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Abstract: In this paper we describe a recently developed algorithm called Topological 

Weighted Centroid (TWC). TWC takes locations of an event of interest and analyzes the 

possible associated dynamics using the ideas of free energy and entropy. This novel 

mathematical tool has been applied to a real world example, the epidemic outbreak caused 

by Escherichia coli that occurred in Germany in 2011, to point out the real source of the 

outbreak. Other four examples of application to other epidemic spreads are described: 

Chikungunya fever of 2007 in Italy; Foot and mouth disease of 1967 in England; Cholera 

of 1854 in London; and the Russian influenza of 1889–1890 in Sweden. Comparisons have 

been made with other already published algorithms: Rossmo Algorithm, NES, LVM, 

Mexican Prob. The TWC results are significantly superior in comparison with other 

algorithms according to four independent indexes: distance from the peak, sensitivity, 

specificity and searching area. They are consistent with the idea that the spread of 
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infectious disease is not random but follows a progression based on inherent, but as yet 

undiscovered, mathematical laws. The TWC method could provide an additional powerful 

tool for the investigation of the early stages of an epidemic and novel simulation methods 

for understanding the process through which a disease is spread. 

Keywords: topological weighted centroid; epidemic out break; E-coli; HUS epidemics  

 

1. Introduction 

In a previous paper we introduced for the first time a new mathematical approach (H-PST 

Algorithm) to identify the possible location of an epidemic outbreak source [1] showing that a 

distribution of events generated by the same process in a two dimensional space has a wealth of hidden 

information. We compared this new artificial intelligence method with other well-known algorithms to 

identify the source of three examples of infectious disease outbreaks derived from literature. The H-PST 

algorithm is a system able to project a distance matrix of points (events) into a bi-dimensional space 

with the generation of a new point that has been named the hidden unit. This new hidden unit deforms 

the original Euclidean space and transforms it into a new space (cognitive space). The cost function of 

this transformation is the minimization of the differences between the original distance matrix among 

the assigned points and the distance matrix of the same points projected into the bi-dimensional map. 

The position of the hidden unit proved to effectively target the outbreak source in many epidemics 

much better than the other classic algorithms specifically targeted for this task. This study shows clearly 

that one possible hidden piece of information that can be revealed is the location from which the event 

originated. To adequately understand the history of this method the reader is directed to [1,2].  

From the beginning, however, we were aware of some limitations of this technique. In fact, the  

H-PST algorithm is very efficient when the point distances do not follow either the Euclidean or 

Manhattan metrics (time distances, curvilinear distances, etc.), but less efficient when the point 

distances fit a two-dimensional map. In addition, H-PST defines the search area as a single point and 

not as a probability area. This has prompted us to develop a more accurate algorithm with a 

multivalent performance. The algorithm presented here is called the Topological Weighted Centroid 

(TWC) and was designed in 2008 [3,4] at Semeion Research Center. It minimizes the global entropy 

among the positions of the points where the events occurred using no additional information but able 

to point out the position of a hidden “point zero” (the source of the process), taking historical 

information only from the already manifested precise positions of the other events together with other 

interesting mathematical entities. This discovery suggests that every static distribution of points in a 

two dimensional space could implicate new information about their dynamics. 

This paper is organized into sections:  

In Section 2 we present a series of mathematical entities that the TWC algorithm generated: 

 A new point, the TWC Alfa, and a new scalar field, the TWC Alfa Map: these two entities 

constitute an estimation of the outbreak of the assigned epidemic; 
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 A scalar field, the TWC Beta, whose goal is to show the possible diffusion map of 

the epidemic; 

 Another scalar field, the TWC Gamma, and other mathematical entities show an estimation 

of the future diffusion of the epidemic. 

In Section 3 we present four different and well known cases of epidemics whose outbreaks are 

well known:  

 Case 1: The Chikungunya fever epidemic of 2007; 

 Case 2: The Foot and mouth disease epidemic of 1967 in Great Britain; 

 Case 3: The Golden Square cholera epidemic of 1854 in London; 

 Case 4: The Russian influenza in Sweden in 1889–1890; 

In Section 4 we will present and compare the effectiveness of TWC-α algorithm with other 

algorithms known in the geographic profiling field: 

 The Rossmo Algorithm [5]; 

 Negative Exponential Summation Algorithm (NES) [1]; 

 Likelihood Variance Maximization Algorithm (LVM) [1]; 

 Mexican Probability Algorithm (Mex Prob) [4]. 

We have decided not to consider certain trivial algorithms such as the spatial central tendency because 

they have already been shown to be too naive and not competitive (Le Comber [6], Stevenson [7]). 

We have also decided not to consider certain other approaches including temporal information and 

frequencies in the epidemic dynamics. We have already proposed new algorithms to cope with these 

richer datasets (see Buscema [8]). In this paper we want to show only the possibility of obtaining the 

maximum of information from the crude spatial distribution of a set of events (points with latitude and 

longitude) in bi-dimensional space.  

In Section 5 we will present the results of the comparison and propose a methodology, composed of 

four indicators, to evaluate the performances of any algorithm in geographic profiling: 

 The Distance of the peak of the map from the target (outbreak); 

 The Sensitivity of the target location on the map; 

 The Specificity of the target location on the map; 

 The Percent of the searching area proposed by any algorithm. 

In Section 6 we provide a first validation of the predictive capability of TWC methodology using 12 

months of data collecting concerning a food epidemic in OAHU (Hawaii) in 2010. 

Finally, in Section 7 we demonstrate the efficacy of TWC in the epidemic outbreak that occurred in 

Germany in 2010, the hemolytic uremic syndrome (HUS) epidemic in which over 40 deaths occurred 

in a two month period. Section 7 is also addresses the conclusions.  
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2. The Topological Weighted Centroid Algorithm 

2.1. Some Mathematical Details about TWC-α Method 

The points at which an event of interest occurs are called the assigned points. The center of mass of 

the assigned points represents the point at which the maximum entropy occurs. 

Let N = Number of assigned points and K = Number of all the points of the two-dimensional plane on 

a chosen/fixed grid. Then the coordinates of the center of mass are defined by the following equation: 

* *1 1
; ;

N N

x r y r
r r

C Px C Py
N N

    (1)

where Pxr and Pyr are x and y of the -thr  assigned point.  

The center of mass has the following property: 
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where Cxr and Cyr are x and y of the -thr  point in the pane and  is the sum of the square of the 

distance of point Cr from the assigned point Pi.  

Now, if we re-write the Equation (1) giving a specific weight to each of the assigned points and also 

weight the distance between two points by the average (modified) distance that each point has from the 

others, we generate Equation (4):  
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and where D = maximum distance among the assigned points, ̅ ,  modified distance between two of 

the assigned points, di,j,di,k = Euclidean distance between two of assigned points, and , ∗ ∈ 0, ∞ .  

The weight is defined by Equation (5). Equation (4) is the same as Equation (1) but is weighted by 

Equation (5).  

Equation (5a) changes the final attractor of TWC (αn), as n→∞, into a non-trivial attractor. With 

Equation (5a) for each distance (di,j ) we take into account the average of the other distances (di,k, with 

k ≠ i and k ≠ j). In fact, without Equation (5a), the convergence point of TWC(αn), as n→∞, 

corresponds to the mean of the two points having the minimal Euclidean distance (see the proof in 

Appendix A), while by Equation (5a) the final attractor is the point in space whose average distance 
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from the other points is minimal. This point need not be unique because the matrix of the distances 

generated by Equation (5a) is not symmetric (see Appendix B).  

Now, we find the vector of optimal weights  *w  (Equation (5)), having the following properties: 
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We have developed an algorithm to optimize Equation (6) as follows: 

 Initialize α(0) = 0 at first cycle; all the components of the vector w(αn) at this point will be 

equal to 1 and the TWC (αn) will have the same coordinates of the center of mass. 

 At the next cycle increase α with a small positive quantity:  
αn+1 = αn + ε. 

 The Equations (7) and (8) will show an entropy reduction and an increasing of the free 

energy (see Appendix C), and then the TWC (αn) will move in a specific direction of the 

plane (Equation (4)).  

 When the free energy (Equation (7)) attains the global max, the process terminates at α* = αn. 

The conditions for existence of a convergent point, that is, convergence to a (unique) point, is 

associated with the conditions for convergence to the (unique) point of Newton’s Method. 

Alternatively, one could analyze this algorithm from a Fixed Point Algorithm point of view (see 

Appendix D). The path described by the TWC (αn) evolution is also very informative and can be 

retained for at least two reasons: 

 All the TWC (αn) points represent the best path with which to reach the maximum of the free 

energy of the weighted mean of the assigned points, starting from the center of mass. This 

path is usually nonlinear and a non-monotonic curve. 

 The set of points belonging to the TWC (αn) trajectory can be used to transform the plane 

into a scalar field, TWSF (αn), where the proximity of each geometrical point to this 

trajectory can be measured. 

The TWC (α*) represents, therefore, the point at which the weighted mean of the assigned points 

represents the maximum free energy. In many applications this remarkable point can represent, or 

point out, the source of the process because this point is also the point where the entropy is minimal, so 

it is the point from which (if you were to put yourself there) other points generate maximum 

information; in other words this is the point of Negentropy. On the other hand, the center of mass is the 

point where the entropy is maximum, so it is also the point from which (if you were to put yourself 

there) the distribution of assigned points is least informative. We can also find α* by using a Newton’s 
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Method or the fixed point algorithm (see appendix D). Conditions associated with Newton’s Method 

or the fixed point algorithm indicates existence and uniqueness of the method that is convergence to a 

unique solution.  

2.2. Details of TWC-β Method 

Now we change Equation (5) to the following form:  
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Equation (10) presents a dynamic different to that of Equation (5). Specifically, when the parameter 

β is still small, the system entropy will decrease, but for larger values of β the distance of any point 

from itself (which is included in the Equation (10)) will prevail and the trajectory of the TWC points 

will come back to the center of mass, with a consequent increase in entropy. So, with Equation (10) we 

target a different direction: the trajectory leaves the center of mass and then returns to the point in question. 

This means we can try to define the optimal value of β for which the entropy of the weighted mean of the 

assigned points is minimal when we include it into the weights calculation and the pseudo-distance of each 

point from itself. This is the β* for which point TWC (β*) of the trajectory begins to turn back. This is 

because vi(β
*) is the vector of weights defined by a specific value of β, where the entropy is the 

smallest (β*) as computed by the following:  
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   1 ( ) ;  0 0; where  is a small positive quantityt t t         (14)

The x and y components of  *TW yC  are given:  

   * * * *TW ( ) ;    TW ( )
N N

x i i y i i
i i

C p x C p y         (15)

Also, the iterative algorithm in which the β parameter has increased is necessary according to 

Equation (14) because we do not a priori know which value of β satisfies the statement in Equation (11) 

and gives β = β* (See Appendix A from Equation (A16) to Equation (A22)).  

The β* parameter will now be used to define the proximity of each geometrical point (all the grid 

points that define the space) to the assigned points: 

N; {Number of assigned points} 

M; {Number of points of the discretized space} 

i,j ∈ {1,2,…,N}; {Assigned points indexes} 

k ∈{1,2,…,M}; {geometrical points index} 
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Note: pk has been changed to TWSF (β*). 

{Proximity of each geometrical point to all assigned points, with β* as parameter minimizing 

the entropy} 

Equation (19) gives the TWC-β scalar field, TWSF (β*), which is generated from the β* parameter. 

2.3. Some Mathematical Details of TWC-γ Method 

The TWC (γi) analyzes the weighted distances of each of the assigned points from the other. In fact, 

the TWC (γi) is the set of points connecting the center of mass to each one of the assigned points. 

Consequently, each one of the assigned points will be described by a vector, z, of weights. 

Components of each vector define a set of TWC (γi) points for each of the assigned points. 

Therefore, each component of this set of points represents the weighted average of all the points with 

respect to an increasing value of the γ parameter, in relation to any one of the assigned points. The 

starting point of each TWC (γi) is located at the center of mass. Now the last TWC (γi) terminates at 

the point where for each of the assigned points the entropy of the weighted average is minimized 

according to Equation (29).  

The following equations illustrate the algorithm that calculates the TWC (γi):  
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{Coordinates of the i-th Weighted Centroid at the step t} 
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{Condition of Termination}  
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Thus TWC (γi) defines a set of trajectories whose dynamics is the output of the many-to-many 

interactions among the distances of all the assigned points. The TWC-γ map is the scalar field, TWSF 

(β*(γi)), measuring the global proximity of each geometrical point of the two-dimensional space to all 

these TWC (γi) trajectories. 

The following equations detail the algorithm to generate the TWC-γ scalar field, TWSF (β*(γi)): 

Legend: 

N= Number of points composing all the trajectories points, TWC (γi), in the discrete space; 

M=Number of geometrical points of the discrete space; 

i,j ∈ {1,2,…,N}; {Indexes for the trajectories points} 

k ∈{1,2,…,M}; {Index for the geometrical points}. 

{Euclidean distance between each geometrical points and each trajectories points} 
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{Proximity of a point to the trajectory points, with β* parameter} 
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Equation (31) gives the TWC-γ scalar field, TWSF (β*(γi)) which depends on the β* parameter. 
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2.4. A Short Synthesis of TWC Method 

TWC (α*) is a new point of the space from which the other assigned points (input data points of 

interest) have minimum entropy with maximum free energy. This point has been shown to mark the 

source of the dynamic process underlying the occurrence of points of interest. This prediction tool has a 

number of benchmark algorithms described in Section 4. The set of points belonging to the TWC (αk),  

k = 0,1,… trajectory transforms the plane into a scalar field where the proximity of each geometrical 

point (points on the grid of the map) to this trajectory can be measured. Parameter β* is the critical 

value of β at which the entropy of the weighted mean of the assigned points is minimal and it is used to 

define the TWC-β scalar field, TWSF (β*). The diffusion probability could be calculated by measuring 

the intensity of the scalar field. The diffusion probability determines the probability that a new event 

could occur at a geometrical point of the map. A scalar field in physics is basically used to associate a 

scalar value (like temperature or electric potential energy) to every point in the space. The gradient (or 

minus the gradient) of a scalar field is a vector field, for example, the negative gradient of electric 

potential is the electric field. Therefore the TWSF (β*) represents a property of the space which is 

similar to electric potential. We will interpret these points, trajectories, and scalar fields as possible 

sources of the disease or indicators as to where the disease will next spread.  

The set of points, TWC (γi), provides information about the weighted distances of each of the 

assigned points from the others. TWC (γi) is the set of points connecting the center of mass to each one 

of the assigned points. TWC (γi) can be used to build up a matrix of nonlinear trajectories connecting 

the points of interest, which may be interpreted as the dynamic movement of the disease outbreak. The 

TWC (β*(γi)) points are transformed into a map that is the scalar field TWSF (β*(γi)) measuring the 

global proximity of each geometrical point of the two-dimensional space to all of the TWC (γi) 

trajectories by using the β* parameter. The point with minimum entropy and maximum free energy 

may be interpreted in context of many applications as a remarkable point that represents, or can point 

out, the source of a spreading phenomenon like an epidemic outbreak. TWC-β and TWC-γ sets of 

points do not yet have any benchmarking algorithm. 

3. Four Epidemics Already Known  

3.1. The Chikungunya Fever Epidemic of 2007 

Chikungunya fever is a toga viral illness that is spread by the bite of infected mosquitoes of the 

Aedes Aegypti mosquitoes. Mosquitoes breed in stagnant or standing surface waters, puddles or oil 

drums and are infected by feeding on a sick individual. Chikungunya fever is characterized by severe, 

sometimes persistent, joint pain (arthritis) as well as fever and rash. The disease is debilitating but 

rarely life-threatening. The virus was first isolated between 1952–1953 from both man and mosquitoes 

during an epidemic of fever that was considered clinically indistinguishable from dengue, in Tanzania.  

Up to 2007, no autochthonous cases had taken place outside these areas, but between July and 

August 2007, 205 cases of Chickungunya fever took place in the environs of the two northern villages 

of Castiglione di Cervia and Castiglione di Ravenna in Northern Italy. The spatial topography of the 

epidemic had a decreasing concentric gradient, with fewer cases taking place furthest from the 

epicenter. The probable index case was identified as a traveler from an area of India in which an 
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epidemic of Chickungunya fever was underway and the highest concentration of cases was identified 

as the village of Castiglione di Cervia [9]. We have used the coordinates of the points corresponding to 

the outbreak status in the late phase of development. 

3.2. The Foot and Mouth Disease Epidemic of 1967 

The animal epidemic of Foot and Mouth disease (FMD) of 1968–1969 caused the death of 2,000 

animals and the compulsory slaughter of half a million more and wrought economic chaos to the cattle 

and meat producing industries. The origin of the epidemic was traced to infected pig swill at Bryn 

Farm, near Oswestry in the English county of Shropshire [10]. Foot and mouth was not a new disease 

in the UK in 1967–1968. Throughout the 1950s and 1960s, it was not unusual to have outbreaks 

(sometimes two or three in a year) of FMD. From 1954 to 1967, excluding the 1967–1968 outbreak, 

there were 1,002 outbreaks with an average of 75 cases every year, and there were only two years, 

1963 and 1964, when there was no disease, the longest period without the disease since 1908. In the 

1967–1968 outbreak when the first case was diagnosed at Bryn Farm on 25 October, a Wednesday, the 

normal Oswestry market was taking place and two cows from that farm had gone to the market that 

morning. On the basis of disease recognition the State Veterinary Service decided immediately to close 

down the market. These two cows were examined the next day, 26 October and found free of the 

disease, but despite this they were included in the slaughter. Some animals had left and gone as far as 

Banffshire in Scotland and Devon in the south-west before the measures had been enacted. All these 

animals were traced and found healthy, so the decision was taken not to introduce compulsory 

slaughter of all the animals in the market. On Monday, 30 October, the situation changed dramatically 

when there were nine fresh cases confirmed, six close to the original outbreak. The other three were 

considerable distances away (12, 35 and 100 m, the furthest being in Lancashire). From 30 October on 

there was a dramatic escalation of cases which in the end involved 2,000 animals. 

We have used the coordinates of the points corresponding to the 20 farms infested by the outbreak 

in the first week. The coordinates were derived from the map described of the published report [10]. 

3.3. The Golden Square Cholera Epidemic of 1854 

John Snow (1813–1858), was a London physician who famously investigated the 1854 cholera 

epidemic around the Berwick Street area of Soho as part of a wider study to test his hypothesis that 

cholera was waterborne rather than, as most then believed, airborne. Snow further believed the vector 

of transmission was either personal contact with an infected person or the drinking of contaminated 

water in which some “morbid poison” travelled. He undertook two separate studies. One considered 

the correlation between water sources and the incidence of cholera in South London and the other 

examined a localized outbreak in London’s Soho District. The results of both studies were published in 

a second and greatly expanded edition of “On the Mode of Transmission of Cholera” in which Snow 

published for the first time the large-scale cholera outbreak map which in the twentieth century would 

become an icon for medical cartography [11]. 

This famous point source epidemic (part of an ongoing propagated source epidemic) was 

investigated in detail by Snow who talked to local residents and conducted door-to-door investigation, 

thus collecting the data to create the spot map to illustrate how cases of cholera were centered around 



ISPRS Int. J. Geo-Inf. 2013, 2 165 
 

the pump. He used bars to represent deaths that occurred at the specified households, and by weighting 

the density of these bars and relating them to the distance of neighborhood pumps he was able to 

confirm the Broad Street pump as the origin of the spread of the cholera outbreak. Snow’s use of his 

famous map was confirmatory rather than proof, as he had elaborated the focused underlying theory to 

explain the spread of water born cholera [12].  

A full visual confirmation of the communication between the cesspool near number 40 and the 

nearby pump well was given in April 1855, four months after the publication of Snow’s classic on the 

Mode of Communication of Cholera, following a complete excavation of the cesspool by the parish 

council. It seems likely that the index case had been living with her parents at number 40 and her 

mother (Sarah Lewis) washed the sick’ baby’s diapers in the cesspool, allowing the vibrios to enter the 

water supply through communication between the cesspool and the pump well. Despite Snow’s 

desperate efforts, in the time between the 19 August and the 31 of (the beginning of the Golden Square 

epidemic), there were 73 cases of cholera and 12 deaths. 

The intelligent discovery of the outbreak of the cholera epidemic has already been treated with 

modern mathematics and statistics [1,6]. 

The digital map is composed of 578 locations (buildings) and three repetitions that we have decided 

not to delete from the dataset. The data set reflects the final state of evolution of cholera epidemics. 

3.4. The Russian Influenza in Sweden in 1889–1890  

In 1890, immediately after the outbreak of Russian influenza, all Swedish doctors were asked to 

provide information about the start and the peak of the epidemic and the total number of cases in their 

region, and to fill in a questionnaire on the number, sex and age of infected persons in the households 

they visited. 

General answers on the epidemic were received from 398 physicians and data on individual patients 

were available for more than 32,600 persons. From the answers a table was compiled and a map was 

drawn in 1890 indicating when the influenza first appeared at the various locations. To support the 

contagiousness theory an analysis of the railway network was done in relation to the onset of the 

outbreak. In the first week in December 1889, 12 of the 13 affected places outside Stockholm had 

railway stations. Linroth demonstrated that by 20 December, 82% of reporting places with a railway 

station and 47% without one had been affected [13]. 

The dissemination was very fast and the local epidemics developed at a pace that in some cases 

were described as explosive. Due to the general susceptibility, the short incubation time and the 

difficulty to detect the very first cases, more proof was needed to scientifically verify that the influenza 

was indeed contagious. 

Linroth was, however, of the opinion that the many individual testimonies describing how the 

infection was transferred directly from infected persons justified the hypothesis: Influenza is a 

contagious disease. 

In a recent GIS study [13], Linroth’s original tables were converted into Excel format and dot maps. 

We have worked on the dots of week three using the coordinates of the points corresponding to the 44 

locations interested by the outbreak in the third week, an early phase of evolution in temporal terms 

(number of cases per locations) but not in topological terms (number of locations with at least one case). 
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4. The Algorithms Used for Comparison with TWC-α 

This class of algorithms focuses only upon the metric of the space, DN and the shape of the decay 

distance function, F(DN) and the sum as a composition function, S, without specific assumptions about 

other factors. Following this approach, the anchor point, Y*, is located in a region with a high “Hit 

Score” [14]: 
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These approaches tend to define the probability of each point of the grid—within the convex hull of 

the locations of the observations—to be the outbreak. Consequently, the probability distribution 

strategy defines a search area whose points have a high probability to be the outbreak point [1,14].  

4.1. The Rossmo Algorithm 

The Rossmo Algorithm [5,6] uses the block (Manhattan) distance. It employs four free parameters, 

each of which has to be calibrated empirically according to the situation. This algorithm is specific to 

finding the anchor point in serial crimes. We adapted its four parameters and its metric to apply it in 

the field of the tracking of epidemics. The Rossmo equations are the following: 
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where: d = the distances among points, in any metric; B = the diameter of the protection zone, when it 

is the case; g and h = exponents governing the competition between the decay distance among points 

and the protection zone. 

The first term of the equation takes its inspiration from Newtonian gravity. The whole equation 

represents a formulation of the Brantingham and Brantingham [15,16] search area model, in which the 

offender’s search behavior is seen as following a distance decay function with decreased activity near 

the offender’s home base. Rossmo has produced examples showing how the model can be applied to 

serial offenders [17]. For both the “within buffer zone” (near to home base, controlled by the 

parameter “B”) and “outside buffer zone” (far from home base) functions, the parameter “k” and the 

exponents “h” and “g” are empirically determined.  

4.2. The Negative Exponential Summation Algorithm (NES) 

The NES Algorithm [1] uses the buffer concept of the Rossmo model and the negative exponential 

of Canter [18–22], combining them in the following equations: 
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where: φ = The connection strength among the points; d = The distances among points, in any metric; 

B = The diameter of the protection zone, when it is the case; g and h = Exponents governing the 

competition between the decay distance among points and the protection zone.  

When “h” and “g” are fine-tuned appropriately (h = 0.05 and g = 0.01), the NES Algorithm has 

proved to be very sensitive to the distribution of the observed sites [23,24]. 

4.3. The Likelihood Variance Maximization Algorithm (LVM) 

The LVM Algorithm [1] is inspired to the maximum likelihood technique that O’Leary presents and 

rejects as a poor model in favor of a Bayesian approach [25]. But the strong point of this simple 

technique is the cost function: we try to maximize the variance of the likelihood among all the 

candidate operation points, by means of an iterative process: 
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σ and σ* = the width (and the optimal width) of the bell of the decay function and σ* = the width (and 

the optimal width) of the bell of the decay function. 

The LVM Algorithm presents two main advantages: it does not need the setup of external 

parameters and it is based on Bayesian theory. 

4.4. The Mexican Probability Algorithm (Mex Prob) 

The MexProb algorithm [4] was created to manage within only one equation all the parameters 

usually employed in location theory algorithms: 

φ = The connection strength among the points; 

d = The distances among points, in any metric; 

B = The diameter of the protection zone, when it is the case; 

σ and σ* = The width ( and the optimal width) of the bell of the decay function. 

The MexProb algorithm, moreover, calibrates all these parameters by itself, by maximizing the 

variance of its scalar field, iteratively:  
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5. Results 

5.1. The Results of the Comparison of the Four Algorithms with TWC 

The TWC (α*) and especially the TWFS (αn) have been considered in this comparison, because they 

are very useful to estimate the outbreak of a points distribution. 

As we mentioned the other algorithms that are considered in this benchmark are: 

 Rossmo Algorithm [5,6] 

 NES Algorithm [1] 

 LVM Algorithm [1] 

 Mex Prob Algorithm [4]  

This experimentation was performed using the same software package [26].  

Further, we have considered four different indices to compare the four algorithms with TWC: 

 The distance from the peak of each algorithm to the real outbreak has been calculated as 

follows: it is basically relative distance and it is calculated relative to the main diagonal of 

the window grid generated by the software in percentage form. For each data distribution 

(dataset) our software draws a grid map of 600 × 600 pixels, where all the points all 

embedded in a sub window of 500 × 500 pixels. 

 The sensitivity is defined as the value of the point of the scalar field of each algorithm (each 

pixel value of the scalar field generated by each algorithm is scaled between 0 and 1) in the 

place where the real outbreak is located. The specificity is defined as the percent value of 

the number of points of the whole window whose value is the smallest values of the 

sensitivity of each algorithm. 

 The search area in which the real outbreak can be found in the scalar field of each 

algorithm is defined as following: we have divided the scalar field generated by each 

algorithm in 20 bins of equal length and then we calculate the extension of the area into 

which the real outbreak is included. Finally we express the value of this bin area in relation 

to the area of the global window.  

 Tables 1–4 show the analytic results of the comparison while Table 5 shows the average 

rank that each algorithm performed in each test. Appendix E shows the maps projected by 

each algorithm for each epidemic. 
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Table 1. Foot and Mouth Disease results. 

Foot and Mouth Disease 

Algorithm Distance from Outbreak Sensitivity Specificity Search Area Rank 

TWC Alfa 0.7400% 94.6000% 99.9825% 0.0175% 1 
Rossmo 6.1400% 90.6200% 99.7500% 0.2950% 2 

NES 6.1400% 75.5700% 99.8650% 0.3700% 3 
LVM 6.1400% 87.7400% 99.7600% 0.3775% 4 

Mex Prob 6.0000% 83.3000% 99.7800% 0.5775% 5 

Table 2. Chikungunya fever results. 

Chikungunya Fever 

Algorithm Distance from Outbreak Sensitivity Specificity Search Area Rank 

TWC Alfa 0.0000% 100.0000% 99.9650% 0.0000% 1 
Rossmo 0.7300% 97.6600% 99.9800% 0.0200% 2 

NES 1.0300% 96.2100% 99.9725% 0.0275% 3 
LVM 0.7300% 98.7900% 99.8875% 0.1125%  4 

Mex Prob 2.9100% 97.0600% 99.7500% 0.2500% 5 

Table 3. London cholera results. 

London Cholera 

Algorithm Distance from Outbreak Sensitivity Specificity Search Area Rank 

TWC Alfa 4.4900% 95.3100% 99.5375% 0.0025% 1 
Mex Prob 5.1600% 93.7800% 99.3625% 0.4775% 2 

LVM 5.1600% 96.0600% 99.2900% 0.7100% 3 
NES 4.9600% 86.5100% 99.6575% 0.7350% 4 

Rossmo 5.1600% 97.3900% 98.6800% 1.3200% 5 

Table 4. Russian influenza results. 

Russian Influenza 

Algorithm Distance from Outbreak Sensitivity Specificity Search Area Rank 

NES 3.9100% 85.1200% 99.8800% 0.2475% 1 
TWC Alpha 3.1600% 67.8600% 99.8500% 0.4550% 2 
Mex Prob 6.3200% 86.5800% 99.4050% 1.4900% 3 

LVM 6.5500% 88.1100% 99.0975% 1.6525% 4 
Rossmo 19.9300% 92.5400% 94.4700% 3.1150% 5 

Table 5. The average rank of each algorithm in the four tests. 

Algorithm Foot and Mouth Chikungunya London Cholera Russian Influenza Rank

TWC Alfa 1 1 1 2 1.25 
NES 3 3 4 1 2.75 

Rossmo 2 2 5 5 3.50 
Mex prob 5 5 2 3 3.75 

LVM 4 4 3 4 3.75 
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These comparison results have been given according to the “searching area” as the key index to 

rank the algorithms’ performances, as recommended recently by some authors [19]. Using this 

criterion TWC performs better than all other four algorithms especially in 3 of the 4 tests. But also the 

other indices that we have introduced are relevant and they are not always correlated with the 

“searching area”. 

The distance from the outbreak (r) is not a flawed metric [6]. It describes a circle of radius “r” 

whose area describes a meaningful “searching zone” and does not have an arbitrary link to the 

“binning strategy” chosen by the researchers. The searching area, in fact, may take different sizes in 

relation to the binning segmentation of the scalar field. 

“Sensitivity” indicates how much each algorithm considers the position of the real outbreak a “hot 

location”. In other words, the searching area could be small but the real position of the real outbreak is 

not considered a location with a high probability value. A look at the “Foot and Mouth Disease” case, 

where all the algorithms tested, except TWC (α), shows an absence of very high values in the location 

where the outbreak is really located. 

“Specificity” is a fundamental index to understand the percentile where the real outbreak is located. 

In “Russian Influenza” case, the Rossmo algorithm is shown to be quite generic in relation to the other 

methods: good sensitivity, but the lowest specificity. 

At the end of this comparison we can add the following observations: 

 All the algorithms have performed fairly well in each of the five tests (these four cases plus 

E-coli). That means that their foundation is robust and solid; 

 The TWC (α) results have significantly shown this method to be more effective than the 

other algorithms (in most of the cases its searching area is one order of magnitude smaller 

than the searching area of the other algorithms). 

 It is evident that we need to compose more than one index to evaluate the performances of 

any algorithm dedicated to the geographic profile. In this field the methodological research 

remains still open and we hope we can offer a contribution in the near future; 

 Only the TWC (α) was tested in this comparison; the other quantities generated by the TWC 

algorithm—TWC (β) and TWC (γi)—present different types of key information about the 

dynamics of the process that no one of the existing algorithms at this moment can claim. 

5.2. The New Information about the Virtual Dynamics of the Process 

The TWC method provides an estimation of the scalar field at the beginning of the epidemic that we 

have named TWSF (β*(αn)); 

The TWC (β) provides an estimation of the epidemic diffusion at the moment of the data collection 

and represents the real diffusion and intensity of the epidemic when the input data were collected. We 

have named this scalar field TWSF (β*); 

TWC (γi), instead, provides an estimation of the epidemic diffusion when the different locations 

(points) start to communicate with each other. This dynamic information may be interpreted as the 

dynamic movement of the epidemic. We have named this scalar field TWSF (β*(γi));  

These three quantities provide information/estimation about three different temporal steps of 

the epidemic: 
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a. TWSF (β*): The present (the time of data collection); 

b. TWSF (β*(αn)): the recent past (the beginning of the process); 

c. TWSF (β*(γi)): the near future (the next step of the process). 

We can represent this situation with the following notation: 

d. TWSF (β*) = t0; 

e. TWSF (β*(αn)) = t0 − ∆x1 ; 

f. TWSF (β*(γi)) = t0 + ∆x2. 

We do not know actually the quantities ∆x1 and ∆x2, but we hypothesize their logic implication: 

TWSF (β*(αn)) ← TWSF (β*) ← TWSF (β*(γi))  

where A←B = B implies A. 

At this point we can use the information provided by these quantities to estimate the intensity of an 

epidemic in the close past and the close future, in relation to its diffusion at the time of data collection. 

We know that this extrapolation is very strong, but for a first evaluation we can use the data of the 

four epidemics analyzed in this paper. We know enough about them in the recent past and the near 

future step in relation to the time when the data were collected. 

Table 6 and Figures 1–4 show the intensity (the area size beyond the 95% of the scalar field) of 

each one of the four analyzed epidemics, according to the three TWC scalar fields: α, β and γ.  

Table 6. Areas of p > 0.95 according the TWC α, β and γ, in the four analyzed epidemics. 

p > 0.95 Foot and Mouth  Chikungunya London Cholera Russian Influenza 

TWC α 0.0150% 0.225% 0.3050% 0.0125% 

TWC β 0.0950% 0.1800% 0.1150% 0.0525% 

TWC γ 0.0900% 0.1875% 0.0775% 0.0200% 

Figure 1. Areas of p > 0.95 according the Topological Weighted Centroid (TWC) α, β and 

γ, in Food and Mouth Disease. 
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Figure 2. Areas of p > 0.95 according the TWC α, β and γ, in Chikungunya epidemics. 

 

Figure 3. Areas of p > 0.95 according the TWC α, β and γ, in Cholera epidemics. 

 

Figure 4. Areas of p > 0.95 according the TWC α, β and γ, in Russian influenza. 

 

From these results we can make some estimation about the next future step of the four epidemics: 

a. Data about Foot and Mouth disease were collected when the epidemics were in the first 

week, before reaching their peak. Despite this, α is small and β is big, as the epidemics 

would have already reached its peak and as the hot area of its diffusion would have 

remained stable in the next step (γ is high). See Figure 5(a,b). This discrepancy can be 

explained by the fact that at variance with the other three examples of epidemics, FMD 

evolution and spread depend basically from the wind action, since there is no direct contact 
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between animals living in distinct farms. Wind therefore represents another instable variable 

which probably is not taken into account by our algorithm. 

b. Data about Chikungunya fever were collected in the main phase of outbreak development. 

This correspond quite well to the algorithm solution (α is small and β is big). The estimation is 

a further increase of the hot area in the next future step (γ is bigger than β) (see Figure 6(a,b)).  

c. Data about Cholera correspond to the end of the epidemic outbreak. The values of TWC 

parameter are consistent with a final state of evolution since α is huge and β and γ become 

increasingly smaller (see Figure 7(a,b)). 

d. The data set of Russian flu reflects basically an early phase of development in quantitative terms 

(number of cases in each location) but a peak for the epidemics in qualitative terms (number of 

locations). The values of TWC parameters correspond to this evolution phase since β is the 

biggest. In the next future step the “hot” area of fever is decreased (see Figure 8(a,b)). 

In the next section we will see the same estimation about the German Escherichia Coli epidemic, 

the main purpose of this paper.  

Figure 5. (a) FMD TWC (β); (b) FMD TWC(γ).  

 
(a) (b) 

Figure 6. (a) Chikungunya TWC (β); (b) Chikungunya TWC (γ). 

 
(a) (b) 
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Figure 7. (a) Cholera TWC (β); (b) Cholera TWC (γ). 

 
(a) (b) 

Figure 8. (a) Russian Flu TWC (β); (b) Russian Flu TWC (γ). 

 
(a) (b) 

6. A Special Case of Epidemic Outbreak: The HUS German Epidemics in May–June 2011 

6.1. The German Dataset 

An unusually high number of cases of hemolytic uremic syndrome (HUS) had been observed in 

Germany since early May 2011. HUS is a serious and sometimes deadly complication that can occur in 

bacterial intestinal infections with Shiga toxin (syn. verotoxin) producing Escherichia coli 

(STEC/VTEC). The complete clinical picture of HUS is characterized by acute renal failure, hemolytic 

anemia and reduction of circulating platelets number (thrombocytopenia). Typically it is preceded by 

diarrhea that is often bloody. According to statistics generated by the Robert Koch Institute each year, 

on average one thousand symptomatic STEC-infections and approximately sixty cases of HUS are 

reported in Germany, affecting mostly young children under five years of age [27]. In 2010 there were 

two fatal HUS cases [28]. STEC are of zoonotic origin and can be transmitted directly or indirectly 

from animals to humans. 
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Ruminants, especially cattle, sheep, and goats, are considered to be the reservoir. Transmission 

occurs via the fecal-oral route through contact with animals (or their feces), by consumption of 

contaminated food or water, or by direct contact from person to person (smear infection). The 

incubation period of STEC is between two and ten days with a latency period from the beginning of 

gastrointestinal symptoms to enteropathic HUS of approximately one week. 

Table 7 lists the number of cases of HUS or suspected HUS notified to local health departments and 

communicated by the federal states to the Robert Koch Institute (RKI) by 26 May 2011. 

Table 7. Lists of the number of cases of HUS or suspected hemolytic uremic syndrome 

(HUS) [27,28].  

p > 0.95 
HUS Cases  

and Suspected HUS
Cumulative Incidence Cases  

(per 100,000 Population) 
Hamburg 59 3.33 
Bremen 11 1.66 

Schleswig-Holstein 21 0.74 
Mecklenburg-Vorpommern 10 0.61 

Hesse 31 0.51 
Saarland 5 0.49 

Lower Saxony 28 0.35 
North Rhine-Weatphalia 31 0.17 

Berlin 3 0.09 
Baden-Württemberg 8 0.07 

Bavaria 5 0.04 
Thuringia 1 0.04 

Rhineland-Palatinate 1 0.02 
Brandemburg 0 0 

Saxony 0 0 
Saxony-Anhalt 0 0 

TOTAL 214 0.26 

Suspected HUS is included as the syndrome is a process and suspected HUS typically develops 

over the course of a few days into the full clinical picture. Disease onset (specifically diarrhea) in the 

214 patients was detected between 2 and 24 May 2011. A total of 119 (56%) of the cases reported 

were from four northern federal states (Hamburg, Schleswig-Holstein, Lower Saxony and Bremen). 

The highest cumulative incidence was recorded in the two northern city states of Hamburg and 

Bremen. An additional 31 cases occurred in Hesse. Cases began appearing at the start of May and the 

outbreak swelled to crisis level over the following three weeks, with the city of Hamburg at the 

epicenter. Initially they were connected to a catering company supplying the cafeterias of a company 

and a residential institution. Besides the geographic clustering, the age and sex distribution of the cases 

is conspicuous: of the 214 cases, 186 (87%) are 18 years of age or older (mostly young to middle-aged 

adults) and 146 (68%) are female. In the notification data for HUS cases from 2006 to 2010, the 

proportion of adults lay between 1.5% and 10% annually, and the sexes were equally affected. 

Cases linked to this outbreak were also from other European countries: On 25 May 2011, Sweden 

reported through the European Warning and Response System (EWRS) nine cases of HUS, four of 

whom had travelled in a party of 30 to northern Germany from 8 to 10 May. Denmark reported four 
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cases of STEC infection, two of them with HUS. All cases had a recent travel history to northern 

Germany. Another two HUS cases with travel history to northern Germany in the relevant period were 

communicated, one each by the Netherlands and by the United Kingdom. 

During the outbreak different explanations and hypotheses regarding the source of epidemic 

outbreak were reported, with a strong impact on public opinion. Preliminary results of a case–control 

study conducted by Hamburg health authorities demonstrate a significant association between disease 

and the consumption of raw tomatoes, cucumbers and leafy salads and the attention was focused in the 

Hamburg area due to the higher density of cases. Two weeks later infected soy sprouts were 

considered the main problem and a company in Uelzen, a city located roughly 100 km south of 

Hamburg, became the main suspected source of the infection. This company sells produce mostly in 

Germany but also exports its products to other European countries and some Asian countries.  

On 18 June 2011 the source of the epidemic outbreak was found. The deadly 0104:H4 strain of 

E. coli that claimed the lives of nearly 40 Germans was found in the northeast of Frankfurt in the 

Erlenbach stream on the evening of 17 June 2011. The Environment Ministry of the state of Hessen 

said there were various theories on how the E. coli got into the stream, although a test sample was 

taken from a nearby sewage plant. While such plants generally have very high hygiene standards, 

authorities said this could not be ruled out as a possible source. 

It has to be noted that during May 2011 data regarding the geographic locations of cases registered 

were unavailable officially on public WEB site domains. The authors received confidential 

information regarding the GPS data of the first 13 locations with at least one proved HUS case on May 

30 from a person who was attending a congress on environmental toxicity epidemiology in Europe at 

that time and was in contact with German epidemiologists following the outbreak. Table 8 shows the 

list of locations.  

It has to be noted that the geographic coordinates do not refer specifically to a city involved, but 

rather to the centroid of the region involved. Only 3 out of 13 locations are exact matches of real 

occurrences. Figure 9(a) shows the 13 locations on our artificial map; the only data we consider for 

each location are the latitude and the longitude, 26 numbers for the whole study. Figure 9(b) shows, 

instead, the same map, considering the frequency of suspected cases in the 13 towns at the time when 

these data were collected. 

Table 8. Geographic location of the first 13 cities/areas with at least one case of HUS. 

ID State City used Why used Lat Long Q 
1 Hamburg Hamburg  Exact match 53°33'55''N 10°00'05''E 59 
2 Bremen Bremen Exact match 53°4'33''N 8°48'27''E 11 
3 Schleswig-Holstein Kiel Capital 54°19'31''N 10°8'26''E 21 
4 Mecklenburg-Vorpommern Schwerin Capital 53°38'0''N 11°25'0''E 10 
5 Hesse Frankfurt Largest city 50°6'37''N 8°40'56''E 31 
6 Saarland Saarbrucken Capital 49°14'0''N 7°0'0''E 5 
7 Lower Saxony Hanover Capital 52°22'N 9°43'E 28 
8 North Rhine-Weatphalia Duesseldorf Capital 51°14'N 6°47'E 31 
9 Berlin Berlin Exact match 52°30'2''N 13°23'56''E 3 

10 Baden-Württemberg Stuggart Capital 48°46'43''N 9°10'46''E 8 
11 Bavaria Munchen Capital 48°31'52''N 11°57'50''E 5 
12 Thuringia Erfurt Capital 50°59'0''N 11°2'0''E 1 
13 Rhineland-Palatinate Mainz Capital 50°0'0''N 8°16'16''E 1 
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Figure 9. (a) Latitude and longitude of the first 13 German towns; (b) Quantity of 

suspected cases in the first 13 German towns. 

 
(a) 

 
(b) 

6.2. The TWC-α Method and the Real Outbreak 

The TWC (α) points start from the center of mass and ends in the vicinity of Frankfurt, which we 

posited as the source of the outbreak (see Figure 10(a,b)). We remind the reader that the number of 

cases (frequency) in each location is not considered at all by the algorithm. The TWC algorithm works 

only considering the geometry of the distribution of the 13 locations.  
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Figure 10. (a) TWC (α*) points out the outbreak close to Frankfurt; (b) The scalar field of 

αn, the TWSF (αn). 

 
(a) 

 

 
(b) 

The center of mass is the point whose summation of the squared distances from the other outbreak 

locations is minimal and it is also the equilibrium point of the map. In other words, the center of mass 

is the map position from which the entropy of distribution of the other locations is highest. Therefore 

looking at the map from this position the other locations appear as the most disordered distribution 

possible. However, TWC (α) identifies a point on the map where the entropy of the point distribution 

is lowest; that is, from the TWC (α) position the other 13 locations take the highest value of 

predictability, the most ordered. In other words, if we locate ourselves at the TWC (α) latitude and 
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longitude, every other location of the map becomes most predictable. Figure 10(a) also shows the path 

found by the algorithm from the center of mass to the estimated starting point of the epidemic, Figure 10(b) 

shows the scalar field of the αn points generated with the TWC (α) method, while Figure 11 shows the 

dynamics of decreasing the entropy of the system during this search process.  

Figure 11. The decreasing of Entropy during the search of TWC (α).  

MaxEntropy = Log2(N) = Log2(13) = 3.700439718 

 

Using Google Earth we found the physical locations of the TWC (α) point. Figure 12 shows its 

distance from the Erlenbach.  

Figure 12. TWC (α), the possible outbreak source, on Google earth at the Long 8.683 and 

Lat 50.117 and its distance from the Erlenbach stream.  

 

The TWC-α algorithm was found on 29 May 2011 at University of Colorado-Denver, while the 

outbreak of the HUS epidemics was not publically considered to be in Frankfurt by German 

authorities. Only on 18 June 2011 did the German authorities name Frankfurt as the second source of 

the outbreak. If the results of this algorithm had been considered “a possible second opinion” by 



ISPRS Int. J. Geo-Inf. 2013, 2 180 
 

German epidemiologists on 29 May, a prevention strategy might have been started 20 days prior to the 

official announcements.  

6.3. The TWC-β Map 

TWC-β algorithm shows the probability of distribution of the epidemic process at the time of the data 

collection. Figure 13 shows the map of epidemics divided into two clusters. The Hamburg cluster, in 

northern Germany, and the Frankfurt cluster, in central Germany. Each cluster consists of multiple areas 

where the darker and more intensive the red color on the map, the higher the probability of diffusion.  

Figure 13. TWC-β scalar field, TWSF (β*)—the more deep red, the more concentration of 

epidemics (the deep red zone represents around the 3/1,000 of the whole area). 

 

 

The TWC-β algorithm presents very interesting information:  

 The higher probability of epidemics diffusion (p > 0.95) is an area representing 0.32% of 

total area of the map (see Figure 14); 66% of this area is around Frankfurt, while 34% is in 

the Hamburg cluster. The intensity of the scalar field was segmented into 20 levels; the 20th 

is the area where the intensity is largest so the probability of new events should be higher  

(p > 0.95).  
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Figure 14. Probability of the epidemics in TWC-β map, in relation to the global areas of 

the map (20 bins). 

 

This means that, according to the TWC-β algorithm, a rapid and intense diffusion of the epidemic 

would take place in the Frankfurt cluster, while a large and wide diffusion of the same epidemic would 

happen in the Hamburg cluster. This “non-temporal” prediction is meaningful because the color map 

of TWC-β (see again Figure 13) reflects exactly the number of cases at the moment of the data 

collection (see Table 7, and we note that the algorithm does not and did not consider frequency of 

cases to generate the map).  

Using a different methodology and different data, in space and in time, a recent research article [29] 

shows the network of the diffusion of the HUS epidemic. This network is also divided into two 

independent hubs starting from the estimated outbreak. Even if one might think that the outbreak 

predictions in this case were wrong, the hypothesis of two independent clusters to explain the HUS 

dynamics was nevertheless correctly obtained by our methods. In other words, TWC-β algorithm, 

using only the latitude and the longitude of the first 13 places where the HUS epidemic was observed, 

rebuilt a suitable probability map of the HUS diffusion, days before the two locations of the outbreak 

were announced.  

6.4. The TWC-γ Map  

The TWC-γ map approximates the distribution of the epidemics, considering the possible diffusion 

paths rebuilt by the TWC algorithm (see Figure 15(a)). Figure 15(a) is generated by Figure 15(b). The 

closer a generic point on the map is to the paths, the more probable the diffusion of the epidemics at that 

point. Figure 15(a,b), in fact, explains (and predicts) the intensity of the diffusion of the HUS epidemic 

around the Hamburg cluster. And this was what really happened from 29 May to 18 June 2011. 
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Figure 15. (a) TWC-γ Map where the darker the red, the higher the concentration of 

epidemics (the darkest red zone represents approximately 1/1,000 of the whole area).  

(b) TWC-γ rebuilt all the possible paths among the 13 locations.  

 

 
(a) 

 
(b) 

Figure 16 shows the Minimum Spanning Tree (MST) of the complete and regular graph presented 

in the Figure 6(b), or the most probable path of the epidemic diffusion starting from Frankfurt (the 

black square point). If we compare the MST of Figure 16 with the real road network of Germany in the 
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same areas (Figure 17, see the red line), the similarity between the two networks is astonishing, 

particularly if we consider that the nonlinear MST generated by the TWC-γ has no knowledge of any 

geographical information about the German road system.  

Figure 18 is also a consequence of Figure 16. It is a topological representation of the Maximally 

Regular Graph (MRG) of the TWC-γ paths. MRG is a special type of graph able to add to the basic 

MST the most fundamental circuits involved in the original matrix of the non-Euclidean distances 

from which nonlinear MST is generated (see [30]).  

The graph in Figure 18 is of interest for at least three reasons: 

1. It shows two independent circuits (clicks). The first includes Hamburg, Schleswig-Holstein 

and Mecklenburg-Vorpommern, and the second includes Frankfurt, the TWC (α) point, and 

Rhineland-Palatinate and Baden. These two circuits, by means of a feedback loop, should be 

the main engines of the HUS epidemics, according to the TWC-γ. 

2. Frankfurt is, in this case, the center of the graph (see Figure 18, the red point). 

3. Hamburg, Thuringa and Frankfurt are the nodes with a maximum of “betweeness”. 

This real world example shows that TWC algorithm is able to trace, with high accuracy, the 

location of the dynamics of the spread of the German E. coli outbreak with a limited amount of 

information, even when the information is not precise.  

Figure 16. The Diffusion Paths rebuilt by the TWC-γ Algorithm. 

 
  



ISPRS Int. J. Geo-Inf. 2013, 2 184 
 

Figure 17. The real roads, in red, connecting the German towns involved into the epidemics. 

 

Figure 18. The M.R.G of the paths found using the TWC-γ Algorithm. 

 

6.5. Comparison with the Other Algorithms 

At the time of the writing of this paper we know that the real outbreak of the German HUS is 

located near Frankfurt. Consequently, we have compared the solutions proposed by the TWC with the 

estimation of other algorithms considered in this paper. 
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Table 9 shows the results of the comparison according to the usual indices. The TWC (α) again 

outperforms the other algorithms.  

Table 10 shows the updated average rank of the algorithms performances. This synthesis of the general 

performances of all the algorithms in the five tests is quite similar to the results previously shown.  

Table 9. Algorithms comparison about German Escherichia Coli. 

German Escherichia Coli 

Algorithm Distance from Outbreak Sensitivity Specificity Search Area Rank

TWC Alfa 1.0700% 97.6000% 99.8675% 0.0105% 1 
NES 0.7600% 93.5000% 99.9700% 0.0300% 2 

Rossmo 0.7600% 91.3500% 99.9675% 0.0350% 3 
LVM 0.7600% 93.6100% 99.9725% 0.0400% 4 

Mex Prob 4.4300% 93.6000% 99.8475% 0.3200% 5 

Table 10. The updated average rank of each algorithm in the five tests. 

Algorithm FMD Chikunguya London Cholera Russian Influenza German HUS Rank Average

TWC Alfa 1 1 1 2 1 1.20 
NES 3 3 4 1 2 2.60 

Rossmo 2 2 5 5 3 3.40 
LVM 4 4 3 4 4 3.80 

Mex Prob 5 5 2 3 5 4.00 

6.6. TWC (γ) and German HUS Dynamics 

When we compare the size of the hot areas (p > 0.95) according to estimations in TWC α, β and γ 

(see Figure 19), we note that German HUS at the end of May 2011 was caught at the peak of its 

diffusion (TWC β shows the biggest area), after a fast and big diffusion from the initial outbreak 

(TWC α area is not small). Because TWC (γ) area is much smaller than the others, we have to 

conclude that this epidemic was reducing its impact at the beginning of June.  

These estimations have shown to be in accordance with the real development of this epidemic.  

Figure 19. German HUS: estimations of the hot areas of diffusion of the epidemic 

according to TWC α, β and γ. 

 
  



ISPRS Int. J. Geo-Inf. 2013, 2 186 
 

7. Oahu (Hawaii): How to Predict 3 Months before the Intensity of a Food Epidemic  

In 2010, Oahu (Hawaii) data from a food epidemic (1,245 cases) were collected systematically for 

12 months. We have received this dataset from Al Bronstein, director of the Rocky Mountain Poison 

Center. Figure 20 shows the geographical distribution of cases of the Oahu epidemic and Table 11 

shows the distribution of the new cases each month of 2010.  

Figure 20. The geographic distribution of the 1,245 cases of the food epidemic in Oahu 

(year 2010). 

 

Table 11. 1,245 cases of food epidemic in 2010 at Oahu (Hawaii). 

Oahu 2010: Number of Cases Each Month

Jan 108 
Feb 109 

March 114 
April 98 
May 79 
June 79 
July 93 

August 109 
Sept 92 
Oct 134 
Nov 114 
Dec 108 
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Table 12. Predictive correlation between TWC (Gamma) and TWC (Beta) with different Delta. 

Gamma(n) = Beta(n) Delta = 0 
Time Steps n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 

Linear Correlation 
Months Jan Feb March April May June July August Sept Oct Nov Dec 
Beta(n) 0.1925% 0.1000% 0.1575% 0.1275% 0.2450% 0.1600% 0.1000% 0.0575% 0.2525% 0.0625% 0.0925% 0.0575%

0.28 
Gamma(n) 0.1075% 0.0500% 0.1275% 0.1150% 0.1350% 0.3025% 0.0950% 0.0450% 0.0925% 0.1250% 0.1100% 0.0900%

Gamma(n) = Beta(n+ 1) Delta = 1 
Time Steps n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 

Linear Correlation 
Months Jan Feb March April May June July August Sept Oct Nov Dec 

TWC Beta 0.1925% 0.1000% 0.1575% 0.1275% 0.2450% 0.1600% 0.1000% 0.0575% 0.2525% 0.0625% 0.0925% 0.0575%
−0.24 

TWC Gamma 0.1075% 0.0500% 0.1275% 0.1150% 0.1350% 0.3025% 0.0950% 0.0450% 0.0925% 0.1250% 0.1100% 0.0900%

Gamma(n) = Beta(n + 2) Delta = 2 
Time Steps n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 

Linear Correlation 
Months Jan Feb March April May June July August Sept Oct Nov Dec 

TWC Beta 0.1925% 0.1000% 0.1575% 0.1275% 0.2450% 0.1600% 0.1000% 0.0575% 0.2525% 0.0625% 0.0925% 0.0575%
−0.22 

TWC Gamma 0.1075% 0.0500% 0.1275% 0.1150% 0.1350% 0.3025% 0.0950% 0.0450% 0.0925% 0.1250% 0.1100% 0.0900%

Gamma(n) = Beta(n + 3) Delta= 3 
Time Steps n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 

Linear Correlation 
Months Jan Feb March April May June July August Sept Oct Nov Dec 

TWC Beta 0.1925% 0.1000% 0.1575% 0.1275% 0.2450% 0.1600% 0.1000% 0.0575% 0.2525% 0.0625% 0.0925% 0.0575%
0.44 

TWC Gamma 0.1075% 0.0500% 0.1275% 0.1150% 0.1350% 0.3025% 0.0950% 0.0450% 0.0925% 0.1250% 0.1100% 0.0900%

Gamma(n) = Beta(n + 4) Delta = 4 
Time Steps n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 

Linear Correlation 
Months Jan Feb March April May June July August Sept Oct Nov Dec 

TWC Beta 0.1925% 0.1000% 0.1575% 0.1275% 0.2450% 0.1600% 0.1000% 0.0575% 0.2525% 0.0625% 0.0925% 0.0575%
−0.16 

TWC Gamma 0.1075% 0.0500% 0.1275% 0.1150% 0.1350% 0.3025% 0.0950% 0.0450% 0.0925% 0.1250% 0.1100% 0.0900%
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We set up a first validation test about the predictive capability of TWC Gamma as we have 

hypothesized in Chapter 6 and have independently applied TWC Beta and TWC Gamma to the data of 

each month. Then, we measured the linear correlation between the sensitivity of the more intensive scalar 

field of TWC Beta and TWC Gamma (s(x) > 0.9, where x is between 0 and 1). If we hypothesize that TWC 

Gamma works as a fuzzy estimation of how epidemic intensity will be in the next temporal steps, then we 

have to compare the highest sensitivity of TWC Beta in the month (n + Delta, Delta = {0,1,2,…,11}) with 

the highest sensitivity that TWC Gamma estimates at the time (n). 

Table 12 shows five comparisons with different values of Delta (0, 1, 2, 3, 4). 

It is quite evident that TWC (Gamma) is able to estimate in an acceptable way the high intensity of 

diffusion of the food epidemic three months in advance (see Figure 21).  

Figure 21. Linear Correlation between the Highest Epidemic Intensity in TWC Beta and 

TWC Gamma Scalar Fields, With Different Temporal Steps.  

 

Obviously we do not consider this test as a complete validation of the prediction capability of TWC 

Gamma. We need to plan a more extensive and deep validation protocol to verify the plausibility of 

what we are assuming. This short and non-representative test is only the first positive step of process 

that needs to be improved in future work. 

8. Discussion 

Infectious diffusive diseases may present themselves with complex temporal and spatial patterns 

difficult to discern. These diseases, as opposed to chronic diseases, are somewhat unique because 

exposure and outcome are the same, i.e., the infected person or animal. This leads to non-linear 

dynamics that make analysis and prediction of infections in a population very challenging. 

Each year, millions of people worldwide die from infectious diffusive diseases such as malaria, 

tuberculosis, dengue fever, West Nile virus, etc. Government agencies seek efficient mathematical 

models better able to provide insight into the dynamics of disease epidemics and to help officials make 

decisions about public health policy. 

The basic premise in outbreak investigation is that the process does not occur randomly. Sometimes 

specific patterns by themselves provide clues about the transmission modality in place. A rapid 
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increase in the number of cases over a very short period of time, for example, suggests a  

point-source epidemic where a large number of subjects are exposed to a common source of the 

disease-causing agent at the same time. Such a pattern is often seen with food-borne or water-borne 

diseases or a highly virulent infectious agent. A case or two followed by a gradual increase in the 

frequency of disease suggests a propagated epidemic where there is an animal-to-animal transmission 

of an infectious agent either directly, through fomites or insect vectors. In both cases however the 

precise identification of the starting place of the epidemics can be a difficult challenge.  

Theoretically, given a distribution of points in a specific environment and a certain number of 

constraints related to types of physical characteristics of the territory, such as different types of 

possible trips and metrics (travel time, effort, or cost), there is an optimal solution that minimizes the 

distance between points and their source. However, computationally, it is an almost impossible task to 

define, requiring the enumeration of every possible combination, which is known as an NP-hard 

problem. Consequently in practice, approximate, though possibly sub-optimal, solutions are obtained 

through a variety of methods. “Location theory” attempts to find an optimal location for any particular 

distribution of activities, population, or events over a region according to a specific criterion, and is 

therefore one of the central issues in geography. In the case of outbreaks source identification, one can 

reverse the logic. Given the distribution of points of interest, the theory could be applied to estimate a 

central location from which travel distance or time is minimized. Epidemic models try to describe the 

spread of infectious diseases in populations. More and more, these models are being used for 

predicting, understanding and developing control strategies. In realistic epidemic models, a key issue 

to consider is the representation of the contact process through which a disease is spread, and network 

models have arisen as good candidates predicting which cities are sources for the epidemic and 

understanding the path of recurrent traveling waves may help us to design optimal surveillance and 

control strategies. 

The principle on which we based our approach is the separation of the topographical element from 

the frequency (incidence) of the event. This per se constitutes a paradigm shift in modern 

epidemiology. The main advantage of this approach is that algorithms like TWC can be used in the 

initial stage of an epidemic, even when not all cases are known. Subsequently, we can match 

topographic distribution with frequency in a gradient descent to identify the location on which distance 

and event frequency are shortest. This might lead to a significant contribution to improving the quality 

of infection control.  

It is quite clear that the conclusions drawn from geographic mapping depend on the accuracy and 

validity of the datasets, and to enable repetition of our analysis we would recommend the use of high 

quality, credible data. However, it is remarkable that the TWC algorithm seems very robust despite 

imprecise information regarding the exact localization of cases in the early stage of the HUS epidemic. 

This is suggested by the accuracy with which the TWC (α*) predicted “backwards” or retrodictively, 

the source of the epidemics, despite the program (and also the authors) not being told of its nature or 

location (Hamburg), which was, at the time of analysis, unknown and to be located six-hundred km 

distant from the second source (Frankfurt). It is not irrational therefore to believe that this approach 

could be applied in real world situations during future epidemic outbreaks to describe and better 

understanding the spatial-temporal features of infection risk and spread.  
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There are a number of points of strength in this paper: First of all the TWC algorithm is logically 

rigorous and gives explicit assumptions on the source of dynamic process. Secondly the validation 

relies on five notorious data sets with a large number of cases, all published in the literature in which 

the source of the epidemic spread has been unequivocally proved. Thirdly the performance of the 

algorithm has been contextualized in the field of other algorithms used for geographic profiling. The 

comparison with these benchmarking systems has required the development of a sound methodology 

based on multiple parameters. This per se represents a real progress in this field.  

The resulting TWC alpha is found to be the top performer among the four algorithms selected for 

comparison, which are in our view the best available today in all four experiments as regards the 

distance from outbreak in three out of four, and second in one out of four experiments (Russian flu) as 

regards the searching area. 

In addition, the TWC algorithm provides other parameters very useful in handling epidemic 

outbreak information: the TWC beta represents the actual intensity of epidemics and TWC gamma 

represents the future dynamic trajectory of epidemics. 

Despite our consistent findings, we are aware of one principal limit of this study. Four epidemics 

represent a good proof of concept but may not be representative of all epidemics. Therefore our 

method will need careful verification and validation both from other well-documented outbreaks and 

during the early phases of new outbreaks, both in human and animal settings. 

Our findings should also stimulate attention to the contribution of mathematical modeling in 

improving the precision of bio-medical sciences. Our analysis shows how a system with complex 

systems mathematics can provide alternatives to classical methods. In addition, this is a powerful tool 

for the investigation of the early stages of an epidemic, and might constitute the basis of new 

simulation methods to understand the process through which an infectious disease is spread. 

9. Conclusions  

TWC algorithms, as presented in this paper, represent a first step of a new theory of the semantics 

of the space. We know that many other steps are needed to adequately design a complete theory.  

This work demonstrates the possibility of reading the semantic information of a distribution of 

events into a bi-dimensional space in topological terms. Consequently, the probabilistic approaches 

and the gravitational approaches are neither the best solutions nor are they the only ones. 

We seek to integrate the TWC algorithms in future research initiatives following this agenda: 

a. To include a new algorithm (based on the TWC philosophy) able to identify a set of possible 

and different outbreaks given one spatial distribution of events. 

b. To include a third spatial dimension in space analysis, and consequently a new metric able 

to consider the energy needed to complete a path (and not only the distance).  

c. The addition of the latitude and the longitude a list of meaningful qualitative attributes for 

each event, and to find a way to collectively process all these features. 

d. The integration of the time flow to the TWC approach in such a way as to explain how the 

maps change when some attributes of the spatial events change, and which of those attributes 

could possibly be the cause-effect link between these changes. 
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TWC algorithms must be integrated into a general theory of semantics of events located in specific 

space and under specific time constraints. 
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Appendix A 

In this appendix the asymptotic behaviors of TWC (α) for small and large value of α based on 

Euclidian distance have been shown. This method has been used in [5]. In the case of small α we have:  
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By using Equations (A1–A3) one could find  
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and we could define in the same way  
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By using Equation (A5)  
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The minimum distance is given by  
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(min over both i and j)  

By substituting Equations (A5) and (A9) in the following equation  
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and using Equations (A8–A10) we get  
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By the following the same method as Equation (A11)  
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where k = x, y.  

By using Equations (A11) and (A12) one can find  
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which is valid for a single minimum distance, where k = x, y. The generalized form of the above 

equation for R equal minimum distance is  
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where  
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We could use a similar method to determine the asymptotic behavior of the self-topological 

weighted centroid, TWC (β) which is used in [5]. In this case because we include the distance of each 

point with itself the minimum distance is zero  
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min 0

,i j
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i j
  ( i can be equal j )
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We have  
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In the limit of the very small β we have  
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For the large value of β we get  

 
 ,

, ,
min

0

1

1 1 1 1
lim lim

i j
i j i j

ddN
D D

i
j

p e e e
N N N N

 

 


 

 


 
     

 


 
(A19)



ISPRS Int. J. Geo-Inf. 2013, 2 195 
 

By using Equation (A18) we will find  
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and Equation (A19) gives  
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Therefore we have  

   
0

lim limk k kTWC TWC AC
 

 
 

  (A22)

Appendix B 

In this appendix the asymptotic behavior of TWC (α) for large value of α based on modified 

distance ( ,i jd ) is shown. The weighting function is defined in the following equation:  

 
,  

1,  

1
1

i jdN
D

i
j j i

w e
N






 


 
 

(B1)

We can re-write Equation (5a) in the following way:  
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;

1

2

1= .
2

N

i k i j
k i

N

i j i k
k i k j

d d
N

d d
N  

                 
 

(B2)

The limit of Equation (5) for large α is given by  
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(B3)

where  ,, minm i jji j dd  . It is the minimum  for the i th assigned point or we can say the assigned 

point mj  gives the smallest ,i jd  for the i th assigned point. Using ,i jd  breaks the symmetry between 

the i th and the j th assigned points. It means in general , ,i j j id d , but ,  holds the symmetry 

between the i th and the j th assigned points  , ,i j j id d . Because there is no a symmetric 

relationship for  we could use i jd   to identify it as the interaction of i th assigned point on j th 

assigned point or it is better to say i jd   is the interaction of i th assigned point on th assigned point 
under the influence of other assigned points or because we subtract ,i jd  from the sum of all distances 

for i th assigned point we can simply say i jd   is the absence of the influence of i th assigned point on 

j th assigned point . Notice that the matrices  and  are transpose of each other and they are 

actually matrices without the diagonal elements and as we said are not symmetric. We can write , mi jd  

,i jd

,i jd

,i jd ,i jd
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and , mj id in terms of , mi jd and , mj id  which are the maximum distances for the i th and the j th assigned 

points respectively and in general they are not equal.  
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Notice that  ,, minm i jji j dd    but  ,, max
m j i ji jd d  and with the same way we have  
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where  ,min ,, minm m i ji ji j dd d  , which is the minimum value of ,i jd  between all assigned points. 

For each assigned point ( i th assigned point) we have at least a mj  assigned point that has the smallest ,i jd  

and we called them , mi jd for each i th assigned point. Between them (all assigned points in terms of i ) at 

least one of them has the smallest , mi jd  which is min ,m mi jd d  and we called it the mi th assigned point.  
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(B8)

where 
mi

Px  is the x-component of the assigned point with the smallest ,i jd  . Therefore  TWC   as 

   approaches to that assigned point (  
mx iTWC Px   and  

my iTWC Py  ). In this case we 

assumed mind  is a single value, i.e., only one point has the smallest value of ,i jd  i.e., mind .  

If mind  is not a single value, i.e., several points have min,i jd d  then  TWC   as    approaches 

the midpoints of those points.  

Appendix C 

In this appendix we discuss the interpretation of Equations (6–9) by employing the language of 

equilibrium statistical mechanics. We start by defining the quantities 

   1
( )n n

nn

p w
w

 


 
 (C1)

where wn(α) is given by Equation (5). Next, we can define the quantity  
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 nn
Z w  (C2)

The basic idea is to consider Z  as the partition function of a thermo dynamical system at 

“temperature” 1/α. Using the partition function we can compute the free energy F  by the relation 

 lnF Z   and the entropy     lnn nS F T p p     where T ≡ 1/α. There is an alternative 

way to interpret α which similar to what we mentioned. We can say τ ≡ KBT ≡ 1/α, where KB is the 

Boltzmann constant and τ ≡ KBT is thermal energy. Using the above definition, we can study the 

behavior of the system as the temperature 1/α changes from ∞ to 0. At high temperature (α small), the 

quantities Pn(α) are almost independent of n and free energy is large and negative. The point 

    ,x yTWC TWC  is close to the center of mass, i.e., to the point of minimum squared distance 

from all other points in the system.  

By decreasing the temperature (increasing α), the system increases the free energy and decreases 

the entropy. For very low temperature we expect a minimum in the free energy and entropy. For very 

small temperature, the number of points, which contribute significantly to the computation of 

    ,x yTWC TWC  , is very small and it can be estimate of the order of 2
S
(α). In this “phase”, the 

value of     ,x yTWC TWC  is close to the point of maximum density.  

The high temperature phase (close to the center of mass) and the low temperature phase (close to 

the maximum density) are separated by a region where the free energy is maximum. This region 
represents a point     ,x yTWC TWC  which is close to both the center of mass and the point of 

maximum density.  

Appendix D 

In this appendix we discuss the Newton’s Methods and fixed point algorithm for finding the 

optimum value of *  . 

The free energy is defined by:  
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Taking derivative with respect to   
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(D2)

For 
 

0
F 






(which is a necessary condition for optimality) and 0  we have:  
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(D3)

We could apply the Newton’s Method to Equation (D2) and solve it numerically to find   

corresponding to the maximum free energy ( *  ). This algorithm exhibits quadratic convergence for 

  near the solution. We can also write Equation (D2) as a fixed point algorithm in the following manner:  
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   (D4)

We can apply a fixed point algorithm to Equation (D3) to find   which is the optimum value of 
*  . A fixed point exits if for D   (a domain of  ), the range is a subset of the domain 

( ) .g D  . The fixed point algorithm that satisfies this condition converges to a unique solution if 

Dmax '( ) 1.g K     

Appendix E 

We shows below the maps (Figures (E1–E4)) projected by each algorithm for each epidemic in 

Section 5.1., in order to make more clear the structural differences and similarities among the different 

algorithms considered in this research work:  

Figure E1. The Chikungunya fever epidemic of 2007. 
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Figure E2. The Foot and mouth disease epidemic of 1967.  

 

 

Figure E3. The Golden Square cholera epidemic of 1854.  
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Figure E4. The Russian influenza in Sweden in 1889–1890.  
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