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Abstract: Habitat mapping can be accomplished using many techniques and types of data. 

There are pros and cons for each technique and dataset, therefore, the goal of this project was 

to investigate the capabilities of new satellite sensor technology and to assess map accuracy 

for a variety of image classification techniques based on hundreds of field-work sites. The 

study area was Masonboro Island, an undeveloped area in coastal North Carolina, USA. 

Using the best map results, a habitat change assessment was conducted between 2002 and 

2010. WorldView-2, QuickBird, and IKONOS satellite sensors were tested using 

unsupervised and supervised methods using a variety of spectral band combinations. Light 

Detection and Ranging (LiDAR) elevation and texture data pan-sharpening, and spatial 

filtering were also tested. In total, 200 maps were generated and results indicated that 

WorldView-2 was consistently more accurate than QuickBird and IKONOS. Supervised 

maps were more accurate than unsupervised in 80% of the maps. Pan-sharpening the images 

did not consistently improve map accuracy but using a majority filter generally increased 

map accuracy. During the relatively short eight-year period, 20% of the coastal study area 

changed with intertidal marsh experiencing the most change. Smaller habitat classes 

changed substantially as well. For example, 84% of upland scrub-shrub experienced change. 

These results document the dynamic nature of coastal habitats, validate the use of the 

relatively new Worldview-2 sensor, and may be used to guide future coastal habitat mapping. 

OPEN ACCESS 



ISPRS Int. J. Geo-Inf. 2014, 3 298 

 

 

Keywords: habitat classification; coastal change; WorldView-2; LiDAR 

 

1. Introduction 

Barrier islands exist along much of the coastline along the Eastern United States, and are home to 

many species of flora and fauna. These areas are constantly undergoing geomorphic change due to wind 

and water stresses that alter their size and orientation [1,2]. This study used remote sensing and GIS 

technology to assess how Masonboro Island, a National Estuarine Research Reserve System (NERRS) 

site in North Carolina, USA, has changed, in terms of habitat land cover, over an eight-year period 

(2002 to 2010). To study habitat change, WorldView-2, QuickBird, and IKONOS satellite imagery and 

Light Detection and Ranging (LiDAR) elevation and texture data were tested for mapping the study area. 

The primary objectives of this study were to determine the accuracy of several different satellite sensors 

and image processing methods for mapping coastal vegetation and to assess how the island has changed 

over time. The results may help management officials and policy makers enact appropriate preservation 

measures to mitigate future change and prepare for anticipated habitat loss. The methodologies 

developed can also be implemented to study other coastal locations. 

1.1. Barrier Island Geomorphology 

Virtually every area of a barrier island system is continuously vulnerable to geomorphic change, and 

many of these areas provide, or have the potential to provide, suitable substrate to recruit vegetation. 

These areas include the supratidal beach, dune ridge systems, saltmarsh, tidal flats, and dredge spoil 

islands. Barrier islands are very dynamic environments. Erosion, accretion, fragmentation, island 

migration, storm overwash, and inlet migration are the primary forms of geomorphic change that 

influence the islands to varying degrees depending on weather conditions, island size and orientation, 

local sediment budgets, and a number of other factors [1,3]. Loss of stabilizing vegetation may lead to 

increased erosion [4]. 

The United States has 405 barrier islands that represent 24% of global barrier islands in terms of total 

island length, both developed and undeveloped, and many of these could benefit from a standardized, 

cost- and time-efficient habitat mapping methodology [5]. Changes will occur in coastal locations, 

which make documenting high-resolution habitat change over time helpful for quantifying the 

geomorphic evolution and for conservation efforts to be implemented more effectively. 

Barrier island geomorphologic evolution is closely tied to its vegetation. Dune plant species promote 

sediment deposition, which shapes dune systems. Dune systems, in turn, influence sediment mobility, 

the spatial distribution of topographic differences, and affect the distribution of vegetation cover. Studies 

of coastal dune vegetation have determined that salt spray exposure, sediment mobility, and soil 

moisture are the primary factors influencing dune vegetation [6]. The NERRS Habitat and Land Cover 

Classification Scheme uses these factors, among others, in its hierarchical habitat descriptions [7]. 

By studying vegetation spatial patterns over time, island morphodynamics may become easier to predict 

for future conservation efforts. 
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1.2. Study Area 

Masonboro Island NERRS (Figure 1) is an approximately 13 km long, 20.4 square kilometer 

undeveloped barrier island in southeastern North Carolina. Despite protection from significant 

anthropogenic degradation, the island is subject to constant change because of the dynamic nature of 

barrier islands. The island consists of more than 6 km
2
 of salt marsh, and, yet, the majority of research 

conducted to date has focused on the supratidal beach and upland dune areas as opposed to the entire 

NERRS as a whole. The North Carolina NERRS site profile [4] contains pertinent information about the 

study area, but acknowledges a lack of information regarding marsh change through time, such as 

accretion, erosion, and fragmentation. 

Figure 1. Masonboro Island National Estuarine Research Reserve is an undeveloped and 

protected area off the coast of Wilmington, North Carolina, USA. 

 

Dredge spoil islands are some of the more prominent and stable features of the study area. The US 

Army Corps of Engineers has been dredging the Intracoastal Waterway and nearby inlets along 

Southeastern North Carolina since the 1920s and depositing the resulting sediment in discrete areas 

along the backs of many barrier islands, among other locations [4]. These landmark structures are 

anthropogenic in origin, but have become incorporated into the back-barrier ecosystem. They can 

provide substrate for much of the area’s upland vegetation that can be recruited to these islands at 

different elevations according to individual sunlight, nutrient, and water requirements [8]. The quantity 

of sediment and length of time that dredging took place has built many of these islands to significant 

elevations that often exceed natural elevations. Despite the ecological significance, these spoil islands, 

as well as the adjacent saltwater marshes, have been sparsely studied, but are an important component of 

the Masonboro Island NERRS study area. These dredge spoil islands dot the landward boundary of 
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Masonboro Island along the Intracoastal Waterway, while Onslow Bay and the Atlantic Ocean lie to the 

east. The island was separated from Carolina Beach to the south in 1952 with the opening of Carolina 

Beach Inlet. Masonboro Inlet forms the northern boundary and has been stabilized by a rock jetty 

since 1981. 

One of the more pervasive problems affecting all North Carolina (NC) NERRS sites is invasive 

species. Masonboro Island is known to have Beach Vitex (Vitex rotundifolia) and Common Reed 

(Phragmites australis). The former has been found and removed in the past, but is expected to become a 

more significant problem in the future. The latter species is found on several spoil islands in large 

monocultures and is known to replace native marsh plants by altering the soil biochemistry and reducing 

waterfowl usage of the area [9]. Among other plants that need to be monitored, Seabeach Amaranth 

(Amaranthus pumilus), and Dune Bluecurls (Trichostemasp) are listed as threatened and significantly 

rare species, respectively [4]. Monitoring these species through island-wide mapping will help 

management officials assess their abundance and distribution, and help decide if further action needs to 

be taken to preserve or remove vegetation [10,11]. 

1.3. Coastal Remote Sensing 

Reserve management decision-makers require up-to-date spatial data and quantitative analysis of 

dynamic barrier island processes in order to implement strategies to maintain and conserve the islands. 

Monitoring and assessing changing environments can be done using a variety of methods.  

Many traditional approaches, including field sampling and surveying, require time-consuming and 

costly efforts with teams of investigators [12]. Use of technological advances in remote sensing data and 

techniques has revolutionized mapping efficiency, especially in remote locations. In coastal and wetland 

locations, in particular, remote sensing techniques have been useful for environmental, socio-economic, 

and anthropogenic land-use assessment [13–16]. Therefore, the proven potential of this technology 

dictates the usefulness for continuous improvement in accuracy, precision, and efficient use of time 

and money. 

Although coastal habitat mapping using satellite imagery has been successful, there have been 

documented issues with reduced map accuracy when mapping Spartina as lower plant density can 

expose a significant amount of soil and water visible to a remote sensor [17]. The spectral signature of 

the microphytobenthos contained in the soil may confuse the classification because of the significant 

quantities of chlorophyll. This can lead to overestimation of Spartina in the lowest areas of the marsh, 

where Spartina and bare soil areas typically occur. 

Zhou et al. [12] emphasized the need for regular monitoring and change detection assessment of 

wetlands for their protection. They encourage remote sensing of these areas because of the synoptic and 

repetitive abilities of aerial and orbital sensors, as well as the promising development of new sensors 

with improved spatial and spectral resolutions. Their classifications of urban wetlands in China were 

successfully conducted using IKONOS satellite images due to the high spatial resolution afforded by this 

sensor (4 m unsharpened; 1 m pan-sharpened). 
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1.4. WorldView-2 Satellite Imagery 

DigitalGlobe launched the WorldView-2 (WV-2) satellite in 2010 (Figure 2). WV-2 has a spatial 

resolution of 1.84 m, eight spectral bands, and the ability to pan-sharpen the imagery to 0.5 m spatial 

resolution [18]. WV-2 collects images with 11 bits of dynamic range, which are then stored as 16-bit 

integers. This radiometric resolution enables the sensor to distinguish slight differences in reflected or 

emitted energy, which may prove valuable for mapping coastal vegetation with similar spectral 

reflectance patterns. The blue, green, red, and near infrared-1 bands are comparable to those of 

QuickBird and IKONOS, but the four new bands are unique and potentially useful for mapping coastal 

habitats (Table 1). 

Figure 2. Natural color images and LiDAR texture and elevation for a selected region of 

Masonboro Island, NC, USA. 

 

1.5. QuickBird and IKONOS Satellite Imagery 

DigitalGlobe launched the QuickBird (QB) satellite sensor in October 2001, as the first of its high 

spatial resolution commercial imagery satellites. It has been imaging the Earth for over a decade with 

four multispectral bands at 2.4 m spatial resolution and a panchromatic band at 0.65 m. QB was selected 

for this study because of the high spatial resolution and proven usefulness in vegetation mapping, 

including coastal and wetland classification [10,17,19–22]. However, QB lacks adequate spectral 

resolution to map species-specific marsh vegetation but is useful in areas that are unaltered by human 

activity [17]. 

Space Imaging (now owned by GeoEye) launched the IKONOS (IK) satellite in September 1999 [23]. 

IK features the same four multispectral bands as QB over a range, but the individual band ranges differ 

(see Table 1). IK has a multi-spectral spatial resolution of 4 m, but may be pan-sharpened to 1 m. IK and 
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QB have been used to classify five species of saltmarsh vegetation, as well as soil and water around 

Venice Lagoon, Italy [14]. Unsupervised and supervised classifications were run on each image, which 

were then assessed for accuracy using in situ ground-control points. Both IK and QB were highly 

accurate overall (97.2% and 96.6%, respectively), and the supervised maximum likelihood classification 

technique performed better than the unsupervised (tested using the K-means accuracy assessment). High 

spatial resolution is necessary for mapping highly heterogeneous vegetation distributions because it 

increases the number of reference pixels used in classifier training and reduces the within-pixel 

heterogeneity, thus, increasing their spectral separability [12,17]. 

Table 1. Specifications of each satellite sensor used and corresponding tidal conditions. 

Satellite 

Sensor 
Bands 

Spatial 

Resolution (m) 

Radiometric 

Resolution 

Band 

Widths (nm) 

Time & Date 

Collected 

Tidal 

Height * 

WorldView-2 
8 MS + 

Panchromatic 
1.8 MS 0.5 Pan 16 bit 

1: 400–450 

2: 450–510 

3: 510–580 

4: 585–625 

5: 630–690 

6: 705–745 

7: 770–895 

8: 860–1040 

Pan: 450–800 

16:11 15 Sept. 

2010  

16:21 16 Oct. 2010 

1.06 m  

1.18 m 

IKONOS 
3 MS 

(No NIR band) 
1.0 Pan 8 bit 

1: 450–520 

2: 510–600 

3: 630–700 

16:08 13 Oct. 2002  

16:20 23 Dec. 

2002 

0.91 m  

1.22 m 

QuickBird 
4 MS+  

Panchromatic 

2.4 MS 0.61 

Pan 
11 bit 

1: 420–520 

2: 520–600 

3: 630–690 

4: 760–890 

Pan: 450–900 

15:51 16 Apr. 

2002 
1.10 m 

* Tidal height is relative to Mean Low Water (MLW). 

1.6. Light Detection and Ranging (LiDAR) Data 

Topography is a key parameter that influences many of the processes involved in coastal change. 

Therefore, up-to-date high-resolution elevation data are useful for precisely modeling the coastal 

environment [10]. Airborne laser surveying is a type of remote sensing known as LiDAR, which collects 

elevation data of land cover surfaces with a high vertical accuracy (i.e., decimeter level). Multiple 

returns enable the creation of digital elevation models from laser surveys using bare earth elevation and 

it is possible to reconstruct canopy elevations using first returns. Airborne LiDAR has been useful in 

mapping coastal terrain because of the ability to rapidly survey long stretches of shorelines [24–26]. 

Brock et al. [16] thoroughly describe the basic principles behind LiDAR coastal topographic surveys 

conducted by the combined NASA, USGS, and NOAA “lower 48” coastal mapping project. 

Using LiDAR data merged with satellite imagery has been shown to increase land cover classification 

accuracy and reduce errors of omission (percentage of incorrectly classified pixels) [26]. Misclassification is 
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a common problem with multi-spectral satellite imagery, especially between spectrally similar habitats 

such as water and emergent marsh, so incorporating elevation may be useful for distinguishing between 

habitats and increasing the classification accuracy. Lee and Shan [25] fused IK multi-spectral with 

LiDAR elevation data to classify coastal land cover at Camp Lejeune, North Carolina, USA. Supervised 

and unsupervised classifications were used both on the IK image alone and the LiDAR-fused image. 

Using typical coastal classes (i.e., marsh, forest, sand), accuracy of the LIDAR-fused imagery was 

greater than that of the IK image alone. The marsh class omission error decreased by 7% with the 

LIDAR-fused image, and commission error was 0%, which means that no non-marsh pixels were 

incorrectly included in the marsh class. 

LiDAR can also be used to derive the texture of a ground surface. In remote sensing, texture refers to 

spatial variation in the brightness of digital images [27]. LiDAR images vary in brightness because 

smooth surfaces (e.g., sand) tend to reflect more light back to the sensor than rough surfaces  

(e.g., marsh), which tend to scatter more light. Lu et al.’s [28] study indicated that fusing satellite 

imagery with texture data can improve classification accuracy. 

1.7. Project Significance and Objectives 

Remote sensing analysis of barrier island ecosystems using a combination of WV-2, QB, IK, and 

LiDAR and a variety of classification techniques provides new information that is useful for future 

coastal habitat mapping. The following hypotheses were tested: 

1. The new WV-2 sensor will produce more accurate maps in comparison to QB and IK. 

2. Supervised classification will produce more accurate maps in comparison with unsupervised. 

3. LiDAR elevation and texture data will increase the map accuracy. 

Results from this study will update the NC NERRS Masonboro Island habitat map and provide 

management officials a plan for future habitat changes by identifying the vulnerable areas of this quickly 

changing ecosystem [29]. The dominant patterns of habitat change that occur at this coastal area can be 

applicable and compared to similar barrier islands elsewhere. 

Two important components to coastal management today are public outreach and predicting potential 

impacts due to climate change. While it is certainly important for research results to go directly to 

policy-makers and management officials, public awareness is necessary for sustaining long-term coastal 

sustainability and outreach to the public with easily-accessed data and results could be very helpful. 

Therefore, data and results of this study have been made available via a mapping website 

(www.uncw.edu\gis) through a map server housed at the University of North Carolina Wilmington. 

2. Methodology 

The majority of this study involved computing a variety of image classification techniques. 

Therefore, the methods for this study comprised: (1) gathering satellite imagery and LiDAR data;  

(2) computing land cover maps; (3) calculating an accuracy assessment; and (4) calculating land  

cover change. 
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2.1. Pre-Processing 

The three types of imagery, WV-2, QB and IK, had different spatial, spectral, and radiometric 

characteristics (see Table 1). The IK imagery was ordered as a pan-sharpened, 8-bit image with only 

visible bands (no near-infrared band). Both WV-2 and QB had multi-spectral bands, as well as a 

panchromatic band, which enabled these images to be pan-sharpened, and collected reflectance at the 

higher 11-bit (stored as 16-bit in WV-2) radiometric resolution. The IK image was useful for comparing 

with the other two higher resolution images. As is the case with many remote sensing projects, a single 

image rarely covers the entire study area. Therefore, there were two WV-2 images and two IK images to 

cover the study area. The NERRS Masonboro Island study area was clipped from the imagery. 

ENVI offers several methods for pan-sharpening multispectral imagery. The three most popular 

methods were tested to determine which is the most accurate for this study area: Gram-Schmidt, Color 

Normalized Spectral Sharpen, and Principal Components. Each pan-sharpened image was then 

classified and the Principal Components method resulted in the greatest accuracy. For multi-temporal 

analysis, un-calibrated relative pixel values, or digital numbers, of each spectral band must be corrected 

for atmospheric effects and converted to spectral reflectance [30]. ENVI’s QUick Atmospheric 

Correction (QUAC) tool was used to correct all satellite images for atmospheric interference. 

The LiDAR data were obtained from the Army Corps of Engineers (ACOE) in LAS format for 2005 

(dates collected: 24 and 26 September) and 2010 (date collected: 30 May) at 1 m horizontal spatial 

resolution and 0.15 m vertical accuracy. Unfortunately, the data did not cover the entire Masonboro 

NERRS study area; it extended approximately 500 m from the shoreface landward, excluding roughly 

half of the study area. LiDAR elevation and texture data were fused with the satellite images for 

subsequent image classification. The output resolution for each layer stack was set to the coarsest spatial 

resolution of the input data, which means the data were not resampled to a higher spatial resolution than 

when they were collected. 

2.2. Habitat Mapping Classification Scheme 

The Masonboro NERRS has developed a peer-reviewed habitat classification scheme that has been 

applied to mapping products, proved useful and effective, and therefore was used for this project [7].  

The NERRS recognized, in 2005, the need for a standardized habitat classification scheme, and 

established a technical workgroup to research, identify, and recommend an existing classification 

scheme to be used for local, regional, and national site assessment and change analyses. The workgroup 

found a number of existing methodologies for mapping coastal habitats, but none provided sufficient 

scope and resolution. Instead of creating a new classification scheme, they decided to build a scheme 

from the existing U.S. Fish and Wildlife Service’s National Wetland Inventory system [7]. 

2.3. Satellite Image Classification Techniques 

Unsupervised and supervised image classification techniques were performed on the three types of 

imagery with several combinations of bands, elevation, and texture. Unsupervised classification is a 

technique that is often used when there is limited or no access to a study area. Therefore, this technique 

was performed prior to conducting field work in order to minimize any potential bias in the classification 
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results. A mask was first created to exclude open water from each image. Next, ENVI’s ISODATA 

unsupervised classification tool was performed on each image. The software uses algorithms that group 

pixels into a specified number of classes based on the natural clusters present in the image and then the 

image analyst defines the habitat class for each of the spectral classes [31]. For this project, 30 classes 

were identified during the ISODATA process to account for the 15 classes mapped by NC NERRS in 

2004 [4]. Then these images were visually compared with orthophotography from the same year to 

merge the 30 spectral classes into a final classified image with 8 classes that were identifiable by the 

analyst based on the NERRS classification scheme. Later these 8 classes were combined into the same 

6 classes used in the supervised classification. 

Maximum likelihood supervised classifications were performed because this technique has been 

useful in mapping vegetation [32,33] and is the most widely-used supervised classification method [17]. 

The technique evaluates the variance and covariance (a measure of the relationship between brightness 

values in one band versus another band) between training classes and designates a pixel to a class based 

on the statistical probability of a pixel being a member of a class. 

Field work was necessary to collect Ground Reference Points (GRPs) for use in both the supervised 

image classification and also for conducting the classification accuracy assessment. In order to 

determine the correct spacing for collecting field sites, a preliminary field-work session was conducted 

to test locations for spatial autocorrelation. Spatial autocorrelation represents the degree of similarity 

among observations in a dataset. In land cover studies it is important to account for spatial interactions in 

GRPs to remove bias in the supervised classifications. In addition, removing spatial autocorrelation 

means the GRPs used in the accuracy assessment are independent and the assumptions of the 

classification methods are met. Sampling at distances in which habitats are not autocorrelated removes 

potential bias in the spatial patterns of similar habitat types. 

The field work was conducted using a Real Time Kinematic (RTK) GPS unit (Trimble 5800 receiver 

with horizontal and vertical accuracies of 10 mm, and 20 mm, respectively) and points were collected 

along 6 randomly-selected transects spaced 10 m apart and perpendicular from the beach to the 

back-barrier. Habitat classes were identified at each point for a total of 167 points. These data were 

tested for spatial autocorrelation using the acf function in R [34] and the results indicated that habitats 

were not spatially autocorrelated at a sampling distance of 20 m. Therefore, the next stage of field work 

was designed where each site was at least 20 m away from each other. 

Transects were generated perpendicular to the shoreline using the DSAS tool 

(http://woodshole.er.usgs.gov/project-pages/DSAS/) in ArcMap and each transect was spaced 50 m 

apart. Thirty-five transects were randomly selected, each transect was divided into line segments with 20 m 

lengths and these were then converted to points. All points that were located in water, below mean lower 

low tide, were removed. Field work was conducted from February 2012, through June 2012, where each 

transect was surveyed, GPS locations were recorded (horizontal and vertical), a photograph was taken, 

and the habitat class and supplemental notes were recorded (Figure 3). In total, 659 points were collected 

and 9 of these points were located in water in the 2002 orthophotography so these were removed for the 

supervised classification analysis (Table 2). The GRPs were randomly divided into two new shapefiles 

to create a set of training sites and a set of accuracy assessment points. The training site points were then 

used in ENVI for the supervised maximum likelihood classifications. 
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Figure 3. Masonboro National Estuarine Research Reserve System study area with ground 

reference points along 35 randomly selected transects spaced 50 m apart. 

 

Table 2. Habitat Classification Scheme and Number of Ground Reference Points (adapted 

from [4]). 

Name 

# Points 

2002/2010 

(Total: 650/659) 

Dominant Species 

Intertidal Emergent Wetland 149/150 Spartina alterniflora (smooth cordgrass) 

Intertidal Scrub-Shrub Wetland 47/48 Borrichia frutescens (sea ox-eye) 

Supratidal Emergent Wetland 40/40 
Spartina patens (salt meadow hay); Distichlis spicata (inland 

saltgrass); Juncus roemarianus (black needle rush) 

Supratidal Scrub-Shrub Wetland 63/63 
Borrichia frutescens; Spartina patens; Uniola paniculata 

(sea oats); Distichlis spicata 

Upland Grass 132/140 
Spartina patens; Uniola paniculata; Distichlis spicata; 

Panicum spp. 

Upland Scrub-Shrub (Mixed) 67/70 

Iva frutescens (marsh elder); Baccharis halimfolia 

(groundsel tree); Ilex vomitoria (yaupon); Myrica cerifera; 

Quercus laurifolia (laurel oak); Juniperus virginiana 

(eastern red cedar) 

Upland Forest 31/31 

Quercus virginiana (live oak); Ilex vomitoria; Myrica 

cerifera; Quercus laurifolia; Pinus taeda (loblolly pine); 

Pinus palustris (longleaf pine) 

Marine and Estuarine 

Unconsolidated Bottom and Sand 
121/117 N/A 
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2.4. Accuracy Assessment 

Accuracy assessment is compulsory to sound remote sensing classification analysis because it reveals 

how effectively pixels were grouped into the correct classes by validating them with ground-truth 

data [35]. Georeferenced GRPs are used with the classification map to generate a confusion matrix that 

summarizes the number and percentage of points correctly and incorrectly classified for each class, 

the errors of omission and commission, overall accuracy, and Kappa coefficient. User’s accuracy 

(also known as commission error) refers to the number or percentage of points included in a class that 

should not have been. Producer’s accuracy (or omission error) refers to the points that should have been 

included in a class, but were not. These accuracy statistics are useful in determining how well each class 

was correctly classified, whereas overall accuracy refers to the percent of pixels correctly classified for 

the image as a whole. Kappa coefficient considers overall accuracy and individual class accuracy as a 

means of assessing actual agreement between classification and ground observation, and lies between 0 

and 1, where 0 represents agreement due to chance only, and 1 represents complete agreement between 

the ground truth and the classified image. The Kappa statistic has traditionally been used as a statistically 

more sophisticated measure of classifier agreement, and may give better inter-class assessment than 

overall accuracy, but it has also received much controversy as to the true measure of map 

accuracy [35,36]. It is important to test for accuracy as change detection compares classified images, 

and, thus, depends on the classification accuracies of individual images [9]. 

Confusion matrices were generated for each of the classified images. In order to test whether the 

heterogeneity of the classified images may be influencing the accuracy, a majority 3 × 3 filter was 

applied to each classified image. This approach replaces isolated cells with the class that corresponds to 

the majority of cells within a 3 × 3 matrix. Each filtered classified image was then tested for accuracy. 

All unsupervised and supervised, all band combinations, and the three types of images were assessed 

for accuracy. The non-parametric McNemar test was used to compare the classification maps because 

this technique has been shown to be simple yet robust [36,37]. The McNemar test is similar to the chi 

squared test where the numbers of incorrectly classified pixels (based on ground reference points) are 

compared between two classification maps. Research has shown that the McNemar test is a better 

indicator of map accuracy than the commonly used Kappa statistic [36]. Rozenstein and Karnieli [36] 

also prefer the McNemar test using this equation: 

   
        

   
 (1) 

where b and c are the off-diagonals, which means these are the number of incorrectly classified pixels in 

one map versus correctly classified in the other. 

2.5. Habitat Change Detection 

Change detection analysis is useful for identifying where habitat classes have changed through time. 

Results provide amount and rate of change, spatial distribution of changes, and potentially change 

trajectories can be calculated [38]. Post-classification change detection compares classified multi-temporal 

thematic maps, cell by cell. ArcMap tools were used to tabulate change on the best 2002 and 2010 

NERRS and Masonboro Island maps. To compare dates, maps were resampled to the coarser map when 
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the two maps were of different spatial resolutions. The conventional method of assessing change using a 

change detection or classification matrix is widely used, but fails to provide an estimate of the 

probability that the observed results could have been obtained by chance (i.e., statistical significance). 

Therefore, Pontius et al. [39] developed methods to extend the classification matrix to changes that are 

significant, or more than expected. 

3. Results 

3.1. Masonboro NERRS Study Area 

A total of 44 classification maps were generated for the larger NERRS study area and 124 maps were 

generated for just the Masonboro Island area (including the LiDAR elevation and texture analysis). All 

maps were assessed for classification accuracy using half the GRPs that were collected for each habitat 

class. In comparing the WV-2, QB, and IK imagery the most accurate sensor was WV-2, based on 

overall accuracies and Kappa coefficients (Table 3). IK imagery performed most poorly due to the haze 

in the imagery, the lowest pan-sharpened spatial resolution, and the lack of a near-infrared band. WV-2’s 

new spectral bands had mixed results, but generally improved the results. Most supervised 

classifications were more accurate than the corresponding unsupervised (Figure 4). Pan-sharpening 

improved map accuracy in only 40% of the maps (Figure 5) while smoothing the classified imagery 

using a 3 × 3 majority filter improved the classification accuracy in almost all of the maps (77%) (Figure 6). 

Table 3. Accuracy assessment (in percent correct) and Kappa coefficients for unsupervised 

and supervised classifications *.  

Sensor Sharpen 
Band 

Combinations 
UNSUPERVISED Kappa 

Majority 

Filter 
Kappa SUPERVISED Kappa 

Majority 

Filter 
Kappa 

WV2 

2010 

No 
NIR, G, B 63.32 0.554 64.71 0.5721 69.21 0.62 71.34 0.646 

All 8 64.01 0.568 64.01 0.5676 66.77 0.59 72.56 0.664 

Pan 
NIR, G, B 60.9 0.521 62.28 0.5388 59.15 0.508 60.06 0.52 

All 8 62.63 0.548 64.01 0.566 65.24 0.573 65.85 0.582 

No 

Red Edge, 

yellow, 

coast 

58.48 0.497 59.17 0.5046 70.43 0.635 71.95 0.653 

Pan 

Red Edge, 

yellow, 

coast 

63.67 0.556 63.67 0.5567 59.45 0.511 59.76 0.516 

QB 

2002 

Non 
NIR, G, B 57.04 0.485 58.8 0.5028 57.14 0.471 60.25 0.507 

All 4 58.1 0.496 55.99 0.4716 62.11 0.531 61.8 0.527 

Pan 
NIR, G, B 57.75 0.487 57.75 0.4862 60.87 0.512 61.8 0.524 

All 4 60.92 0.525 62.32 0.5405 59.63 0.502 60.25 0.51 

IK 

2002 
Pan R, G, B 40.49 0.257 41.55 0.2679 40.99 0.277 41.3 0.28 

* Maps in bold were compared using McNemar tests. 
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Figure 4. Supervised and unsupervised classification maps for an example spoil  

island. On the left is WV-2 supervised, non-sharpened, 8 bands, majority filtered  

(72.56% accurate) and on the right is WV-2 unsupervised, non-sharpened, 8 bands, majority 

filtered (64.01% accurate). 

 

Figure 5. Pan-sharpened and non-sharpened maps for a portion of the northern beach area. 

On the left is WV-2 supervised, 8 band, majority filtered, non-sharpened at 1.8 m spatial 

resolution (72.56% accurate) and on the right is the same image processing with 

pan-sharpening at 0.5 m spatial resolution (65.85% accurate). 
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Figure 6. Non-filtered and filtered maps with a 3 × 3 majority filter for an example back 

barrier area. On the left is WV-2 supervised, non-filtered, non-sharpened, 8 band  

(66.77% accurate) and on the right is the same classification with a majority filter  

(72.56% accurate). 

 

McNemar statistics were computed for each of the highest accuracy classification results in order to 

determine which maps best represent the study area. For WV-2, the three best classifications  

(all supervised) were compared, and only one combination showed a significant difference. The highest 

accuracy map was the WV-2 using all 8 bands (72.56%) but it was not significantly different,  

(at the 95% level) from the NIR/G/B map (at 71.34%), nor the Red Edge/Yellow/Coastal Blue map  

(at 71.95%). However, the all-8 map had significantly fewer incorrectly classified GRPs at 25 versus the 

Red Edge/Yellow/Coastal Blue map at 42 incorrect GRPs and the NIR/G/B at 35 incorrect GRPs. 

Therefore, the all-8 map was chosen as the best map to represent the 2010 date. 

In contrast, all QB map comparisons were significantly different at 95% confidence. Of these,  

the 4 bands, supervised, non-sharpened, majority filtered map (at 61.8% accurate) had the fewest 

incorrect GRPs. Therefore, it was chosen as the map that best represented the NERRS study area in 2002. 

3.2. Masonboro Island Study Area 

Given that the LiDAR data was only available for Masonboro Island, these image classifications were 

assessed using GRPs that were located on the island (Table 4). Similarly to the entire NERRS area, the 

supervised technique produced more accurate results in comparison to the unsupervised classification 

maps. The best result was WV-2’s supervised, non-sharpened, majority filtered, 8-band image (80.39%, 

0.7417 Kappa). The most accurate sensor for Masonboro Island was WV-2 (Figure 7) and QB had 

higher accuracy results compared to IK. 

Pan-sharpening improved classification accuracy in only 46% of the WV-2 maps and 58% of the QB 

maps. These results are better in comparison to the entire NERRS study area, which is due to the addition 

of the LiDAR data. The combination of LiDAR and the new WV-2 spectral bands led to improved 

results when the images were pan-sharpened. Smoothing the Masonboro Island classifications using a 
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3 × 3 majority filter also improved overall accuracy. The addition of the LiDAR elevation and texture 

data sometimes improved the overall classification accuracy, but not in all cases. For example, with 

WV-2, clearly the better technique was supervised, and the addition of elevation improved the accuracy 

in 75% of the maps. However, when maps that included elevation data were majority filtered the results 

are mixed with only half improving with the elevation data. Importantly, the highest accuracy map 

(at 80.39%) did not use the LiDAR data.  

Texture data clearly did not improve the results and in fact had worse results with all maps. 

Interestingly, the elevation data improved the accuracy with the IK images. Given the overall poor 

performance of the IK imagery it is small consolation that the elevation data helped the results. 

Therefore, it is clear from these results that the LiDAR data did not substantially or consistently improve 

the accuracy of the maps. However, it is worth further investigation since it improved the classification 

accuracy of the WV-2 imagery. 

Table 4. Accuracy assessment (in percent correct) and Kappa coefficients for unsupervised 

and supervised classifications for the Masonboro Island portion of the NERRS study area. 

Sensor Sharpen 
Band 

Combinations 
UNSUPERVISED Kappa 

Majority 

Filter 
Kappa SUPERVISED Kappa 

Majority 

Filter 
Kappa 

WV2 

2010 

No NIR, G, B 71.90 0.6263 71.24 0.6188 71.24 0.6206 71.24 0.6196 

 
All 8 75.16 0.6736 72.55 0.6393 77.12 0.6992 80.39 0.7417 

Pan NIR, G, B 66.01 0.5439 67.32 0.5616 70.59 0.6185 69.93 0.6104 

 
All 8 68.63 0.5862 70.59 0.612 71.90 0.6343 73.20 0.6507 

No 
Red Edge, 

yellow, coast 
69.28 0.5912 65.36 0.5413 75.16 0.6743 75.82 0.681 

Pan 
Red Edge, 

yellow, coast 
69.28 0.5881 69.93 0.5981 70.59 0.6177 71.24 0.6265 

No 
NIR, G, 

Elevation 
69.93 0.6017 67.97 0.578 73.20 0.6478 75.16 0.6736 

 

All 8 + 

Elevation 
66.67 0.5512 67.32 0.5601 68.63 0.57 69.28 0.5758 

Pan 
NIR, G, 

Elevation 
69.28 0.5954 67.97 0.5766 72.55 0.6435 70.59 0.5971 

 

All 8 + 

Elevation 
68.63 0.5855 69.93 0.6017 77.12 0.7026 71.90 0.6142 

No 
NIR, G, 

Texture 
67.97 0.5782 67.97 0.5785 68.63 0.5907 72.55 0.6406 

 
All 8 + Texture 71.90 0.6276 71.24 0.618 70.59 0.599 71.90 0.6162 

Pan 
NIR, G, 

Texture 
71.90 0.6293 71.24 0.6208 66.67 56.77 66.67 0.5698 

 
All 8 + Texture 73.86 0.6540 74.51 0.6623 71.90 0.6178 72.55 0.6242 
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Table 4. Cont. 

Sensor Sharpen 
Band 

Combinations 
UNSUPERVISED Kappa 

Majority 

Filter 
Kappa SUPERVISED Kappa 

Majority 

Filter 
Kappa 

QB 

2002 

No NIR, G, B 60.58 0.4856 60.58 0.4849 60.58 0.4856 68.61 0.5893 

 
All 4 58.39 0.4551 59.12 0.4649 58.39 0.4551 70.07 0.6074 

Pan NIR, G, B 59.12 0.4613 59.12 0.4606 59.12 0.4613 70.80 0.6199 

 
All 4 62.77 0.5103 63.5 0.5187 62.77 0.5103 72.26 0.6389 

No 
NIR, G, 

Elevation 
59.85 0.4785 59.12 0.4617 63.50 0.534 65.69 0.5619 

 

All 4 + 

Elevation 
59.12 0.4620 59.85 0.4688 64.96 0.5559 69.34 0.6074 

Pan 
NIR, G, 

Elevation 
60.58 0.4767 59.85 0.4652 61.31 0.5099 66.42 0.5725 

 

All 4 + 

Elevation 
59.12 0.4618 57.66 0.4425 69.34 0.6057 75.18 0.6764 

No 
NIR, G, 

Texture 
59.85 0.4706 59.12 0.4595 60.58 0.4956 60.58 0.4952 

 
All 4 + Texture 59.12 0.4623 59.85 0.4703 65.69 0.5645 64.96 0.5509 

Pan 
NIR, G, 

Texture 
61.31 0.4892 61.31 0.4862 56.93 0.4482 63.50 0.5311 

 
All 4 + Texture 59.12 0.4607 60.58 0.4795 64.23 0.5378 70.07 0.610 

IK 

2002 

Pan R, G, B 46.72 0.2801 48.18 0.2995 46.72 0.2801 51.82 0.3798 

Pan 

R, G, Elevation 65.38 * 0.5403 67.69 * 0.5678 64.23 0.5339 67.88 0.5833 

All 3 + 

Elevation 
63.08 * 0.5033 65.38 * 0.5315 64.23 0.5345 66.42 0.5657 

Pan 
R,G, Texture 62.31 * 0.4924 65.38 * 0.532 49.64 0.3592 52.55 0.397 

All 3 + Texture 63.08 * 0.5050 66.15 * 0.5429 51.09 0.3793 53.28 0.4019 

* These images were only able to classify 5 classes (Intertidal Marsh, Supratidal Marsh, Supratidal Scrub-Shrub, Sand, and 

Upland Grassland). Maps in bold were compared using McNemar tests. 

McNemar statistics were computed for each of the highest accuracy classification results in order to 

determine which maps best represent the Masonboro study area from 2010 (WV-2) and 2002 (QB).  

For WV-2, the most accurate map (supervised, non-sharpened, majority filtered, 8 bands, 80.39%) was 

compared to the other six maps and none of them were significantly different at the 95% confidence 

level. Given that there were no significant differences between the best classification maps the highest 

accuracy map was chosen for the change detection analysis as it also had the fewest incorrectly 

mapped GRPs.  

The most accurate QB map (supervised, 4 bands + elevation, pan-sharpened, majority filtered,  

at 75.18%) was compared with the four next best maps and again none were significantly different at  

the 95% confidence level. The most accurate map tied for the fewest incorrect GRPs, and was chosen as 

the best 2002 map due to its higher overall accuracy. 
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Figure 7. Supervised classification maps using WorldView-2, QuickBird, and IKONOS for 

an example area of Masonboro Island. 

 

3.3. Habitat Class Accuracies 

Accuracy assessment statistics for the best 2002 and 2010 maps reveal that individual class 

accuracies varied (Figure 8). While the overall map accuracy was lower for the NERRS maps, individual 

habitat class accuracies varied between the two study areas. For example, the 2010 NERRS intertidal 

marsh was mapped at 83% accuracy as opposed to only 59% accuracy at Masonboro Island.  

However, the Masonboro Island map had higher accuracy in every other habitat class. Sand was 

consistently more than 80% accurate in the best maps. Supratidal marsh and scrub-shrub were poorly 

classified in the NERRS maps when compared to the Masonboro Island maps. This may be because the 

back-barrier marsh habitats tended to form in discrete regions adjacent to the water, making them more 

easily classified than the smaller and more linear marsh habitats surrounding the spoil islands.  

Emergent wetland grasses tended to be found among the scrub-shrub habitat, and were often taller than 

the scrub, but not dense enough to dominate the immediate area. It is recommended that NERRS and 

future analysts use a mixed class for these areas that are a combination of intertidal and supratidal 

habitats that consist of both grasses and woody scrub to help alleviate this problem. The classification 

scheme used in this study had no option to designate a “mixed” class. 

The higher-resolution (1.8 m) WV-2 NERRS map was more accurate than the QB NERRS map (2.4 m) 

in all habitat classes except supratidal scrub-shrub. The greatest discrepancy was in the supratidal marsh 

class, which was misclassified mostly as upland grassland in QB. For Masonboro Island, WV-2  

(1.8 m resolution) was more accurate than QB (1 m) in only three habitat classes: sand, upland grassland, 

and upland scrub-shrub. 
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Figure 8. Habitat class accuracies for the best maps for 2002 and 2010 for both the NERRS 

study area and Masonboro Island. 

 

3.4. Habitat Change Analysis 

The best classification images for each date (2010 and 2002) and each area (the entire NERRS study 

area and the Masonboro Island area) were compared using change detection analysis. The higher spatial 

resolution WV-2 map (1.8 m) was resampled to match the spatial resolution of QB (2.4 m). ArcGIS was 

used to map the changes and compute change detection statistics from the earlier image (QB 2002) to 

later (WV-2 2010). Each change matrix displays the change from each class to each other class, as well 

as how much of each class did not change. Total change is the sum of gains and losses (both numbers are 

positive), net change is the difference of gains and losses (absolute value of this is only used for study 

area change, not individual class change). 

Change detection results indicate that almost 20% of the NERRS study area experienced changed 

from 2002 to 2010 (Table 5). Net change (absolute value of the difference of gains and losses) was  

only 5% of the NERRS, but swap change (difference of total change and net change) accounted for more 

than 14%. Habitat classes changed in the following order of decreasing total area and total percent 

change (excluding water): intertidal marsh (2.25 km
2
, 11.50%), sand (1.11 km

2
, 5.70%), upland 

grassland (0.79 km
2
, 4.02%), supratidal scrub-shrub (0.78 km

2
, 4.01%), supratidal marsh (0.59 km

2
, 3.02%), 

and upland scrub-shrub (0.57 km
2
, 2.93%) (Table 6). 

The most total change, net change and swap change occurred in the intertidal marsh habitat class 

measured by both individual class area (2.25 km
2
 total, +0.44 km

2
 net, and 1.81 km

2
 swap change) and 

percent (11.5% total, 2.26% net, and 9.24% swap change) of the NERRS that changed. Intertidal marsh 

gained most from water (0.71 km
2
), followed by sand (0.27 km

2
) and supratidal scrub-shrub (0.21 km

2
). 

With the exception of water, intertidal marsh is the largest habitat class in the study area (6.39 km
2
  

in 2010) and changed the most. Sand covered the next largest area (1.21 km
2
 in 2010) and experienced 

the next most total and net change (1.11 km
2
 or 5.7%, and −0.40 km

2
 or −2.05%, respectively), losing 

ground mostly to water and intertidal marsh (0.26 km
2
 and 0.21 km

2
, respectively). Upland scrub-shrub 

increased in area by 84% from 0.57 km
2
 to 0.95 km

2
. Most of this change occurred along the spoil 

islands, which have been largely inactive as dredge spoil deposition sites during this time period (Figure 9). 
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Table 5. Percent change of each habitat type across the NERRS study area and at 

Masonboro Island. 

 
Gain Loss Total Change Swap Net (Absolute Value) 

 
NERRS Masonboro NERRS Masonboro NERRS Masonboro NERRS Masonboro NERRS Masonboro 

Intertidal Marsh 6.875 13.243 4.620 4.103 11.495 17.347 9.240 8.206 2.255 9.140 

Supratidal Marsh 0.705 0.819 2.314 5.257 3.019 6.076 1.411 1.637 1.608 4.439 

Supratidal 

Scrub/Shrub 
2.088 2.378 1.926 6.518 4.014 8.896 3.853 4.756 0.161 4.140 

Sand 1.821 5.790 3.874 4.420 5.695 10.211 3.642 8.840 2.053 1.370 

Upland Grass 2.328 5.498 1.693 1.903 4.021 7.401 3.386 3.806 0.635 3.595 

Upland 

Scrub/Shrub 
2.445 0.974 0.485 1.621 2.929 2.595 0.969 1.948 1.960 0.647 

Water 3.342 1.874 4.692 6.754 8.035 8.628 6.685 3.747 1.350 4.881 

Total 19.605 30.576 19.605 30.576 19.605 30.576 14.593 16.471 5.012 14.105 

Table 6. Percent change in habitats at NERRS from 2002 to 2010. 

Area (% of 2002) 

Habitat Class in 2010 (Perent) 

Class Total (2002) Intertidal 

Marsh 

Supratidal 

Marsh 

Supratidal 

Scrub/Shrub 
Sand 

Upland 

Grass 

Upland 

Scrub/Shrub 
Water 

Intertidal Marsh 25.81 0.33 1.43 0.40 0.19 0.82 1.46 30.43 

Supratidal Marsh 0.49 0.31 0.33 0.06 0.81 0.55 0.07 2.63 

Supratidal 

Scrub/Shrub 1.09 0.15 0.77 0.03 0.07 0.55 0.03 2.70 

Sand 1.36 0.04 0.02 4.39 1.11 0.04 1.31 8.26 

Upland Grass 0.20 0.12 0.07 0.63 2.22 0.21 0.46 3.91 

Upland Scrub/Shrub 0.11 0.06 0.19 0.01 0.11 2.44 0.01 2.92 

Water 3.63 0.01 0.05 0.68 0.03 0.29 44.46 49.15 

Class Total (2010) 32.69 1.02 2.86 6.21 4.54 4.88 47.80 100.00 

Change detection results focused on the Masonboro Island region of the NERRS show that more  

than 30% of this area experienced change from 2002 to 2010 (Table 7). To compare the two maps, the 

pan-sharpened QB map (1.0 m) was resampled to the resolution of the coarser WV-2 map (1.8 m).  

Of that, more than 16% is attributable to swap change, and 14% due to net change. Habitat  

classes changed in the following order of decreasing total area and total percent change  

(excluding water): intertidal marsh (0.99 km
2
, 17.35%), sand (0.58 km

2
, 10.21%), supratidal  

scrub-shrub (0.51 km
2
, 8.90%), upland grassland (0.42 km

2
, 7.40%), supratidal marsh (0.35 km

2
, 6.08%), 

and upland scrub-shrub (0.15 km
2
, 2.59%). 

Intertidal marsh experienced the most total change and net change (0.99 km
2
 or 17.35%, and 0.52 km

2
 

or 9.14%, respectively) with 0.47 km
2
 (8.21%) of swap change (Figure 10). Sand saw the most swap 

change (0.50 km
2
 or 8.84%), gaining about 0.22 km

2
 from water, while losing about 0.21 km

2
 to upland 

grassland. Much of the sand gained in 2010 from 2002 water occurred at the southern end of the island 

along Carolina Beach Inlet where the southeastern tip of Masonboro eroded as much as about 200 

meters, and accreted sand along the east-facing beach (Figure 11). 
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Figure 9. Gain (blue) and loss (red) in upland scrub/shrub for the entire study area *. 

 
* Areas in beige are the rest of the study area, and not just persistent scrub-shrub. 

Table 7. Percent change in habitats at Masonboro Island from 2002 to 2010. 

Area 

(% of 2002) 

Habitat Class in 2010 (Percent) 

Class Total (2002) Intertidal 

Marsh 

Supratidal 

Marsh 

Supratidal 

Scrub/Shrub 
Sand 

Upland 

Grass 

Upland 

Scrub/Shrub 
Water 

Intertidal 

Marsh 
25.10 0.29 1.52 0.64 0.23 0.36 1.07 29.21 

Supratidal 

Marsh 
3.89 0.36 0.41 0.17 0.37 0.12 0.28 5.62 

Supratidal 

Scrub/Shrub 
6.05 0.11 0.65 0.16 0.09 0.05 0.06 7.17 

Sand 0.20 0.14 0.02 13.31 3.74 0.03 0.29 17.73 

Upland Grass 0.39 0.18 0.07 0.93 5.56 0.19 0.15 7.47 

Upland 

Scrub/Shrub 
0.25 0.10 0.30 0.02 0.92 0.32 0.03 1.94 

Water 2.45 0.01 0.06 3.87 0.14 0.21 24.11 30.86 

Class Total 

(2010) 
38.35 1.18 3.03 19.10 11.06 1.30 25.98 100.00 
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Figure 10. Change in intertidal marsh from 2002 to 2010 at an example back barrier 

location. Gains in marsh (blue) and losses in marsh (red) tend to occur in close proximity. 

 

Figure 11. Change in sand at the southern end of Masonboro Island adjacent to Carolina 

Beach Inlet. Sand erosion (red) and accretion (blue) can be seen along with overall change 

from 2002 (thin black line) to 2010 (thick black line). 
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The change detection results can be further investigated by deriving the difference between observed 

change and change that would be expected to occur [39]. For gain and loss, expected change was 

calculated, respectively, as: 

                                         

                            

                                  
 (2) 

                                                    

                            

                                  
 (3) 

The analysis is very similar to a chi squared test where the observed and expected are compared. The 

data are first converted to percentages of change from time 1 to time 2 (e.g., 2002 to 2010) and then the 

percentage of gain and the percentage of loss are calculated. 

Figure 12. The ratio of deviation to expected change for gain (blue) and loss (red) for 

selected habitat classes. The class in the title gained and lost more than expected over the 

classes along the x-axis. 
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(c) (d) 

Classification change matrices are useful for quantifying change but they do not identify significance 

of these changes. Therefore, additional computation is required to derive changes that are more or less 

than expected. The expected percentages of loss and gain are calculated by comparing the observed 

percentages of each habitat type in time 1 (e.g., 2002). The chi-square statistic is then derived by 

calculating the difference between observed and expected percentages (termed the deviation), and taking 
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the ratio of this value to the expected percentage. When the ratio of deviation/expectation is greater than 

3.84 the gain or loss is significant at the 95% confidence level. These values deviate significantly from 

expected gain or loss, and are highlighted for the four classes of greatest unexpected  

change (Figure 12). 

Across the study area, there was substantially higher than expected loss than there was gain.  

For example, with Intertidal Marsh, there was more loss than expected to Supratidal Marsh, Supratidal 

Scrub-Shrub, and Upland Scrub-Shrub. Conversely, there was almost no significantly greater than 

expected gain in Intertidal Marsh. Supratidal Marsh and Upland Scrub-Shrub had the largest overall 

changes and most of the largest gain and loss were from swapping of Supratidal Marsh, Supratidal 

Scrub-Shrub, and Upland Grass. These results indicate the greater than expected gain and loss from 

Supratidal Marsh, which is logical considering the fringing location of this habitat type. Upland Grass 

also had greater than expected change to Supratidal Marsh, Sand and Upland Scrub-Shrub.  

With sediment accretion around the spoil islands and back barrier of Masonboro (overwash fans) this 

raises the elevation just enough to expand the Scrub-Shrub habitat and shrink the Supratidal Marsh and 

Upland Grass. In comparing the losses of all habitat types, it is interesting that the upland classes had 

more significant loss at Masonboro in comparison to the NERRS as a whole, which experienced 

significant losses across all habitat types except for upland grassland and intertidal marsh. This suggests 

that Masonboro Island is more sensitive to erosional forces such as large storm activity. 

4. Discussion and Conclusions 

It was hypothesized that WV-2 would be the most accurate imagery and it significantly produced 

more accurate results compared to both QB and IK. The primary factors that distinguished this sensor’s 

greater map accuracy were a combination of the number of spectral bands, narrow widths of the bands 

(higher spectral resolution), higher spatial resolution, and greater radiometric resolution. The NIR bands 

for WV-2, QB and IK cover very similar bandwidths, but the green and especially blue bands are 

narrower, which may enable WV-2 to more precisely distinguish the vegetation reflectance value. These 

results confirm the earlier work with QB imagery where the sensor produced map accuracy of only 62% 

in coastal marsh habitats [20]. The mapping of complex marsh species is problematic with QB due to the 

lower spectral and spatial resolution. Marsh vegetation is often interspersed with other classes and high 

spatial resolution is more important in coastal vegetation mapping than high spectral resolution [20]. 

A study comparing the capabilities of WV-2 and QB sensors to map coastal mangrove species found 

better spectral separability using WV-2 [40]. A similar study comparing WV-2 and QB land cover 

classification capabilities found that, in 10 out of 16 classifications, the new WV-2 bands helped 

achieved higher Kappa values [41]. Spectral un-mixing may be used to assess sub-pixel habitat 

composition for future studies, but the NERRS classification scheme generally allows for at least 25% of 

the area, and up to 75%, (i.e., of each pixel) to be mixed with other classes. Two primary reasons for the 

unsatisfactory classification results with the IK imagery were the lack of a NIR band, and an atmospheric 

haze that could not be removed from the imagery. 

It is important to note that the images were not all acquired at the same calendar dates (see Table 2) 

and therefore the overall map accuracy and resulting change analysis may be influenced by slightly 

different phenological periods. This potential issue did not appear to influence image classification or 
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change detection results, but it is recommended that when possible it is best to use images that 

correspond to the same season. It is also important, when mapping intertidal habitat classes, to acquire 

images at the same tidal amplitude, make sure to account for tidal datums, and to consider recent 

precipitation events and how they may affect water levels and standing water on and around the study 

area. In this study the images were all taken at very close tidal regimes (see Table 2) and did not have any 

large precipitation event prior to the images being acquired. The tide levels during the capture of images 

were 1.10 m (QB), and 1.06 m and 1.18 m (both WV-2 images). Given the low relief of the island, 

however, even a small tidal difference between images could potentially influence habitat mapping. 

Therefore, the tide elevation and habitat classification was compared using LiDAR data that matched 

closest with the acquisition dates of the imagery (Figure 13). The LiDAR data had a vertical accuracy of 

±0.15 m so the percentage of habitat within the tide levels and accounting for vertical accuracy resulted 

in a very small percentage of the habitat area mapped. In fact, it is important to remember that the marsh 

habitats in this study area are emergent, not submerged, and therefore this type of vegetation is mapped 

at and below sea level given that it extends several meters above the water surface. Given that the habitat 

type can be mapped when the tide level is well above mean sea level, the tidal regimes were the same 

given the tolerances for vertical accuracy, and the very small percentage of the area that is located within 

this elevation, it is concluded that the tidal regime during image acquisition had no effect on the results 

of the habitat mapping and change detection. 

Figure 13. LiDAR elevation data for 2005 (top left) and 2010 (top right) show changes in 

elevation relative to sea level during this period for a selected area of Masonboro Island.  

The difference in tidal range (0.08 m; “Tidal Range”) between images used in change 

detection is overlaid on top of 2010 elevation (bottom left), and on top of the final change 

detection map (bottom right). This area comprised only 0.36% of the example region, and 

highlights why tidal differences were considered to not affect the results of the study. 
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It was hypothesized that the supervised classification technique would provide a more accurate 

mapping result in comparison to the unsupervised method. Most supervised classifications were more 

accurate than the corresponding unsupervised. McNemar tests were run on the best maps for each sensor 

and 10 of 14 (71%) comparisons between supervised and unsupervised maps were significant at the 95% 

confidence level. Therefore, in this coastal setting and with these sensors the optimal image processing 

technique was supervised classification. Supervised classification requires in-depth knowledge of the 

study area, but produces significantly improved classification maps over unsupervised methods. 

Supratidal marsh and scrub-shrub were poorly classified in the NERRS maps when compared to the 

Masonboro Island maps. This may be because the back-barrier marsh habitats tended to form in discrete 

regions adjacent to the water, making them more easily classified than the smaller and more linear marsh 

habitats surrounding the spoil islands. Emergent wetland grasses tended to be found among the 

scrub-shrub habitat, and were often taller than the scrub, but not dense enough to dominate the 

immediate area. It is recommended that NERRS and future analysts use a mixed class for these areas that 

are a combination of intertidal and supratidal habitats that consist of both grasses and woody scrub to 

help alleviate this problem. The classification scheme used in this study had no option to designate a 

“mixed” class. 

Future research should combine various methods that identify the optimal image processing 

technique for each class rather than using only one method, which may identify some classes well while 

compromising the accuracy of others. By integrating other techniques with the supervised classification 

technique it is likely that the accuracy can be increased from the highest which is currently just over 80%. 

It was hypothesized that LiDAR data (elevation and texture) for Masonboro Island would improve 

the classification accuracy. The use of LIDAR data for habitat classifications has proved useful in 

similar projects [42], however, in this study the results were mixed among the three sensors. The LiDAR 

elevation data substantially improved most of the WV-2 maps and more research should be done with 

LiDAR data to further evaluate the potential to enhance coastal habitat classification. The texture data 

had less success compared with elevation but there were some interesting accuracy improvements in 

some of the techniques so this should be investigated further. One of the reasons the LiDAR may have 

had limited success is as it was geographically constrained to the Masonboro Island portion of the study 

area and the range of elevations on Masonboro isn’t as great as the elevation range on the spoil islands. 

Change detection results indicate that almost 20% of the NERRS study area and more than 30% of 

Masonboro Island experienced change from 2002 to 2010. Net change was 5% of the NERRS and 14% 

of the barrier island, but swap change accounted for more than 14% of the NERRS and 16% of the 

barrier island total change. This is a substantial amount of change over a relatively short time period. 

One study found that beach dunes, to which vegetation will soon recruit, can increase in size and extent 

rapidly—from 13 m
2
 to 3000 m

2
 in 10 years—with interannual fluctuations [42]. Previous research 

using change detection analysis had net change of less than 7%, but total change from one class to 

another was greater than 28% [43]. These results are comparable to this study and confirm that it is 

important when conducting a change analysis to investigate not just the overall change, but class, or 

swap, changes that can indicate larger changes in the landscape. 

The habitat classes that changed most in overall percentage of the study area were intertidal  

marsh and sand, but these two habitat classes also dominated the study area. They tended to swap  

with water, indicating erosion, accretion, and perhaps sea level rise. Upland scrub-shrub increased by 
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approximately 84%, mostly along the spoil islands. These spoil islands feature diverse vegetation 

habitats that have had limited study and should be monitored in the future as scrub and forest  

continue to develop. 

Clearly the Masonboro barrier island habitats change differently than those of the spoil islands.  

The two primary changes that occurred on the barrier island were erosion of sand and recruitment of 

vegetation to overwash fans and dunes. The most prevalent changes on the spoil island areas involved 

marsh changing to other classes. Throughout the entire NERRS, intertidal marsh appears to have gained 

area mostly in the center of the study area between the upland barrier island and the spoil islands, 

however, this habitat seems to have lost the most along the spoil islands and back barrier marsh where it 

existed in close proximity to higher elevation. The intertidal marsh habitat had the most amount of swap 

change and therefore more research needs to be conducted to isolate the reason for these changes. 

As others have documented in previous habitat mapping projects, the intertidal marsh habitat is a 

difficult area to map given the complexity of the water levels, density of plants, and potentially exposed 

substrate [20]. 

This study investigated a variety of remote sensing and GIS analytical techniques using new imagery 

and LiDAR data that can be applied to other coastal areas. Results are directly applicable to coastal 

management and future habitat mapping projects. It is recommended that WorldView-2 imagery is 

superior to IKONOS and QuickBird in this coastal setting and if collection of ground reference points is 

possible it is best to use the supervised method of habitat classification. 
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