SOS service, it is impossible to use semantically rich ontologies for semantic similarity
measures. The proposed methodology in this paper includes WordNet derived word pair similarity
scores, which identifies relationships between concepts. Using the word pair similarity score in an
algorithm solves the problem of semantic interoperability in the context of grouping observed properties.

Lutz et al. [30] discuss overcoming semantic heterogeneity in SDIs. Their system is based on a
hybrid ontology approach, where each information system has its own application ontology, and each of
these ontologies is based on a shared vocabulary, an upper level ontology. To connect the data sources
to the application level ontologies, registration mappings are used. The application ontologies and the
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registration mappings are not easy to generate, and certainly not provided by all, if any, data providers.
Although a solid framework, until service providers integrate the use of ontologies, this system is isolated
from many of the real data sources we want to connect to.

We do not use any other high level ontology in our methodology. We emphasize a strong bottom-up
approach by only using word pair similarities, and as a result our approach is extremely flexible and
can be reapplied in a variety of SDI contexts. By subscribing to one ontology, we would need to define
mapping or translations from all external data sources to our ontology, which is a difficult problem to
solve with a fully automatic solution.

3. Methodology

For this paper, we describe a bottom-up approach to automatically grouping similar sensor data layers.
First, we discuss the data used to represent data layers. Next, we describe dissimilarity functions to
produce numerical values of how dissimilar two data layers are. We then use the dissimilarity functions
to perform both property layer mapping and clustering.

3.1. Data

First, we must define what a data layer is in the context of our research. All of the sensor data we use
in our research is downloaded via the SOS standard. The SOS standard must be explained in order to
describe the definition of a sensor data layer.

SOS runs over HTTP via a client–server architecture. Content is negotiated via XML documents.
Some important terminology from the SOS standard will be used throughout this paper, and is
defined here.

• Observation Offering—A logical grouping of data sources.

• Phenomenon—Some naturally occurring event in the real world that can be measured, (i.e., wind
speed, air temperature).

• Observed Property—Another term for phenomenon.

• Procedure—A procedure is another term for sensor, except that procedure is more general to
include any process that generates an observational value.

• Feature of Interest (FOI)—An object associated with an observation, such as a lake where a
temperature measurement was taken.

The relationship of a SOS is presented in Figure 1. A SOS will have one or more observation
offerings. Each observation offering will have lists of one or more observed properties, FOIs, and
procedures. Our research group has defined a Property Layer (PL) as a sensor data layer extracted
from a SOS. The terms data layer, sensor data layer, and PL will be used interchangeably throughout the
rest of this paper. A PL is a unique data layer, defined by a SOS service URL, an observation offering,
and an observed property [11]. Since a SOS, or even a single observation offering within a SOS, may
offer a variety of data sources, a PL is the single most atomic data layer available from a SOS.
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Figure 1. SOS structure overview.

For this paper, we will only use the observed property of a PL for the purpose of determining
similarity. This is because similarity is based on how similar the two data layer’s phenomenon is, and the
observed property is the most consistent, useful, and direct piece of information for determining what
real world phenomenon a sensor is measuring.

For this paper, we will be extracting data from 27 different SOSs. The SOS services were discovered
using a Peer-to-Peer (P2P) resource discovery system [31]. There are 212 PLs in our data set. A small
example of the dataset is shown in Table 3. It must be noted that many of the existing SOS services
are in the testing phase, simply due to the gradual development and deployment of the SOS standard.
As well, many of the current SOS services online are run by the GeoSensorweb Lab, our own research
group. This may cause a bias in the data source, which may influence the evaluation. However, the
presented methodology is not influenced by this, and it remains perfectly valid for data collected by
future SOS services. A full list of SOS services is presented in Table 4.

Table 3. Example property layers.

Observed Property URL
urn:ogc:def:property:geocens: rocky view groundwater:groundwater
urn:ogc:def:property:noaa:ndbc:Wind Direction
urn:ogc:def:property:noaa:ndbc:Wind Speed
urn:ogc:def:property:noaa:ndbc:Wind Gust
urn:ogc:def:property:ucberkeley: odm:Solar Radiation Total kW/m2

urn:ogc:def:phenomenon:OGC:1.0.30: watertemperature
urn:ogc:def:phenomenon:OGC:waterlevel
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Table 4. List of SOS services used to create property layers.

Sensor Observation Service URL
http://app.geocens.ca:8155/sos
http://app.geocens.ca:8171/sos
http://app.geocens.ca:8191/sos
http://sensorweb.vito.be:8080/52nSOSv3/sos
http://app.geocens.ca:8175/sos
http://alec192.geocens.ca:9182/GSWSOSTJSv1ABW3/sos
http://alec192.geocens.ca:9182/GSWSOSTJSv1CAWeather2d/sos
http://app.geocens.ca:8181/sos
http://app.geocens.ca:8203/sos
http://app.geocens.ca:8206/sos
http://app.geocens.ca:8208/sos
http://app.geocens.ca:8210/sos
http://app.geocens.ca:8212/sos
http://app.geocens.ca:8215/sos
http://app.geocens.ca:8217/sos
http://app.geocens.ca:8221/sos
http://app.geocens.ca:8187/sos
http://app.geocens.ca:8189/sos
http://app.geocens.ca:8195/sos
http://app.geocens.ca:8197/sos
http://www.csiro.au/sensorweb/BOM SOS/sos
http://ccip.lat-lon.de/ccip-sos/services
http://infotrek.er.usgs.gov/ogc-ie/sosbbox
http://mmisw.org/oostethys/sos
http://security.demo.52north.org/wss/service/sos weather/noauth
http://www.csiro.au/sensorweb/CSIRO SOS/sos
http://www.pegelonline.wsv.de/webservices/gis/sos

3.2. Text Processing

Text processing is an essential step in our methodology. We consider two types of text processing,
normalization and tokenization. Normalization is the process of canonicalizing strings such that
superficial differences between strings are removed, and tokenization is the process of converting text
into distinct tokens. For our normalization, we strip the OGC URI prefix, so that we are left with only
the observed property text. We also convert all uppercase characters to lowercase characters, and remove
whitespace and other separating characters, like underscores.

Tokenization is done as a second step after normalization. We first normalize the observed properties,
as described above. Next, we use WordNet as a dictionary and split the observed property into distinct
words. As a result, we are left with a list of strings, each string being a distinct word. For example,
consider the observed property “urn:ogc:def:property:geocens:rocky view groundwater:groundwater”.
After normalization, we are left with “groundwater”, and after tokenization, we are left with a list of two
strings, (“ground”,“water”). An edit-based string function uses only a single string, which is generated
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from normalization. A set-based string function uses the list of tokens as input, which is generated from
tokenization.

3.3. Dissimilarity Functions

The similarity between two objects is a numerical measure of the degree to which the two objects
are alike [32]. However, we will use the notion of dissimilarity for this paper, which is a numerical
measure of the degree to which the two objects are different. We use the term dissimilarity over distance
because not all of these functions satisfy the triangle inequality, which we believe needs to be satisfied
to appropriately use the term distance.

We define and use three dissimilarity functions for this work, a Length Adjusted Levenshtein
Dissimilarity function, a Jaccard-based Dissimilarity function, and a Semantic Dissimilarity function.
The Length Adjusted Levenshtein Dissimilarity function is an edit-based function, while the latter two
are set-based functions.

3.3.1. Length Adjusted Levenshtein Dissimilarity

The Length Adjusted Levenshtein Dissimilarity (LALD) is a modification of the Levenshtein
Distance [33]. It is used over the basic edit distance to (1) reduce the impact of string length on the
dissimilarity between strings and (2) normalize all dissimilarity values between 0 and 1.

The Levenshtein Distance counts the number of additions, subtractions, and substitutions required to
traverse from one string to another. Our modification is this string length divided by the maximum string
length between both words.

dLALD =
dLD

max (|s1| , |s2|)
(1)

3.3.2. Jaccard Dissimilarity

The Jaccard coefficient is a measure of similarity between two data objects. Given two objects,
the Jaccard coefficient is the number of shared binary attributes divided by the total number of binary
attributes of both data objects. Therefore, this function requires the input of an array of tokens,
where each token is a string. To use this as a dissimilarity function, we simply difference one by the
Jaccard coefficient.

djaccard = 1− m11

m11 +m10 +m01

(2)

m11 is the number of words that exists in both strings, m10 is the number of words that exist only in
string 1, and m01 is the number of words that exist only in string 2. We use Jaccard over Cosine as a
dissimilarity because words are not repeated in observed properties. We therefore use a boolean measure
of dissimilarity.
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3.3.3. Semantic Dissimilarity Function

This semantic dissimilarity function will be applied between tokens, using the set-based dissimilarity
approach. The word pair similarities generated from WordNet, described in the previous section, are
used in this dissimilarity function. We base our dissimilarity function off of the Jaccard dissimilarity
measure, presented above.

The denominator contains the total number of distinct tokens in both token lists in Table 5. For
example, if we have two arrays of tokens A: [“X”, “Y”, “Z”] and B: [“X”, “W”, “V”], we would
say there are 5 distinct tokens, and a single matching token, so that the dissimilarity would be
djaccard = 1 − 1

5
= 0.8. But let us assume we have word pair similarities available to us. We use this

information to combine tokens into similar token pairs. To continue with the example for the semantic
dissimilarity, we see that “X” from A is the same token as “X” from B. Now we are left with four distinct
tokens, “Y”, “Z”, “W”, and “V”. We create a matrix of the word pair similarities, and rank it from most
similar to least similar.

Table 5. Word pair similarity scores for semantic dissimilarity function example.

Token A Token B Similarity
Y W 0.8
Y V 0.2
Z W 0.1
Z V 0.1

We see that Y and W have the highest similarity. We assume that these two tokens are related, and
these two tokens will form a single token pair, “YW”. The other two tokens, “Z” and “V” are also
assumed to be related, and form a token pair, “ZV”. The total number of distinct tokens is now 3, and
they are [“X”, “YW”, “ZV”].

However, A does not contain “YW”, it only contains “Y”, which is only 0.8 of the pair “YW”. We
modify our dissimilarity function to be

dsemantic = 1− m11

|A|+ |B| −m11

(3)

where m11 is the total sum of the token pair similarities. This works out to be
m11 = 1.0 + 0.8 + 0.1 = 0.9. Therefore, the overall semantic dissimilarity is
dsemantic = 1− 1.9

3+3−1.9
= 0.54.

3.4. Example of Dissimilarity Calculation

To help explain the methodology, two PLs are introduced and the dissimilarity is calculated between
them using different dissimilarity functions. Table 6 shows two different PLs from two different SOS
services, including the result of normalization and tokenization. Table 7 shows the word pair similarity
values for the tokens, as well as all the dissimilarity values between the two PLs.
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Table 6. Example of tokenization and normalization for two different property layers.

SOS Service URL http://app.geocens.ca:8155/sos http://app.geocens.ca:8197/sos
Observation Offering rocky view groundwater st denis evaporation

Observed Property urn:ogc:def:property:
geocens:rocky view ground-
water:groundwater

urn:ogc:def:property:
GeoCENS:st denis evapora-
tion:SoilMoisture

Normalized Observed Property groundwater soilmoisture
Tokenized Observed Property [ground,water] [soil,moisture]

Table 7. Word pair similarity scores and dissimilarity values between ground water and
soil moisture.

Property Layer 1 Ground Water
Property Layer 2 Soil Moisture

word1 word2 res lin jcn lch wup hso lesk vector kno
ground soil 0.70 1.00 1.00 1.00 1.00 1.00 0.53 0.78 0.00
ground moisture 0.07 0.09 0.07 0.40 0.43 0.00 0.00 0.01 0.00
water soil 0.38 0.63 0.19 0.56 0.71 0.40 0.07 0.07 0.00
water moisture 0.07 0.09 0.07 0.38 0.38 0.00 0.01 0.02 0.00

Semantic Dissimilarity 0.76 0.62 0.64 0.48 0.48 0.67 0.84 0.75 1.00
LALD Dissimilarity 0.83
Jaccard Dissimilarity 1.00

3.5. Property Layer Mapping

The first part of our methodology is to apply the string functions to define maps between PLs. A map
is a symbolic link between two PLs, and the existence of a map between two PLs indicates that those
PLs are similar. For our purposes, two data layers are similar if their observed properties have a direct
relationship. Ultimately, we want to group PLs together if a scientist would consider those two data
layers the same source of data.

A set of maps is collectively referred to as mapping. Therefore, it is important to define mapping
between PLs. A PL cannot map to itself. A map is bidirectional. It has no value, it either exists or it
does not exist.

The methodology to define Property Layer Mapping requires two things, a dissimilarity function and
a threshold. The process is very straightforward. Every PL is compared with every other PL that is not
itself. If the value of the dissimilarity function is less than the value of the threshold, then a map is
defined between the two PLs. Otherwise, no map is defined between the two PLs.

3.6. Clustering

Clustering is performed to automatically group PLs into discrete non-overlapping clusters. The
input for clustering is a clustering algorithm, a dissimilarity function, and a threshold. Each clustering
algorithm uses the threshold and the dissimilarity function, albeit in different ways. Therefore, the actual
clustering methodology depends on the clustering algorithm.
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For this methodology, we implemented three different clustering algorithms, K-medoids, DBSCAN,
and HAC. K-medoids is a well known variation of the K-means clustering algorithm. DBSCAN is
a density based clustering algorithm, which is fundamentally a different kind of clustering algorithm.
Lastly, HAC is considered a standard document clustering technique. Shehata et al. [17] used HAC,
Single-Pass Clustering and k-Nearest Neighbor (k-NN) as clustering techniques in their research for text
clustering. Our clustering algorithm selection is based on fundamentally different algorithms; since this
is a new data type used in clustering, we experiment with a variety of algorithms. We evaluate these three
different clustering techniques to see which algorithm works the best with our data set. Each clustering
algorithm is discussed in detail in this section.

K-medoids, also known as Partitioning Around Medoids (PAM), is a similar clustering algorithm
to K-means [34]. K-means is a commonly used clustering algorithm. It involves the selection of
starting points as seeds, and associating every data point or object to each seed, forming clusters. The
centroids of each cluster are calculated, and each data object is re-assigned to a cluster based on the
new centroids. This is done recursively until the clusters no longer change, or the change is negligible,
between iterations.

However, with string-based representations of data objects, it is impossible to compute centroids of
clusters. This is easily possible with numeric data, but with nominal data it is impossible. It is possible
to use K-means with tokenized inputs, but for the edit-based dissimilarity functions this would not work.
Instead, we use the concept of a medoid. A medoid is simply a data object within a cluster that is close
to the centroid, and is used in place of a centroid.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a density based clustering
algorithm [35]. DBSCAN is fundamentally different from K-medoids because it can capture irregular or
unusual geometric clusters. The two input parameters are minimum number of points and a value that
defines a radius, often referred to as epsilon. DBSCAN works by going through all data objects, and if
a given data object has enough other data objects in its neighbourhood, defined by the input parameters,
then those data objects form a cluster. Next, the cluster is expanded by joining nearby data objects. This
algorithm treats all data objects that do not belong to a cluster as noise. However, since all PLs are valid
data layers, they cannot be considered noise, so the input parameter for the minimum number of data
objects to belong to a cluster is one.

Hierarchical Agglomerative Clustering (HAC) is a clustering algorithm [32] which works by either
iteratively splitting one large cluster or combining individual clusters, starting with each data object as
a cluster. The latter, a bottom-up approach, was implemented. This means a cluster is created for every
data object, and clusters are merged one at a time. To determine which two clusters should be merged,
an intra-cluster distance metric is needed. For this project, we used the notion of complete linkage.

The complete linkage of two clusters is defined as the maximum distance of all the possible object
distances from one the objects in one cluster to all the objects in the other cluster.

linkage = (max (distance(pi, qj)) | piεC1, qjεC2) (4)

The lowest complete linkage of two clusters is calculated for all cluster pairs. If the complete linkage
value is less than some threshold value between two clusters, then the two clusters are merged and the
process is repeated.
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4. Evaluation and Results

This chapter evaluates the various methods discussed in the methodology for automatically grouping
Property Layers (PLs). First, the evaluation metrics used for the evaluation are introduced. Next, we
introduce the notion of testing data and how it was collected. The last three sections of this chapter are
the evaluation of dissimilarity functions, clustering, and matching, respectively.

4.1. Testing Data

The goal of this methodology is to identify groups of related sensor data layers, based on their
observed properties. To test the effectiveness of the methodology, the groups of PLs must be analysed to
see if PLs in the same group really are similar. To carry out this evaluation, some measure of the “true”
similarity between PLs is needed. To do this, four human operators were asked to rate the relationships
between PLs. Each person had a list of PL pairs, for example, “precipitation” and “groundwater”. Then,
they were asked to give a score for that relationship, ranking it as similar or not similar.

The human ranked relationships between PLs can be compared with the machine computed
relationships between PLs. The human ranked relationships are used to look at what relationships are
captured by the methodology, and what relationships are missed or incorrectly classified.

Since there are 212 PLs, that means there are 22,366 distinct PL-PL relationships. It is too time
consuming to have a person rank each relationship. Therefore, we select 8 distinct PLs, and classify
the relationships between each target PL and every other PL. These PLs are shown in Table 8. So for
example, a PL from Table 8, such as “urn:ogc:def:property:noaa:ndbc:Dew Point” is ranked against
every other PL, giving 211 PL-PL pair relationships. Each human operator was asked to perform the
same task on the same data set, and the average similarity was used in the evaluation. This redundancy
allows us to negate the impact of differences in the testing data.

Table 8. Ground truth property layers for testing.

Observed Property URL
urn:ogc:def:property:noaa:ndbc:Dew Point

urn:ogc:def:property:ucberkeley:odm:Rainfall mm
urn:ogc:def:property:GeoCENS:kenaston soil mesonet:SoilMoisture
urn:ogc:def:property:ucberkeley:odm:Solar Radiation Total kW/m∧2
urn:ogc:def:property:geocens:rocky view groundwater:groundwater
urn:ogc:def:property:universityofsaskatchewan:ip3:airtemperature

urn:ogc:def:property:noaa:ndbc:Wind Direction

4.2. Property Layer Mapping Evaluation

The evaluation of the PL-PL mapping is discussed. Every PL pair from the testing data section
is tested against our methodology. To have the system classify a PL pair as similar or not similar, it
requires two inputs, a dissimilarity function, and a threshold. The first input is one of the dissimilarity
functions described in the previous section. This will produce a value from zero to one for a PL pair,
by using the observed properties of the two PLs as input. Next, a threshold value is needed. This is the
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cutoff value; everything below this value is classified as similar, and everything above is classified as
not similar.

As a simple example, consider a PL pair with observed properties as “windspeed” and “windgust”.
Note that these observed properties have been normalized, and are input for an edit-based function. We
choose the LALD as the dissimilarity function, and compute the dissimilarity between them, which is
0.56. We need a threshold to decide whether 0.56 should be classified as similar or not. If we choose a
threshold of 0.60, then this PL-pair would be classified as similar.

The threshold is a completely arbitrary number, and selecting the right threshold depends entirely on
the dissimilarity function used. PL pairs are evaluated with a range of threshold values, to help find
the ideal threshold that minimizes False Positives and False Negatives. Consider Figure 2, which shows
how the LALD dissimilarity function performs at different threshold values. In this figure, every distinct
threshold value is a unique PL mapping. A low threshold value will only map between PLs that have
very low dissimilarity values, or for the LALD algorithm, strings that are very similar. That is why
the precision is so high, only observed properties with the same name are mapped. However, the recall
is very low with a low threshold, because similar observed properties with minor character differences
are classified as not similar. When the threshold is high, the filter is not restrictive enough, and maps
are created between PLs that have absolutely no relation. This results in a very low precision, but a
higher recall.

Figure 2. Length adjusted Levenshtein dissimilarity performance.
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To interpret these figures, we look at the threshold that produces the highest F-Measure. Since the
F-Measure is a balance of precision and recall, we generally see a rise and fall as the threshold
is increased. Stopping at the highest F-Measure, we have selected the ideal threshold for that
dissimilarity function.
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Figure 3 shows how the LALD and Jaccard dissimilarity functions compare with one another. It is
interesting to note that the Jaccard dissimilarity function performs the best with the maximum threshold
value. That is because if two observed properties do not have any matching tokens, they have a
dissimilarity of 1.0. Since the threshold never exceeds 1.0, all observed properties with no matching
tokens will never match. Note that the Jaccard dissimilarity function is step-wise, that is because the
dissimilarity is based on the number of matching tokens and the number of non-matching tokens. Since
each observed property only contains a maximum of several tokens, there are only a small number of
possible values that the function will return.

The Jaccard dissimilarity performs much better than the LALD, so we will use that as a baseline for
evaluating the semantic dissimilarity function. We will evaluate different word pair similarity scores
generated from WordNet.

We refer to Figures 4–7. The many different WordNet measures are implemented. Figure 4 presents
word similarity measures based on information content. They simply do not perform as well as the
baseline Jaccard measure, because the F-Measure is consistently lower, no matter what the threshold is.
Figure 5 are path lengths between WordNet words, and as well do not perform very well. This group of
word pair algorithms perform the worst because they define very high similarities between words that
are not related. Figure 6 uses three relatedness measures, and these perform very close to the Jaccard
dissimilarity value. This is because the word pair similarity scores are generally quite low. The lesk
measure is the only one that performs as well as the baseline. Finally, Figure 7 shows the proposed kno
word pair similarity score, which slightly outperforms the baseline. In this situation, a very simple word
pair algorithm is effective for defining similar relationships.

Figure 3. Comparison of dissimilarity functions.
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Figure 4. Semantic dissimilarity evaluation using word similarities derived from WordNet,
based on an information content approach.
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Figure 5. Semantic dissimilarity evaluation using word similarities derived from WordNet,
based on a path length approach.
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The evaluation of the semantic dissimilarity functions shows that the semantic dissimilarity function
performs consistently behind the basic Jaccard dissimilarity function. This is because the WordNet word
pair similarity scores identify relationships between words that are not intuitively related.
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Figure 6. Semantic dissimilarity evaluation using word similarities derived from WordNet,
based on word relatedness measures.
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Figure 7. Semantic dissimilarity evaluation using word similarities derived from WordNet,
using our proposed approach.
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The results of the clustering are similar, as we see in Figures 8 and 9.



ISPRS Int. J. Geo-Inf. 2013, 2 21

Figure 8. Clustering results using length adjusted Levenshtein dissimilarity.
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Figure 9. Clustering results using Jaccard dissimilarity.
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According to Table 9, the word pair algorithm with the highest F-Measure is vector, which we show
in Figure 10. For these figures, the threshold depends on the clustering algorithm. For K-Medoids, it is
used to identify an outlying medoid in a cluster, which creates a new cluster. For DBSCAN, the threshold
is used as the epsilon input. For HAC, the threshold defines the maximum linkage, which will combine
two clusters if the maximum dissimilarity between all objects is greater than the threshold. We vary
the threshold, as in the PL-PL mapping, to see which set of clusters produces the highest F-Measure.
Therefore, the vector word pair similarity score with K-Medoids or HAC clustering method performed
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the best. This is because vector word pair similarity score is a conservative word pair similarity score, so
it relies strongly on the syntax of words, but still identifies the necessary relationships between concepts.

Table 9. Highest F-measures for clustering.

Dissimilarity Function Best F-Measure
LALD 0.71
Jaccard 0.72

res 0.66
lin 0.56
jcn 0.64
lch 0.64
wup 0.52
hso 0.69
lesk 0.66

vector 0.79
kno 0.72

Figure 10. Clustering results using semantic dissimilarity, using vector word similarity.
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5. Conclusions

We start this paper by comparing the rise of the World Wide Web (WWW) in the early 1990s to today’s
rising Sensor Web. The Sensor Web runs on top of the Internet through the use of open standards, but
even with the use of open standards for sharing information, there are still interoperability issues that
arise. Many SDIs rely on accessing data from multiple sources and integrating them seamlessly into a
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single, logical presentation for the user. Our focus is on the task of grouping semantically similar sensor
data layers. This will increase the usability of SDIs by saving users the time of manually sorting through
data layers.

However, there are many problems associated with this task. The sheer number of unique sensors will
necessitate an automatic approach, as manual categorization will not be feasible with the rising number
of sensors. As well, the heterogeneous naming of sensor data layers makes it difficult to perform exact
string matching. One well researched solution to this problem has been the semantic catalogue. These
catalogues automatically groups together heterogeneous data sources. However, this approach requires
the creation and maintenance of ontologies, which is a very time intensive process. As well, real world
data providers often do not provide ontologies with their data, which makes it extremely difficult to use
that data in a semantic catalogue.

The automatic grouping of sensor data layers presents two primary challenges in the form of
differences between names. These are syntactic and semantic differences. Syntactic differences are
resolved to some extent by open standards, but the same name can be represented using different
characters. The best example of syntactic differences is the use of uppercase and lowercase to represent
the same name. Semantic differences are more difficult to resolve, and refer to two different names
to represent the same real world concept. Our paper contributes a new and useful methodological
framework to the GIS community. We present here an evaluation of syntactic and semantic string
matching algorithms for the purposes of automatically grouping similar sensor data layers. We
investigate the SOS standard in detail, and apply clustering and classification to a new data set, sensor
data layers.

Our methodology is a solid bottom-up approach. We first collect data from different OGC SOS
services. We then divide it into atomic data layers known as Property Layers (PLs). The text from
PLs that convey information about the phenomenon they measure is processed via normalization and
tokenization. Next, we introduce WordNet as a lexical database to create word pair similarity scores.
Many dissimilarity functions are introduced, based on approximate string matching. Using these
dissimilarity functions, we perform PL-PL mapping and PL clustering.

We present an evaluation of how these dissimilarity functions performed in grouping similar sensor
data layers. Overall, we see comparable results using edit-based and set-based dissimilarity functions.
The semantic dissimilarity function did not perform as expected, and often did not perform very
well. The best semantic dissimilarity function was one that only considered very direct and simple
relationships between tokens.

6. Future Work

This research shows how sensor data layers may be grouped or related by their observed properties.
These groups of PLs generated from the methodology could be incorporated in a Sensor Web SDI.
This has been done previously by our research group through the VirtualSOS prototype [11]. PL to
PL mapping could be used for a recommendation system, for example, as a user downloads a single
observed property, we could retrieve all related PLs that the user might be interested in. In VirtualSOS,
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classes are treated like virtual sensor data layers, and when the user selects a class, all related PLs are
retrieved.

We could integrate this approach with a top-down approach, and use a bottom-up approach when
there is missing or incomplete ontological information.

As well, one very important future work would be to continue investigating algorithms or techniques
for generating a semantic similarity. Word pair similarity scores are limited in utility and assume all
semantic information is self-contained in each word. Besides, there may be other semantic information
in the SOS standard that could be used to infer the sensor data’s observed property, such as the Unit of
Measure of the observations or the sensor description.
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