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Abstract: A geographic information system (GIS) was used to introduce and test a new
method for quantitatively characterizing topographic change. Borrowing from classic
Newtonian mechanics, the concept of a body’s center of mass is applied to the geomorphic
landscape, and the barrier island environment in particular, to evaluate the metric’s potential
as a proxy for detecting, tracking and visualizing change. Two barrier islands along
North Carolina’s Outer Banks are used to test this idea: Core Banks, uninhabited and
largely-undeveloped, and Hatteras Island, altered by the presence of a protective dune
system. Findings indicate that for Core Banks, the alongshore change in the center of
mass is in accord with dominate littoral transport and wind conditions. Cross-shore change
agrees with independent estimates for the island migration rates. This lends credence to our
assertion that the mass center metric has the potential to be a viable proxy for describing
wholesale barrier migration and would be a valuable addition to the already-established
ocean shoreline and subaerial volume metrics. More research is, however, required to
demonstrate efficacy.
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1. Introduction

This research introduces a new quantitative metric for characterizing coastal change: the system
center of mass. Borrowed from classical Newtonian mechanics, the center of mass, as applied to coastal
geomorphology, and to geomorphological systems in general, maps a finite volume, consolidated or
unconsolidated sediment/rock mass into a single point in three-dimensional space, its physical center
of mass. With a time series of data, this center of mass can be computed and tracked through space to
provide an accounting for how a feature or system overall is evolving (moving) with time.

Much previous research associated with coastal change has relied on the ocean shoreline and changes
in the shoreline’s position ([1–9]). The most common datum used to represent this shoreline has been
the high water line (HWL). The HWL is defined as the position of the land/water interface at the time
of the last high tide prior to survey [10] and is demarcated on the beach by a line (the wet/dry line),
differentiating darker toned wetted sand from the intertidal zone and the lighter toned drier sands located
on the supra tidal beach [2,4,7]. The HWL has been shown by some investigators to be a reliable and
stable proxy for shoreline change assessment [2,4]. Others, however, view the HWL as a variable and
unreliable metric for capturing long-term trends [7,10,11]. Perhaps the HWL’s relative accessibility and
ease of measurement in the field, and visibility from aerial photography, are the principle reasons for its
widespread use [2]. The HWL has been superseded by the tidally referenced mean high water (MHW)
shoreline, however, the large body of historic data based on the HWL supports the continued use of the
latter in shoreline studies [8].

It is unclear whether changes in the ocean shoreline accurately reflect change across an entire coastal
complex, such as a barrier island. Brock et al. (2004) [12] found that change in morphology across a
10-km section of Assateague Island in Maryland and Virginia was not well predicted by a change in
the ocean shoreline, though they qualified their findings in light of the short, 10-month time span of the
study data. The authors went on to suggest that a new metric, the volume balance line, a measure that
partitions the island cross-shore into two equal-volume sections, could be employed in complement with
the ocean shoreline to better predict whole-barrier island changes.

The more recent adoption of active-sensor altimetry (i.e., radar and LiDAR), combined with global
navigation satellite systems, and analytical tools, such as geographic information systems (GISs),
by the geoscience research community have made it possible to incorporate volume-based approaches
as a supplement to the ocean shoreline position proxy ([12–21]). Airborne and satellite-based active
sensor platforms allow coverage over large (multi-square kilometer) areas of coastline quickly and at
a relatively low cost as compared to a ground-based approach. Further, the digital elevation models
(DEMs) generated from these systems (particularly LiDAR) can both derive accurate MHW shoreline
positions [22] and produce topographic surface models, whose resolution enables investigators to
observe details across large areas at sub-meter scales [21,23].

In this article, we exploit these new technologies, and the derivative high-resolution DEMs,
to introduce the center of mass (CM) as a further complement to traditional coastal assessment measures,
such as the established ocean shoreline position and volume metrics. In doing so, our objectives are two
fold. First, we will describe the CM as an extension of the analogous concept from elementary Newtonian
mechanics into geomorphology, as well as demonstrate the GIS as a capable and fitting environment for
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generating, tracking and visualizing this mass center. Second, we will apply the CM concept in a GIS
environment in an attempt to prove the concept, by using the CM to measure and track aggregate motion
across two contrasting barrier islands, one in a near-natural state and the other having undergone human
alteration, over a short span of time.

2. Study Area

To realize the second objective of this research and to demonstrate the viability of the mass center
analysis concept, two small barrier island study sites were selected along the North Carolina Outer
Banks. The Outer Banks (see Figure 1) are a chain of transgressive spit and barrier island features that
span approximately 250 km from the Virginia-North Carolina border south to Shackleford Banks [24].

Figure 1. Location of the Core Banks and Hatteras Island Study sites along the North
Carolina Outer Banks.
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The first island site chosen (refer to Figures 1 and 2) is a two kilometer section located at the southern
end of the Outer Banks on Core Banks. Core Banks extends for 72 km between Cape Lookout and
Ocracoke Inlet. It was selected for this research for its lack of human-influenced morphology. The barrier
island is undeveloped, with no paved roads, little large-scale human modification and no permanent
human habitation. Core Banks is considered to be a natural barrier island system [25].

The second site selected is a four-kilometer section located along Hatteras Island in the Cape Hatteras
National Seashore (see Figures 1 and 2). Unlike its Core Banks counterpart, this site, as with most
of Hatteras Island, has been topographically altered by the installation of a series of continuous,
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shore parallel, ocean-fronting dunes [26]. These dunes, initially placed in the 1930s and amended in the
1950s [26], have changed the way the island responds to high energy storm events, such that Hatteras
Island no longer reacts to these forces as it did prior to dune placement. In this research, Hatteras Island
will represent the human-altered environment.

Figure 2. Detailed, low-oblique perspective of the two study sites. (a) Core Banks;
(b) Hatteras Island. The respective 2-km and 4-km study compartments are shown overlaid
atop each site’s digital elevation model (DEM) surface.
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3. Methods

Five (LiDAR) datasets were downloaded from NOAA’s Coastal Service Center, each for the Core
Banks and Hatteras Island study sites along North Carolina’s Outer Banks. The series for the Core
Banks location include data from 1997, 2001 and 2005. For Hatteras Island, LiDAR captured in 1996,
2001 and 2009 was obtained.

Two additional LiDAR datasets were also acquired for both study sites. The first was captured
following Hurricane Irene’s landfall in August 2011. Irene crossed the North Carolina coast near Cape
Lookout on 27 August 2011. The post-Irene flight was conducted on 28 and 29 August. A second
post-storm mission from 2012 in association with Hurricane Sandy, which impacted the Outer Banks
in late October 2012, was also included. Both post-hurricane compilations are included here to provide
some limited insights into how the island systems responds to a high energy storm event, as well as to
test the response of the island mass center metric to such events.

Each LiDAR dataset was interpolated into a digital elevation model (DEM) using the open-source
GRASS (Geographic Resources and Analysis Support System) GIS. GRASS’ regularized spline with a
tension interpolator was used with a cell resolution of 1 m.

Volume and Center of Mass: Mass centers and total volumes were next computed for each 2-km
island site. Volumes (Equation (1)) were computed in GRASS GIS by multiplying the zij , here the
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island surface’s elevation above mean high water (MHW), assigned to each grid cell in the compartment
DEM by the grid cell area, a.

Vij =
n∑

i=0

n∑
j=0

aijzij (1)

Volume units are in cubic meters.
Center of Mass Defined: The center of mass in three-dimensional space (Figure 3) can be

expressed as:

CM =

∫ k

i=0
~rimi

M
(2)

where ri is a position vector for the mass particle, mi is the particle mass and M is the total mass of
the system.

Figure 3. Center of mass (CM) for a topographic body in space. The center of mass here
is defined as a point in three-dimensional space, whereby all of a finite body’s mass can be
represented as a single point, such that forces acting on this point yield an identical dynamic
response, as if these same forces were applied to the body itself.
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The particle masses can be represented as the product of the particle density and its volume; thus,
an equivalent form is:

CM =

∫ k

i=0
~riρivi

ρV
(3)
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where ρ is the particle density, v is particle volume and V is the total compartment volume. Its component
vectors would thus be:

CMx =

∫ k

i=0
~rxi
ρivi

ρV
(4a)

CMy =

∫ k

i=0
~ryiρivi

ρV
(4b)

CMz =

∫ k

i=0
~rziρivi

ρV
(4c)

We can compute the center of mass from a barrier island or beach volume, or any other non-zero mass
body in a georeferenced frame, using these equations within a GIS environment. To do this, we consider
the discrete case of continuous Equations (5) and (6a–6c):

CM=

∑k
i=0 ~rimi

M
=

∑k
i=0 ~riρivi
ρV

(5)

with the component vectors:

CMx =

∑k
i=0 ~rxi

ρivi∑k
i=0 ρivi

(6a)

CMy =

∑k
i=0 ~ryiρivi∑k
i=0 ρivi

(6b)

CMz =

∑k
i=0 ~rziρivi∑k
i=0 ρivi

(6c)

This permits the integration, or summation, of the discrete masses across a raster surface using a GIS,
where those masses are represented as the product of the cell volume and its associated density (ρ * V).

CM� = (raster cell area)(elevation�)(ρ�) (7)

The subscript, �, indicates that the factor is a raster surface.
The density surface (ρ�) would ideally reflect variations in the actual surface and subsurface density

for the area under study; however, here, we will assume a simple, homogeneous field of 2,650 kg/m3

(an island built from pure quartz sand). We further represent the position vectors (r) as raster surfaces
where the raster cells each contain the x and y positions, respectively, for the cell’s geometric centroid.
Computation for the component CMs (CMx, CMy, and CMz) then proceeds as:

CM�x =

∑k
i=0 x�iρ�iV∑k

i=0 ρ�iV
(8)

CM�y =

∑k
i=0 y�iρ�iV∑k
i=0 ρ�iV

(9)
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CM�z =

∑k
i=0 z�iρ�iV∑k
i=0 ρ�iV

(10)

CMx, CMy and CMz are component scalars indicating the CM position in 3D space. Coordinate space
is based on the coordinate system orientation for the position surfaces, rx and ry.

Mass center computations are based on Equation (2) and are computed for analysis in GRASS
using Equations (8)–(10). Derivation of the mass center constituents (CMx, CMy and CMz) was also
conducted in GRASS by treating each factor in the center of mass formulae as a continuous raster surface.
More information on the implementation is available from the authors.

The center of mass position is computed for three-dimensional space and represented graphically in
three dimensions using displacement diagrams. The displacement diagrams introduced in the Results
Section of this article show the path of the CM through time within the study area compartment.
The mass centers are depicted in the diagrams by circular glyphs, whose size (diameter) is in proportion
to the total computed compartment volume. Proportionality is scaled such that small differences in
volume can be ascertained visually. The position of the glyph marks the position of the mass center. The
base projection surface for the displacement diagram is a representative hill-shade for the compartment.

Displacement is shown in the diagrams using vectors that reveal the magnitude and direction
of change in (x-y) the mass center position through time. The magnitude of the vector (the total
displacement distance between mass centers) is also displayed numerically on the diagram adjacent
to the vector trace. Finally, changes in the vertical (elevation) position of the center of mass are indicated
numerically on the diagrams.

It is proposed that the center of mass as described above can be used to determine shifts in sediment
mass (volumetric shifts) through time. From this, one can infer net shorter- and longer-term effects
associated with the redistribution of sediment, and bulk sediment transport, across and along an island.
Moreover, it is proposed that the change in mass center position can also be used, particularly in concert
with other evidence, to infer changes in position for the entire island. That is, measured quantitatively,
the island’s migration distance, and path, through time in response to periods of increased storm activity,
as well as against local and eustatic sea level rise.

Data Error: Vertical resolution checks on the LiDAR derived DEMs revealed an approximate
systematic shift in the Hatteras Island data for both 2001 and 2011. Comparison with North
Carolina Department of Transportation Highway 12 baseline benchmarks indicated a mean elevation
underestimation of 0.2 m in the 2001 data for both Core Banks and Hatteras Island and a 0.441 m
overestimation in that for 2011 on Hatteras Island. As a result, 0.2 m was added to both 2001
DEMs and 0.441 m was subtracted from the 2011 DEM for Hatteras to generate the final models.
Models for 1996, 2009 and 2012 on Hatteras Island and 1997, 2005 and 2012 for Core Banks
were used without adjustments in the analysis. No additional error analysis was performed on the
resulting DEMs.

The LiDAR data used to generate the DEMs in this investigation contains additional errors that
accumulate due to aircraft positioning, atmospheric effects, sensor instrumentation inaccuracies and
other sources associated with capture and post-capture processing. Horizontal error for the LiDAR
returns used in this study is approximately one to 2 m. Vertical error is approximately 15 cm [23].
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Change Surfaces: A change surface is generated in GRASS GIS using the command r.series with the
slope option. r.series with a slope uses corresponding cell values in each included input raster surface
and fits a linear model (regression line) to the values. The slope of the resulting line is then assigned to
the output raster’s corresponding cell. This is repeated for all cells contained in the input rasters.

The interpretation of this slope in this study is the rate of change in a cell’s surface elevation over time.
If the slope is positive, the elevation is increasing, which indicates accretion. If the slope is negative,
the cell’s surface elevation is decreasing, and so, net erosion is occurring. Along Core Banks, the input
DEMs to r.series include 1997, 2001 and 2005. For Hatteras Island, the DEMs represent 1996, 1999,
2001, 2008 and 2009.

Difference Surfaces: A difference surface is generated by subtracting one raster layer from another.
These surfaces were generated to assess some possible impacts associated with Hurricane Irene.
However, the relatively long time span between the before surface (for Core Banks, 2005; for Hatteras
Island, 2009) and the 2011 post-hurricane survey make it difficult to quantitatively assess how much of
the change seen is storm induced versus that associated with the evolution of the longer period spanned
by the input data. Some useful qualitative information can, however, be gleaned that might shed some
light on storm-associated change.

4. Results

Along the Core Banks site mass center positions (CMs) mapped from 1997 through 2012, as seen
in Figure 4, reveal a general drift alongshore to the south and west. Between 1997 and 2001, the CM
moved 97 m to the southwest. It shifted an additional 38 m southwest in the subsequent interval between
2001 and 2005. An interruption in the southwesterly trend came between 2005 and 2011 (post-Irene),
when the CM shifted almost 50 m (48.3 m) to the northeast. In the year that followed, 2012, the earlier
southwest trend resumed, recovering all of the retrograde 48 m displacement recorded for the prior
period. The cross-shore position for 2012 had, however, shifted slightly further westward relative to the
2011 position. Vertical changes in the CM exhibit much less variability than is seen in the horizontal
components. The inset in Figure 4 shows the changes in CMz through the 1997 to 2012 study period for
Core Banks. The vertical drift for the 15 year period is less than 25 centimeters. Consider this range in
light of the ±15-cm vertical uncertainty associated with the source LiDAR data, the range of which is
depicted by the gray band across the scatter plot of Figure 4.

Total subaerial material (sand) volumes (Figure 4 inset) ranged from a high of 1,272,562 cubic meters
in 2001 to a low during 2011 of 776,658 cubic meters. Total volume in 2011 dropped some 61 percent
below 2001 maximum values.

Figure 5 (lower island graphic) shows the distribution and intensity of topographic change
(erosion/accretion) seen across the Core Banks site for the years 1997, 2001 and 2005. Minor erosion
is seen (in yellow) across much of the ocean beach. Near New Drum Inlet to the southeast, and along
the Core Banks (marsh) shoreline, the island was accreting during the same time period. The dune fields
landward of the beach exhibit mild accretion (light green shading). Several overwash fans are also noted
toward the southwestern third of the island.
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Figure 4. Mass center (CM) displacement, both in the horizontal and vertical directions.
The overview insert in the upper left juxtaposes the five CMs over the Core Banks site in the
context of their dune field positions relative to the Core Sound and Atlantic Ocean shorelines.
The CMz inset plots the changing shift in position for the vertical component (CMz) for
the CM. Also shown are total subaerial sediment (sand) volumes and masses. The main
plot shows the CMs horizontal components and their displacement through time across the
island. The CM symbol diameter is proportional to the subaerial volume.
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A second difference surface is also included in Figure 5 (upper island graphic). This surface shows the
changes in Core Banks topography from 2005 to 2011. Here, much greater change is obvious. The beach
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and parts of the fore dune field (dark red) lost considerable sediment (sand) mass, while select portions of
the interior and along the Core Sound shoreline show moderate erosion. Many more washover fans and
terraces are noticeable on the surface, blanketing sections of the interior and in places, the back-island
areas, with sand. Some significant dune field loss is seen toward the northeastern end of the section.

At the Hatteras Island site, mass centers were tracked for 16 years, from 1996 through 2012. Mass
center positions are shown in Figure 6. As can be seen in the figure, CM changes, like those at Core
Banks, are largely confined to motion alongshore. Unlike the changes seen along Core Banks, however,
where there is a notable southwesterly trend in the CM’s position, the Hatteras site seems to offer no
such readily discernible bias. The single variant CM is that representing data collected for 2011.

Between 2009 and the 2011, the CM shifted some 50 m (48.7 m) to the west, across-shore, and
approximately 73 m, alongshore. The resultant displacement was 54 m to the southwest. During the
subsequent interval from 2011 to 2012, the CM recovered much of the 50-m cross-shore, westerly
shift, but had also moved back to the north, alongshore, to a position close to that recorded 11 years
earlier, in 2001.

Figure 6. Mass center (CM) displacements for the Hatteras Island study site. The overview
insert in the upper left plots the five CMs over the study site in the context of their positions
relative to nearby Pamlico Sound and Atlantic Ocean shorelines. The CMz inset plots the
changing shift in position for the vertical component (CMz) for the CM. Also shown are total
subaerial sediment (sand) volumes and masses. The main plot shows the CMs horizontal
components and their displacement through time across the island. CM symbol diameter is
proportional to subaerial volume.
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Vertical shifts in the mass centers (CMz) for the 1996 through 2012 period are shown in the inset
plot of Figure 6. As with the Core Banks data discussed earlier, the Hatteras CMz positions are plotted
in the context of the elevation uncertainty (vertical error of ±15 cm) associated with the source LiDAR
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data. The Hatteras CMz values are both larger in absolute value (all exceed 2.9 m above MHW) and
show more vertical variation (almost 50 cm) than their Core Banks counterparts. Prior to 2001, the
CMz was at or below 3 m. In the interim between 2001 and 2009, the CMz increased by more than
40 cm to approximately 3.4 m above MHW. For 2011, the CMz dropped to near pre-2009 levels, before
recovering for the 2012 survey, where the CMz reached its apex for the 16-year study period.

Total subaerial volumes at the Hatteras site range from 1,710,368 cubic meters in 2012 to a peak
of 2,513,478 cubic meters in 1996. This is a difference of some 803,110 cubic meters, or 68 percent.
Ironically, the minimum volume coincides with the highest (2011) CMz position, while the maximum
volume is seen in 1996, when the CMz was at its nadir. Only the 2009 and 2012 CMz positions lie
outside the 15-cm vertical uncertainty threshold associated with the source LiDAR data.

The topographic change surface for Hatteras Island is seen in Figure 7 (the lower surface in the figure).
In contrast to Core Banks (Figure 5), there seems to be a distinct partitioning of erosion and accretion
zones across-shore at the Hatteras site. Erosion (yellows and reds) dominates most of the beach surface,
while the adjacent dune system to the west, particularly across the center of the island, experienced mild
accretion (greens and blues). Behind the dunes and NC Highway 12, there has been only a very minor
amount of erosion along the Pamlico Sound shoreline. Much of the interior has seen little change over
the period.

Figure 7. Hatteras Island site change surface (lower model)estimated using per-cell linear
regression for the time period 1997–2005. DEMs for 1996, 2001 and 2009 were used to
develop the model. The upper graphic (model) was developed using DEM differencing over
the period 2009–2011, using the respective 2009 and 2011 DEMs in the computation. Both
models show change in island topography (distribution and magnitudes of erosion and/or
accretion, in meters) during the representative time periods.
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The difference surface between the 2009 and 2011 for the Hatteras Island site is shown in the upper
model seen in Figure 7. Much of the ocean beach, and particularly at the south end of the study site
(dark reds and violets), experienced high erosion (>2.5 m in some places) during the interval, while
the tops of the dune system recorded gains (shown in blue). Behind the dunes, washover fans and
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terraces are conspicuous along the island. Additional deposition is also noted all across the NC Highway
12 right-of-way.

5. Discussion

From Figure 4, it is clear that mass center change at the Core Banks site, for the duration of this study,
is predominately alongshore. Such behavior is consistent with the reported net southwesterly longshore
sediment transport for the island [27,28] and prevalent northeasterly winds of fall and winter.

The magnitude of the cross-shore changes at Core Banks CMs are less by an order of magnitude than
those alongshore. This behavior was maintained even with the DEMs recorded following Hurricane Irene
in 2011 and Hurricane Sandy in 2012. As is evidenced by the difference surface for Core Banks seen
in Figure 5, beach retreat and overwash were significant along the barrier island in the post-Irene data.
This difference surface, however, reflects a change between 2005 and 2011. The six-year span between
the pre and post-storm records makes it impossible to know exactly how much impact Hurricane Irene
alone had on the CM.

A year later, in 2012, much of the 2005–2011 retrograde motion of the CM alongshore was recovered.
Total subaerial volume was also restored to near peak 2001 levels (Figure 4). The cross-shore change,
however, was not negated, but instead, had shifted further westward.

During this eight-year study, based on changes in the position of the CM, the cross-shore component
was measured to be 15.2 m west. This yields an annual rate of approximately 1.9 m/year, which agrees in
approximation with the findings of Moslow and Heron (1979) [29] and McNinch and Wells (1999) [27],
where Core Banks migration rates are estimated to range between one and 3 m/year. Thus, it seems
reasonable to entertain the possibility that the cross-shore behavior of the CM at Core Banks is reflective
of the overall, longer-term trend in the island’s evolutionary migration through time.

The CM at the Cape Hatteras site also exhibits mostly alongshore motion. The direction of that drift
is, however, not consistent (Figure 6). Longshore transport along Hatteras Island north of Cape Point
is southerly. However, only during the period between 2001 and 2009 do we see the CM moving in
accord with this longshore transport. While the CM shifted northward at Core Banks during the six
years between 2005 and Hurricane Irene in 2011, at Hatteras, it moved to the southwest. If there is a
pattern at the Hatteras site, it is much more difficult to discern than that observed for Core Banks.

Similarly, again like Core Banks, the general cross-shore drift in the CM is small, with one exception:
that measured between 2009 and 2011. Over this period, the CM moved some 50 m west across
the barrier island, relocating to a spot approximately half the distance between the dune system and
the Pamlico Sound shoreline (Figure 6). This shift, coupled with the washover structures seen in the
difference surface (upper model) in Figure 7, suggest dune breaching and partial failure, likely associated
with Hurricane Irene in 2011. While the two-year span between pre- (2009) and post- (2011) storm
surveys makes it difficult to place this change solely with the hurricane, it is not unreasonable to tie the
partial failure (breaching) of the protective dune system, coupled with extensive sound-side flooding,
seen in the 2011 DEM, to the storm’s passage.

The dunes that run the length of Hatteras Island, and much of the Cape Hatteras National Seashore,
present a largely impermeable barrier between the ocean beach and the remainder of the island. Only
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during high energy storm events are these sometimes 8 m-high features breached and washover sands
transported across to the rear of the island [30]. Further, when overwash does occur, the North Carolina
Department of Transportation is quick to return much of this material back into a newly reconstructed
dune system. Thus, under most situations, wave energy, and the concomitant active erosion/accretion
zones, are confined to the beach and along the seaward-facing fore dune wall. The lack of counterpoising
washover deposition has resulted in excessive narrowing along this segment of Hatteras Island [30]).

Less compartmentalization along Core Banks allows for sediment redistribution across the entire
island. This is seen in the change surface from Figure 5. Based on the distribution of washover structures,
the active zone in certain areas extends across the entire island. Washover is a common phenomena along
Core Banks (Riggs and Ames, 2006). Significant cross-island overwash was recorded along Core Banks
during Hurricane Ginger in 1971 [31], as well as for Hurricane Bonnie in 1998 [15] and, later, Hurricane
Isabel in 2003 (see Figure 8).

Figure 8. Aerial view of a section of the beach, dune field and island interior along Core
Banks. The photograph was captured immediately following the hurricane’s passage in
September 2003. Isabel made landfall along Ocracoke Island, some 30 km to the north
of the present study site. The image clearly shows the scoured beach and dune field and the
recipient of a large fraction of the eroded material, the numerous washover features draped
across the island’s interior.

Photography courtesy of the National Oceanic and Atmospheric Administration

washover fans

eroded dune field

24 September, 2003

Interestingly, the vertical component of the mass centers at both study sites exhibits
limited net displacement. At Core Banks, the CMz varied by only 18 cm between 1997 and 2005
(Figure 4). The CMz fell to 1.43 m from 1.47 m between 2005 and 2011, a drop of only 3 cm. This
displacement is well below the magnitude of error (±0.15 m) associated with the vertical component
of the source data. A similar response is seen at the Hatteras site (Figure 6), though the ranges are
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larger (approximately 49 cm, overall, between 1996 and 2012). The continued maintenance and periodic
reconstruction of the protective dune system at Hatteras could explain some of the behavior seen here.
This is, however, not the case along unaltered Core Banks. Thus, we might conclude that the CMz is not
sufficiently sensitive to offer any meaningful information on island evolution. Additional testing will be
required to ascertain the true sensitivity and significance of the CMz.

6. Conclusions

This study had a two fold objective. The first was to extend an idea from classical Newtonian
mechanics, the center of mass (CM), into the realm of geomorphology via GIS as a novel means to
quantitatively describe large-scale changes within a landscape. The second was to apply the CM in a
rudimentary proof of concept study to ascertain its potential usefulness in measuring such change. The
two sites selected for the study, Core Banks and Hatteras Island, both located along North Carolina’s
Outer Banks, offered prime locations for this proof of concept in that there is both available data and a
wealth of supporting research that we have at our disposal to build upon in this work. In addition, both
locations consist of unconsolidated barrier islands, along high energy ocean coasts, a combination that
results in relatively large morphological change over short time spans.

Along Core Banks, the CM displacement was principally alongshore, in line with the dominant
southwesterly longshore transport. A subordinate cross-shore displacement was also detected. Motions
along both the alongshore and cross-shore axes appear to be in accord with estimates from previous
investigations [27,29] and as reported by Riggs and Ames (2006) [32]. It is conjectured that the
cross-shore component of motion along Core Banks reflects longer-term migration of the island in
response to local and eustatic sea level rise.

At Cape Hatteras, CM displacement was erratic, with little or no trend, as was suggested along Core
Banks. This was attributed in large measure to the existence of the protective dunes, which prevent
island overwash and subsequent migration [30]. Only in the immediate aftermath of Hurricane Irene,
when the dune system was partially compromised and washover sediments flooded the backside of the
island, did the CM move significantly across shore. This change was quickly rectified after Hurricane
Irene’s passage by the State of North Carolina to rebuild the breached dunes to their pre-storm state.
Such recovery efforts are reflected in the subsequent 2012 survey and CM re-location.

Tempering these findings is the fact that this study accounts for less than two decades of island change
(15 years along Core Banks, 16 years for the Cape Hatteras site). Though a decade of change might
reveal evidence for any trends in shoreline change [33], it is unclear as to whether such a short time span
is sufficient to allow us to draw any definitive conclusions regarding the motions of either island system
or the proposed CMs ability to detect and measure it.

Moreover, while both sites selected for this investigation are considered sufficient to illustrate the
CM concept as is presented here, each are geographically small and, for their positions, not likely
representative of the overall geomorphic character of their respective host islands. The Core Banks
site, for instance, is positioned near New Drum Inlet, whose influence is likely reflected in the results
presented here. Similarly, the Hatteras Island site is an erosional hot spot, whose behavior is not
necessarily indicative of Hatteras Island as a whole.
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A third caveat that warrants mention is the fact that the CM computations presented here, for the
lack of bathymetric data, only address the subaerial component of the barrier island system. There
is, however, a considerable fraction of these islands below the waterline, both in the nearshore and
the adjacent estuary. The interactions and mass exchanges that occur between these subaerial and
subaqueous provinces are significant, on-going and, thus, important in order to fully understand and
explain island evolution, whether using the CM or any other metric.

Further research, using data collected over longer periods and greater geographic extents, along with
bathymetry if possible, is needed beyond this proof of concept to derive and interpret CM trajectories,
as well as to assess the true sensitivity and reliability of the metric as a reflector of wholesale geomorphic
change. Never the less, while much more work still needs to be done to demonstrate the CMs efficacy,
the developed model, and the results yielded thus far, would seem a good foundation upon which to
begin further study.
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