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Abstract: Pedestrian movement is woven into the fabric of urban regions. With more people 

living in cities than ever before, there is an increased need to understand and model how 

pedestrians utilize and move through space for a variety of applications, ranging from urban 

planning and architecture to security. Pedestrian modeling has been traditionally faced with 

the challenge of collecting data to calibrate and validate such models of pedestrian 

movement. With the increased availability of mobility datasets from video surveillance and 

enhanced geolocation capabilities in consumer mobile devices we are now presented with 

the opportunity to change the way we build pedestrian models. Within this paper we explore 

the potential that such information offers for the improvement of agent-based pedestrian 

models. We introduce a Scene- and Activity-Aware Agent-Based Model (SA2-ABM), a 

method for harvesting scene activity information in the form of spatiotemporal trajectories, 

and incorporate this information into our models. In order to assess and evaluate the 

improvement offered by such information, we carry out a range of experiments using  
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real-world datasets. We demonstrate that the use of real scene information allows us to better 

inform our model and enhance its predictive capabilities. 

Keywords: pedestrian modeling; pedestrian tracking; activity monitoring; spatiotemporal 

trajectories; agent-based modeling 

 

1. Introduction 

Pedestrian movement is woven into the fabric of urban regions. From private indoor to public outdoor 

spaces, pedestrians are constantly utilizing their surroundings to reach destinations, exploring their 

environment, and to achieve specific goals. Yet, in spite of the ubiquity of pedestrian movement, 

understanding how pedestrians move in and explore the space around them remains a fundamental 

scientific challenge. This challenge has significant practical implications, ranging from improving the 

design and functionality of urban spaces to emergency response and disaster recovery. Intensifying 

urbanization trends are leading to a growing urban population, which according to some predictions will 

reach 6.3 billion by 2050 [1], or approximately two thirds of the world population at that time. This trend 

emphasizes the need to gain better insights into how pedestrians move in and utilize urban spaces. 

Pedestrian models describe the patterns of movement of individuals or groups in a scene over space 

and time, whereby a person’s current position is based on its old position, desired destination, and 

surroundings, including the physical environment and other people [2]. Such models are widely used to 

simulate activities of crowds for planning and evaluation from an individual’s perspective (see [3] for a 

review). By modeling the individual and exploring how individuals interact over space and time, 

researchers can observe the emergence of crowds from the bottom up. One technique that is inherently 

suited to modeling individuals, or groups of individuals, is that of agent-based modeling. Agent-based 

models (ABMs) have been used to explore a wide range a phenomena from the individual perspective, 

ranging from: animal movement [4]; agricultural practices [5]; land use change [6]; residential 

segregation [7]; crime [8]; to daily travel patterns [9]. With respect to pedestrian movement, ABMs have 

been used to explore a number of problems such as navigation in confined spaces, such as art galleries 

(e.g., [10]); navigation through town centers (e.g., [11]) and shopping malls (e.g., [12]); public gatherings 

and festivals (e.g., [13]); riots (e.g., [14]) and egress from a building (e.g., [15]). 

Simulations with agent-based models serve as artificial laboratories where we can test ideas and 

hypotheses about phenomena which are not easy to explore in the real-world, especially for phenomena 

where understanding both the relevant processes and their consequences are important [16]. For example, 

such simulations may offer us insights on the manner in which people evacuate a building during a fire. 

We can model a building in an artificial world, based on geographical accurate building floor plans, and 

populate it with agents representing artificial people. These agents are given a set of behaviors that are 

often based on empirical or qualitative data. Then, the researcher can initiate simulated events (e.g., a 

simulated fire), and observe how these agents react, including the cascading ramifications of their reactions 

(e.g., bottlenecks, stampedes [17]). This allows us to test numerous scenarios in order to gauge the effects of 

a real-life events and improve our planning capabilities, assessing for example, how various building layouts 

and room configurations can impact evacuation time [18]. 
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The quality of these simulations depends heavily on the model used, as well as the physical  

(e.g., walking speed) and behavioral attributes (e.g., distribution of traffic volume within a scene and the 

agents’ cognitive models) that are used to describe pedestrian movement. In essence, such attributes convey 

our understanding of peoples’ movement in space, and to accurately assign these attributes data is needed. 

However, the pedestrian modeling community has been and still is relying primarily on ad-hoc and  

limited-scale data for validating these models [3,19]. There has also been some limited work on tying these 

models to microscopic pedestrian characteristics as they may be extracted by other sources (e.g., [20]). 

However, this was in the context of approaches like the social forces of Helbing and Molnar [21], which 

assume all pedestrians respond to “forces” around them and have no internal cognition guiding their 

behaviors [22]. This is clearly not the case of real human beings which have intrinsic properties [3]. That 

being said, the complex nature of human behavior renders all models mere abstractions of reality, posing 

challenges to both force and rule-based models. Moreover, as Torrens et al. [23] also note, collecting 

data pertaining to individual walking paths is a challenge and is an active field of research [20,24], which 

still needs to be addressed if we are going to make high fidelity pedestrian models. 

Recent technological advances offer an opportunity to change the way we construct and calibrate 

pedestrian models. In particular, the proliferation of video surveillance and enhanced geolocation 

capabilities in consumer mobile devices (e.g., embedded global positioning system (GPS), Wi-Fi, or 

radio-frequency identification (RFID) capabilities in smart phones or tablets), particularly in urban 

regions, now enables us to generate unprecedented amounts of pedestrian mobility datasets [23,25], 

which offer a wealth of information at a fine spatial and temporal resolution. All these sources can 

generate massive amounts of spatiotemporal mobility datasets, as part of the emerging era of big spatial 

data [26]. Tapping into this information to improve pedestrian modeling remains a rather underexplored 

area, and this is the topic addressed here. 

In this paper we present an approach to enhance simple path-based pedestrian models through the use 

of real trajectory data in order to improve their accuracy for simulating and predicting pedestrian 

movement. More specifically, we use actual pedestrian tracks and the meta-information derived from 

them to calibrate a simple ABM, and we show how this improves performance, allowing the ABM to 

better match the behavioral characteristics of the actual scene. Thus, by combining a simple model with 

real scene data we produce a powerful tool to generate reliable simulations of pedestrian movement 

patterns. The value of incorporating this information is twofold. First, the use of real data (e.g., derived 

from tracking) to describe behavioral attributes of the agents rather than relying on generic parameters 

advances our capabilities to model human movement in ABMs (e.g., their velocity, and the rate at which 

they enter/exit a scene). Second, trajectory patterns reveal the underlying structure of each scene as it is 

defined through human activities. As such they communicate peoples’ perceptions of the space allowing 

us to move from a pure geometric approach (e.g., using floor plans) that considers only form, to one that 

takes into account how people use the space i.e., its function as well [27]. Using such information to inform 

an ABM allows us to tailor its application to the particularities of various scenes. We refer to this approach 

as a Scene- and Activity-Aware ABM (SA2-ABM). 

For example, utilizing tracking data to extract entrance and exit locations of pedestrians offers to the 

ability to consider both physical entrance and exit points (e.g., doors) and behavioral entrance and exit 

points (e.g., a region in an open space used by most pedestrians to enter an atrium), while tracking 

pedestrians’ movement between entrances and exits allows us to estimate locomotion parameters and 
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mobility patterns within that space. By combining these two components (pedestrian locomotion, 

navigation and behavioral parameters, and physical space) into a single pedestrian model, it is possible 

to explore and predict the behavior (i.e., routes) of pedestrians. In this paper we will present an approach 

to collect and analyze tracking data in order to inform an ABM. Using as a test case an indoor scene. 

The remainder of the paper is organized as follows. In Section 2 we present an overview of our modeling 

framework. In Section 3 we describe our activity-driven scene models, before moving onto the ABM 

(Section 4). We then move on to show a number of experiments using the data from the activity scene 

models and the ABM (Section 5) and in Section 6 we provide a summary of the paper and an outlook 

for further work. 

2. Approach Overview 

The motivation for our approach stems from the rapid growth in the availability of mobility information 

in the form of spatiotemporal trajectories [28]. Mobility data can be collected through various geolocation 

capabilities, e.g., through the use of cell-phones (e.g., [29,30]), RFIDs (e.g., [31]) and GPS (e.g., [32,33]). 

These well-established approaches for mobility data collection are further complemented by emerging 

alternative techniques such as the use of data derived from WiFi technology [34] and even general 

communications data at large [35]. 

From among these various techniques that are available for the generation of mobility information 

we choose as reference for our work that of video surveillance, as it is capable of generating large 

numbers of trajectories for a given scene, thus providing us with a greater understanding of the common 

activity patterns over that area, as compared to the sparse samples over broader areas that are provided 

by alternate mobility capture techniques. Furthermore, video surveillance is also becoming widespread. 

Video surveillance systems are deployed indoor and outdoor to a wide variety of facilities, ranging from 

hospitals, schools, and shopping malls to airports, government facilities, and military installations. As 

an indicative reference, it is estimated that in the city of Chicago there are approximately 10,000 video 

cameras deployed for this purpose [36]. In the UK, as of a few years ago, it was estimated that between 

2 and 4 million closed-circuit TVs (CCTVs) were deployed, with over 500,000 of them operating in 

London alone [37,38]. 

In order to take advantage of this data for ABMs we propose an approach that makes use of 

information extracted from such trajectory datasets to improve the accuracy of modeling. In the context 

of this paper we use the term “accuracy” to refer to the degree to which the results of the simulation 

resemble the real data in the scene. We should mention here that even though we are focusing on 

pedestrian movement, a similar approach could also be applied to other types of movement (e.g., car 

traffic). As we see in Figure 1, we proceed by analyzing real trajectory data to derive activity knowledge 

in the form of heat maps representing aggregations of trajectories over a period of time, and statistics on 

frequency of entrance/exit usage within our scene. Within this paper we use the term heat map to refer 

to representations of aggregate activity (general trends) within the scene, which could be considered as 

a “occupancy” or “density” map (as discussed in [39,40]). We then use this information to improve a 

basic ABM by informing its parameters with locomotion (e.g., walking speed) and behavioral attributes 

(e.g., distribution of traffic volume within a scene) for the scene, thus generating a Scene- and  

Activity-Aware ABM (SA2-ABM) as we will be discussing in Section 4. We will demonstrate through the 
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experiments in Section 5 that this allows us to improve the accuracy of our simulations, thus enhancing 

their suitability for forecasting. 

 

Figure 1. Approach flowchart. 

Figure 1 shows an overview of the processing steps in our approach. In the first step, we assume 

pedestrian movement data is collected through a video surveillance system, resulting in a set of 

trajectories. It should be noted that although we use a video system in this overview, other geolocation 

technologies (e.g., GPS) could also be used, assuming that they provide us with sufficiently dense and 

representative datasets for the area of interest. In the second step, we model the observed scene based on 

the pedestrian activities derived from the trajectories. This includes the detection of entry and exit points, 

movement patterns between such points, and the locomotion parameters for each pattern. As a result of 

this step, a detailed model of the scene (including its structure, the pedestrian locomotion and behavior 

parameters, and movement patterns) is derived. In doing so, we capture not only explicit information 

(e.g., entrance and exit points), but also implicit (e.g., popular paths, obstacles) that is often missing from 

floor plans, layouts or other means that are commonly used up to now to construct the space in which 

the simulation takes place. This model is then used to construct a SA2-ABM, which can be compared to 

the observed scene data and refined accordingly. Once constructed, the SA2-ABM can be used to provide 

forecasts through simulations under varying conditions (e.g., exploring how an on-going event can 

develop under various conditions). This process can be implemented periodically, introducing various 

parameters one at a time, in order to identify the contribution of each one, thus avoiding unnecessary 

computational overloads. 

3. Harvesting Scene Activity Information 

The analysis of spatiotemporal trajectories has received wide attention within the geospatial and 

database communities over the last decade, starting with the introduction of a variety of approaches to 
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index them for post-processing (e.g., [41]). From among the large body of work that has led to the current 

state-of-art on computational movement analysis [28] we can identify as relevant to our work the 

development of complex object tracking approaches through cluster-based [42], non-cluster-based [43] 

and data mining-derived pattern movement-based approaches like the TMP-Mine approach of Tseng 

and Lin [44]. Advancing the analysis level to extract semantic information for the captured trajectories 

we had the work of Spaccapietra et al. [45] towards a semantics-driven approach to trajectory analysis, 

considering stops and moves to understand actions and activities. Bogorny et al. [46] built on this 

foundation, presenting a framework for semantic pattern mining and its implementation in Weka-STMP. 

Despite these advances, the efforts to identify scenes characterized by distinct patterns of activity are 

rather limited within the GIScience and database communities, with a notable exception being the 

TraClass framework of Lee et al. [47] who presented an approach that was hierarchical, region-based 

(identifying regions where specific types of trajectories have a dominant presence), and trajectory-based 

(analyzing trajectory partitions). 

In parallel to these efforts of the geospatial and database communities, the computer vision community 

has been addressing the modeling of scene activities in the context of surveillance applications at various 

levels of detail. Within this context, a group of approaches has focused on detecting scene layout in 

structured environments (e.g., building entrances/exits, sidewalks, roads, intersections) to support 

surveillance applications through activity annotation. Makris and Ellis [48] have presented an approach 

for learning scene semantics (e.g., entry and exit zones, junctions, paths) from a stream of video using 

unsupervised methods. More recently, Nedrich and Davis [49] identified coherent motion regions from 

tracking data and applied this information to detect scene structure. Kembhavi et al. [50] developed a video 

understanding system to identify various scene elements, such as roads, sidewalks and bus stops, using 

probabilistic models within a Markov logic network framework. From a perspective of categorical object 

recognition to scene analysis, Turek et al. [51] proposed an approach to analyze a video scene based on 

the behaviors of moving objects in and around them. 

 

Figure 2. (a) A scene; and (b) its corresponding activity heat map that shows an aggregation 

of trajectories in that scene over a period of one hour. White tiles mark areas that remain 

unvisited during that period, and as the values grow the coloring scheme proceeds from white 

to yellow, and red for the most visited tiles in the scene. 
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Another group of approaches has focused on segmenting dominant motion patterns (e.g., vehicles 

turning, pedestrian crossings) for scene understanding. For instance, Wang et al. [52] proposed a 

hierarchical Bayesian model to find typical “atomic” activities and interactions in complicated scenes 

(e.g., vehicles stopping for pedestrians to cross the street). Singh et al. [53] focused on unusual activity 

detection, for example people carrying or abandoning objects. Xu et al. [54] provided a spatiotemporal 

analysis of campus scenes monitored by an outdoor camera network. They applied the average optical 

flow within a short duration to represent the crowdedness of the scene, and explored the relationship 

between activity patterns and campus class schedule. Girgensohn et al. [55], worked on comparing 

activities through the use of heat maps. 

As the aggregate tracking information we have is in the form of a heat map [56], and since the 

objective of the ABM in the context of this publication is also to generate patterns of movement at the 

aggregate level, we chose to proceed by using activity heat maps as aggregate spatiotemporal expressions 

of trajectories crossing a scene of interest. This facilitates a direct comparison between the pedestrian 

model and the scene data. An activity heat map expresses how frequently a specific location in a scene 

is visited by a trajectory. For example, let us assume that we have as input for our analysis a set of m 

trajectories captured in a scene: 

TRJ = {trj1, trj2, trj3, …, trjm} (1) 

Each trajectory trji comprises a sequence of trajectory points, in the form of a set of time-ordered 

coordinate pairs (xi(t), yi(t)): 

trji = { (xi(tstart),yi(tstart)), …, (xi(tend),yi(tend)) } (2) 

where each coordinate pair indicates the recorded location of a tracked individual i at time t. Then, the 

activity heat map for this scene is estimated by tessellating the space into square cells and assigning to 

each cell a heat value h that is a function of the number of crossings of this cell by our set of trajectories. 

More specifically, the heat value h(x,y) of a cell with coordinates (x,y) in our scene space is the 

normalized metric: 

 

(3) 

where cross(x,y) is the number of trajectories that cross cell (x,y), min(cross(,)) (and max(cross(,))) are the 

minimum (and maximum respectably) among the set of all crossing values cross(,) in our scene. In this 

equation (,) refers to two cells between which a crossing occurs. Figure 2 shows the physical scene (left) 

and its corresponding activity heat map (right). Heat maps are often used for analyzing indoor and outdoor 

space activity (e.g., [55,57]). For our methodology, heat maps offer two distinct advantages. First, it naturally 

conveys knowledge about the scene: as an example, it allows us to identify popular paths (connecting the 

lower right to the top left in Figure 2). Second, it allows us to visualize connections in space: each cell has 8 

neighbors (e.g., the Moore neighborhood), and by comparing the corresponding heat values, we can calculate 

an informed estimate on the most likely next step given a location along a trajectory, which is particularly 

suitable for the simulation problem that we are addressing (see Section 4.4.2). We complement this heat 

map with entrance and exit locations for our scene (identified trivially as clusters of locations where 

trajectories start and end respectively) and a frequency table showing entrance-exit connections (also 

h(x, y) =
cross(x, y)- min cross ×, ×( )( )

max cross ×, ×( )( ) - min cross ×, ×( )( )
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identified trivially from the trajectories) to provide a comprehensive yet easy to use activity-based model 

of our scene that will drive the application of our SA2-ABM. 

4. The Scene- and Activity-Aware Agent-based Model (SA2-ABM) 

The purpose of SA2-ABM is to enhance a basic ABM through a simple set of rules identified using 

the activity-driven models of Section 3. This ABM is enhanced by simple behavioral rules that are 

presented below in order to produce more realistic patterns of pedestrian movement. These rules are 

informed by real pedestrian movement data and information about the physical environment through 

which the pedestrians are moving, as discussed in Section 3. We supplement this with other data from 

the literature of pedestrian movement where necessary. For example, it is well known that people walk 

at different speeds (e.g., [58,59]); from analyzing our particular scene information we found the 

maximum walking speed to be 1.5 m per second and this is what we use in the model for the maximum 

walking speed of our agents. Nelson and Mowrer [60] also note that humans have a psychological 

preference to avoid bodily contact, defined by Fruin [59] as the “body ellipse”. Within this model, we 

set for computational simplicity the agent size to be 37.5 cm by 37.5 cm (accounting for their 

anthropomorphic dimensions and body ellipse [61]), as we are using an enclosure representation of a 

regular lattice which often treats all agents as having the same size. Alternate approaches employing 

continuous space representation would allow for varying sizes of pedestrian agents (e.g., to match the 

corresponding sizes extracted from the video feeds [62]), but at substantial computational costs [63]. 

Such detailed representations of the size of the pedestrians without the transition to a continuous space 

would not impact the results considerably of the following ABM (this might be different if we were 

looking at bottlenecks or evacuation from confined spaces). 

The SA2-ABM is programmed in Java using and extending the MASON Simulation toolkit [64]. We 

have provided an executable of the model, source code, and all data presented in this paper at 

https://www.openabm.org/model/4706/version/1 to aid replication and experimentation. In Figure 3 we 

show the graphical user interface (GUI) of the model. Clockwise from the top left, the GUI features a 

map with the option to view or hide any layer of data, a graph that summarizes walking speeds over 

time, and the model controller. The model controller allows the user to initialize, pause, or stop the 

simulation, control which displays are hidden or shown, and view some basic model information along 

with running the different scenarios presented below. Such an interface allows for ease of use in 

understanding and debugging the model [65]. 

Rather than taking a forced-based modeling approach (e.g., [21]), which often treats people as 

responding to “forces” exerted by others and the environment which some would argue creates an 

ecological fallacy in assuming pedestrians have no internal decisions making capabilities [3,63], here 

we focus on the actions of individual entities (i.e., a rule-based approach, see [22] for a discussion of the 

differences) in a cell-based environment (similar to the work of [13]). Route-choice is a critical 

component of any pedestrian model, as it describes the dynamic process through which people move 

through a scene, making and reassessing decisions as time progresses and scene traffic changes with it. 

Route choice is an active area of research which spans multiple disciplines such as psychology [66,67], 

geography [3], engineering [68,69], computer graphics [70,71], to name but a few. Computationally, this is 

a challenging issue, both in terms of theoretical and practical problems associated with describing pedestrian 
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behavior. Two common approaches for route-choice are shortest path and following signage [69]. The 

shortest path approach is based on the notion that individuals wish to minimize the distance they have 

to walk, and this is not necessarily the route indicated by signage. However, it needs to be noted that the 

shortest path might not be the quickest path, for example if there are many pedestrians along the shortest 

path, this will slow down the agents. To calculate the quickest path one needs consider dynamic  

routing [68]. Both the shortest path and following signage approaches relate to the pedestrians enclosure 

perspective, which varies when they know or do not know their environment. People familiar with the 

building would have intrinsic broader knowledge of it (i.e., they are able to calculate the shortest path), 

whereas visitors with limited knowledge of building layout are more likely to follow emergency  

signage [68,72]. Here we choose the simplest option where pedestrians initially follow the shortest path 

between entrance and exit but as they have a line of sight and carry out dynamic route-planning to avoid 

obstacles and other agents (see Section 4.4.2) they in essence find the quickest route. This is also 

consistent with the size of the area under consideration, where intrinsic knowledge of the environment 

does not greatly affect routing decisions, which are driven instead by the visual identification of 

entrances and exits. Work by Hillier et al. [73] reinforces this idea, in the sense that they demonstrated 

that the majority of human movement occurs along lines of sight Also, as is common in many ABMs of 

pedestrian movement, we have preplanned entrance and exit locations (see Section 4.4.1) based on 

information from the scene itself (as discussed in Section 3) but the choice of route is determined at run 

time. The remainder of this section describes in detail the ABM following the overview, design concepts, 

and details (ODD) protocol advocated by Grimm et al. [74] amongst others. 

 

Figure 3. Graphical user interface of the SA2-ABM model. 
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4.1. State Variables and Scales 

Our simulation is addressing pedestrian agents. Pedestrian objects have a physical presence, in that 

they uniquely occupy a location in the environment, as well as an eventual destination point through 

which they intend to exit the simulation. The goal of these agents is to move towards their exit locations 

as quickly as possible. They do so via the shortest path, however, this path can change if obstacles (such 

as other pedestrians) are encountered along the way (see Section 4.4.2). They are constrained in reaching 

this goal by the presence of other agents or obstacles in the simulation and their maximal walking speed; 

their ability to plan their future paths is limited by their “vision” which in this case is 7.5 m (the extent 

of the area being modeled), or the distance in front of themselves they can look when planning their 

course. In the course of developing the model we explored a range of vision parameters from 1 cell ahead 

to the whole scene. Setting the vision to a low value resulted in unrealistic walking patterns and as this 

is a flat and relatively small open scene we thought it was appropriate to give the agents the full visual 

range of the area. Agents are situated within an environment that contains immobile obstacles (staircases, 

information booths, fountains, etc.) as well as mobile obstacles (other pedestrians). Pedestrians are also 

aware of less tangible aspects of the situation: they know how frequently other pedestrians in the past 

have passed through various locations in moving from a given entrance to a given exit. Heat maps 

derived through scene activity can provide this information. This is akin to the notion of the emergence 

of a trail system whereby paths are manifested without planning or communication from users [75], in 

the sense that paths through a grassy field develop even when the field offers no substantial obstacle and a 

more direct but less-trodden path may be provably shorter. Agents’ choices to move in accordance with 

the heat map have several natural analogs in the real-world, including the way individuals copy the 

behavior of others who are walking ahead of them or the way that patterns of movement can eventually 

trace out a footpath or other physical indication of the passage of others, signaling where to walk. This 

does not necessarily mean that pedestrians seek crowded places, but rather that they tend to follow prior 

trails. This information is combined with the explicit distance between a given location and the goal 

point to form a gradient, down which the agent moves toward its goal. Part of the research done here 

focuses on how the construction of such gradients (Section 4.4.2) influences the emergent macro-scale 

patterns of movement over the course of the simulation, and which gradients result in realistic patterns 

of movement. 

As the goal of the model is to connect low-level, simple decision making with macroscopic patterns, 

both a heat map measuring the degree to which different locations were used in transit and a full record 

of each agent’s movement are saved out at the end of the simulation. This information can then be used 

to gauge the success of our model in recreating realistic patterns of movement. The results from the  

SA2-ABM can then be compared to the real-world data (as will be shown in Section 5). 

4.2. Process Overview and Scheduling 

The simulation is measured in discrete time, with each tick representing one second of time. There 

are two processes that are handled by the scheduler, namely agent movement and the addition of new 

agents to the simulation. The former happens every step of the simulation, as each agent selects a new 

location and updates its position accordingly. Agents update their locations one by one, in order of 
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increasing distance from the individual’s goal point. The addition of new agents into the simulation 

happens randomly, with each new agent addition being scheduled n time steps after the previous 

addition, n being uniformly distributed over the integers and having an expected value of the average 

time between real-world additions. The addition of a pedestrian may happen at any point during the time 

step. If the user chooses, instead of randomly generating pedestrians the system can read in a record of 

the true times at which pedestrians entered the system and initialize a series of agents based on this  

real-world data. This allows the researcher to explicitly compare the generated paths arising from the 

counterfactual world of the simulation with the real path information. 

4.3. Design Concepts 

The model incorporates a number of important design concepts. Primary among these are prediction, 

sensing, interaction, and stochasticity. The goal of the model is to see the emergence of realistic patterns 

in the use of space. 

 Prediction features in the simulation in terms of agent path planning. Agents look ahead and steer 

towards an unoccupied space, and will not move into an occupied space. They do not track other 

agents to predict where they will be in the future (i.e., we don’t model collision avoidance (such 

as [3,76]), as this is computationally expensive), in order to plan around these future trajectories, 

but they do move around other agents and reroute dynamically. 

 Sensing: There are two aspects of the environment that agents can sense, namely the presence of 

other agents or the presence of immobile, more permanent obstacles. Agents do not distinguish 

between these two kinds of impediments to movement in planning their own paths. 

 Interaction: Agents define the environment in which other agents move because they are 

themselves obstacles. As a result, the set of “obstructed” locations changes every step of the 

simulation. The interaction among agents is therefore exclusively accomplished through their 

impact on the landscape. 

 Stochasticity enters the model as a function of the addition of agents to the simulation. When a 

new pedestrian is randomly generated, it selects an entrance through which to enter the simulation 

based on the distribution of entrances. Having selected that entrance, it then selects the exit it 

wants to reach from the distribution of exit destinations given its entrance. These distributions can 

be drawn from the data, but are still a source of randomness in the simulation. The timescale on 

which agents are added to the simulation is also subject to stochasticity, as described above. 

4.4. Details 

Within the following section greater details are provided about the intricacies of the model, 

specifically how the model is initialized and what the model takes as inputs (Section 4.4.1) before a 

discussion sub-models for gradient production and movement planning (Section 4.4.2). 

4.4.1. Initialization of the Model 

The simulation is initialized using geometrical and behavioral properties as they were presented in 

Section 3. The distributions of entrance usage probabilities and the entrance-conditional exit selection 
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probabilities were harvested from actual scene tracking data; their values are shown in Tables 1 and 2. 

From the analysis of the trajectory data, more exits than entrances were identified. Specific entrances 

were not used on 25th August but were used on other days therefore they are used within the simulation 

for completeness. Figure 4 shows the locations of these entrances and exits. For example, Entrance 14 

is the one used most often on the 25th August when pedestrians are entering the scene as shown in  

Table 1. Once agents have entered via this entrance they have a specific probability to leave the scene 

via any exit—for example, 46% of all pedestrians entering via Entrance 14 are leaving via Exit 6 as 

shown in Table 2. These distributions are read into the simulation, as are the locations of any obstacles 

in the landscape based on harvesting scene activity. The gradients associated with every entrance-exit 

pair are also read into the simulation for use by agents. Additional data input to the model includes 

obstacle locations. A single agent is added to the simulation initially, and the simulation is then started. 

Table 1. Entrance probabilities for each entrance derived from scene activities. 

Entrance Probabilities for 25 August 

Entrance Probability 

1 0.002 

2 0 

3 0.002 

4 0.008 

5 0.141 

6 0.032 

7 0.114 

8 0 

9 0.006 

10 0.004 

11 0.076 

12 0.013 

13 0.068 

14 0.454 

15 0.0253 

16 0.0359 

This raw tracking data used in this experiment was taken from the Edinburgh Informatics Forum 

Pedestrian Database [77] based on a particular date (the 25 August 2009) and processed to provide the 

scene activity information as discussed in Section 3. Tracking data were derived from video feeds at a 

resolution of 640 by 480 pixels, where each pixel had a spatial footprint of 24.7 by 24.7 mm. Processing 

of the video data resulted in tracking accuracy of approximately 9 cm [78], while this is a larger error 

compared to say the work of [79] (Readers wishing to use a tool to automatically extract pedestrian 

trajectories from video recordings should see http://www.fz-juelich.de/jsc/petrack/ [80]) whose a max 

error was 5.1 cm, it is considered good enough for our application, in the sense we are interested in the 

general movement of pedestrians through a scene, not their precise movement. Especially as we resample 

the scene information to account for the anthropomorphic dimensions of pedestrians (as discussed 

below). For our simulations a scene tessellation of 43 by 32 cells (making a total of 1376 cells, of which 

1231 are walkable due to existing obstacles), each having a spatial footprint of 37.5 by 37.5 cm, to better 

http://www.fz-juelich.de/jsc/petrack/


ISPRS Int. J. Geo-Inf. 2015, 4 1639 

 

 

reflect the anthropomorphic dimensions of the pedestrians (as discussed above). We chose to use a 

regular lattice representation of space as it allows us to have the internal geometry represented as well 

as representing individual pedestrians but also is relatively computational inexpensive compared to a 

continuous space representation [63] however, this restricts our ability to represent different sizes of 

pedestrians such as those seen in [3]. 

Table 2. Entrance and exit probabilities for each entrance and exit pair derived from scene activities. 

  Entrance 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Exit 

1 0 0 1 0.25 0 0 0.019 0 0 0 0 0 0 0 0.083 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0.067 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0.167 0.031 0.014 0 0 

6 0 0 0 0 0 0.4 0.093 0 0 0 0.361 0 0.469 0.46 0.083 0.588 

7 0 0 0 0 0 0 0.037 0 0 0 0 0.167 0 0 0 0 

8 0 0 0 0 0.075 0 0.037 0 0 0 0.028 0 0.063 0.005 0 0.118 

9 0 0 0 0 0.03 0.133 0.037 0 1 1 0.167 0 0 0.098 0.25 0.118 

10 0 0 0 0 0 0 0.037 0 0 0 0 0 0 0 0.083 0 

11 0 0 0 0 0 0 0.037 0 0 0 0 0 0 0 0 0 

12 0 0 0 0.5 0.0194 0 0.204 0 0 0 0.028 0 0.375 0.163 0.25 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0 

14 0 0 0 0 0.209 0.067 0.037 0 0 0 0.028 0 0 0.181 0.25 0.059 

15 0 0 0 0 0.015 0 0 0 0 0 0.028 0 0 0.181 0 0 

16 0 0 0 0.25 0.448 0.2 0.148 0 0 0 0.333 0.5 0 0.009 0 0.118 

17 0 0 0 0 0.015 0 0.167 0 0 0 0.028 0.167 0.063 0 0 0 

18 0 0 0 0 0.015 0.133 0.148 0 0 0 0 0 0 0 0 0 

 

Figure 4. (a) Location of Entrances; (b) and Exits. Entrance and exit locations are identified 

from trajectory data and their numbers start at top left and move counter clockwise. 

4.4.2. Sub-Models 

There are two specific sub-models that warrant discussion, specifically the way in which gradients 

are generated based on the source data and the way in which agents plan and accomplish their movement. 
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Gradient Production 

In the context of this paper, we refer to a gradient as representing a cost in some sense, associated 

with each entrance-exit pair. Such gradients are commonly used in pedestrian models; see for  

example [13,18,72]. We chose to consider entrance-exit pairs instead of just exits as entrances contribute 

a certain scene semantic meaning. For example, a person entering the scene from door 1 and another 

entering from neighboring door 2 (Figure 4), may be arriving from different parts of the building, and as 

such they may have different intents and therefore select different exits, even though they me be 

temporarily spatially proximal. Two kinds of gradients were experimented within this research, specifically 

one that was calculated solely on Euclidian distances derived from entrance and exit locations  

(distance-based gradients), and second that was derived from scene activity (activity-based gradients), as 

shown in Figure 5. For both gradient types, the Moore neighborhood relationship was used in the 

calculations. For the distance-based gradients, the exit points are assigned a cost of zero, with any 

locations neighboring the exit points having a distance of zero plus one. Fanning out from these 

originally tagged locations, further neighboring cells are also associated with the cost of the tagged cell 

they border plus the cost of moving from that cell to the neighboring cell. In these calculations the 

transition from one cell to a neighboring cell is assigned to equal one. One can consider this a simple 

shortest route path that can be computed with Dijkstra’s [81] algorithm. The distance-based gradients 

also incorporate information about the presence of obstacles, as obstacles are assigned an infinite cost 

(e.g., a large value), making these cells effectively impassible. 

 

Figure 5. Constructing the gradient for the distance-based (top) and the activity-based heat 

map (bottom) informed spaces. 

The activity-based gradients are generated in a similar fashion, with the critical difference that the 

cost of moving between cells is associated with the corresponding heat map values, as drawn from the 

CCTV data. The heat map is generated by taking only the paths of agents traveling between the given 

entrance and exit, and counting the number of times each location is traversed in the data. Based on the 

resulting heat map, the activity-based gradients are calculated as follows. For each entrance and exit 

pair, the maximum heat map cell value is found and is used to calculate a difference from all other heat 
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map cells. That value is then assigned as the activity-based gradient for the corresponding cell. One 

could consider this as an extension of the emergence of trails concept, introduced above but it also relates 

to work of Golledge and Stimson [82] that showed that via experience of a particular space, people build 

up a repository of origins and destinations and paths connecting them which don’t have to be the shortest 

path [83]. 

These two approaches are shown in Figure 5, in which the top row illustrates process of calculating 

distance-based gradients and the bottom row shows the process of generating activity-based gradients. 

In this figure we show four steps in the calculation process, from step A (initialization) to step D (final 

gradient). In the top row (distance-based gradients), we see the room setup with the exit points marked 

with cost 0 and the obstacles in the room indicated (step A). In step B, we investigate the points 

neighboring exit points. In step C, starting from the exit points, we consider the cost of moving from the 

exit point to the neighbor point. This process of exploring neighboring cells continues, and step D shows 

the final gradient. In the bottom row, the discovery process is the same, except that the cost of movement 

between locations is drawn from the heat map shown in the lower row of step B. 

 

Figure 6. Diagram of the route-planning algorithm. 

Planning Movement 

While many navigation methods are possible, including visibility graphs and adaptive roadmaps  

(see [3,68] for reviews), we are attempting to create the simplest model possible that can produce realistic 

patterns of pedestrian movement. In order to do so, every time an agent is called upon to move, it 

performs a number of checks, potentially selects a new intermediate target from among the set of cells 

it could theoretically reach within the time step, and then moves toward that intermediate target at the 

maximum possible speed. The checks which can prompt a reassessment of the agent’s intermediate target 

include whether the agent has reached its current intermediate target point, whether the point is both near 

and currently occupied, whether the agent is technically moving up the gradient in approaching the point, 
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or whether the agent lacks a clear line of sight to the point. Figure 6 sketches out this process. If any of 

these are the case, the agent searches to the extent of its vision for the minimum unoccupied gradient 

point, discarding points that do not have line of sight. This point is taken as the new intermediate target 

point. Given an intermediate target point, the agent determines its ideal heading. The agent moves to the 

available cell with the greatest dot product with the heading, selecting the cell with the lowest gradient 

value in the event that multiple such locations exist. 

5. Experiments 

In line with ABM practice the built model was verified with respect to its logical consistency to ensure 

that there were no logical errors in the translation of the model into code, nor any programming errors. 

This verification was conducted through code walkthroughs, profiling and parameter testing; it ensured 

that the model behaved as it was intended and matches its design. 

Assessing the performance of an ABM comprises two tasks, which in the context of this paper we 

will refer to as precision and accuracy. The precision of the ABM refers to the degree to which its output 

matches the data that were used to calibrate it. Inherently an ABM represents an abstraction of the 

original dataset, and therefore the question that arises is how well does the output of this abstraction 

match the full dataset? Regarding its accuracy, the challenge is to assess the degree to which such a 

model would predict actual events for which no data are available (e.g., bridging a gap in our data feed, 

or predicting a future event). In order to assess the performance of our SA2-ABM approach we present 

experiments addressing these metrics in Sections 5.1 (precision) and 5.2 (accuracy). It should be noted 

here that our assessment is performed at the aggregate scene level: we compare simulation-derived heat 

maps to the one reflecting the input dataset, in order to stimulate how well our model simulates traffic 

flow patterns over time in the scene. If one were interested in assessing particular paths within the scene, 

one could consider using trajectory comparison metrics e.g., employing simple distance-based 

approaches (such as Hausdorff of Hidden Markov Models), or more complex similarity measures such 

as the longest common subsequence (LCSS, [84]) and dynamic time warping (DTW) distances, to name 

but few. Zhang et al. [85] and Morris and Trivdei [86] have presented comparative studies of popular 

trajectory comparison techniques. However, such trajectory-by-trajectory comparison is beyond the 

scope of this paper, and is not addressed here. 

5.1. Precision Assessment: Scenario Testing 

Figure 7 shows the actual normalized heat map generated by foot traffic data collected over 15 h (the 

whole day) on the 25th of August. This serves as our reference, i.e., the so-called “ground truth” dataset. 

In our studies we will compare all our simulation results to this reference heat map in order to assess 

how well the ABM is performing This heat map has been normalized by taking all of the cells traversed 

and then dividing them by total number of people entering the scene during that day. Regarding its 

precision, we generated simulations over the same 15-hour time period at one second intervals. In each 

scenario, the model was run 30 times and we compared the resulting average simulated heat maps to the 

reference one, in order to assess the precision of the model. 
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Figure 7. A normalized heat map for the 25th of August, as derived from trajectory data for that date. 

Scene-specific data can be used to calibrate the ABM, infusing it with knowledge about the 

particularities of the given scene. In order to assess the effects of various types of calibration data on the 

precision of the ABM we have chosen to explore four different scenarios, which build upon each other 

and are detailed below: 

Scenario 1: No Realistic Information about Entrance/Exit Probabilities or Heat Maps 

 In this scenario, entrance and exit locations are considered known, but traffic flow through 

them is considered unknown. Under such conditions, we run the model to understand its basic 

functionality without calibrating it with real data about entrance and exit probabilities, nor 

activity-based heat maps. This will serve as a comparison benchmark, to assess later on how 

the ABM calibration through such information improves (or reduces) our ability to model 

movement within our scene. 

Scenario 2: Realistic Entrance/Exit Probabilities But Disabled Heat Maps 

 In this scenario, we explore the effects of introducing realistic entrance and exit probabilities 

on the model. The heat map models used are distance-based, and not informed by the real 

datasets. Instead, we use distance-based gradients (i.e., agents choose an exit and walk the 

shortest route to that exit as discussed in Section 4.4.2). 

Scenario 3: Realistic Heat Maps but Disabled Entrance/Exit Probabilities 

 In this scenario we introduce real data-derived heat maps in the model calibration. These 

activity-based heat map-informed gradients are derived from harvesting the scene activity 

data, however entrance and exit probabilities are turned off. In a sense one could consider this 

a very simple form of learning how agents walk on paths more frequently traveled within the 

scene. It also allows us to compare to extent to which the quality of the results are due to the 

heat maps versus entrance and exit probability. 

Scenario 4: Realistic Entrance/Exit Probabilities and Heat Maps Enabled 
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 In the final scenario we use all available information to calibrate our ABM, namely, the heat 

map-informed gradients and entrance-exit combinations and see how this knowledge impacts 

the performance of the ABM. 

 

Figure 8. Normalized heat maps comparing a specific simulation scenario with the actual 

data. (a) Scenario 1: No realistic information about entrances, exits, or heat maps;  

(b) Scenario 2: realistic entrance/exit probabilities but disabled heat maps; (c) Scenario 3: 

realistic heat maps but disabled entrance/exit probabilities; (d) Scenario 4: realistic 

entrance/exit probabilities and heat maps enabled. 

Figure 8 shows a comparison of the four scenarios with those generated by actual real pedestrian paths 

(For the comparison of the real data and the simulated data we took all 30 runs from each of the scenarios 

and then summed up each cells usage value and divided them based on total number of steps all the agents 

made during the 30 runs. This normalized heat map was then compared to the normalized heat map of the 

real data). The scale bar for all the scenarios in Figure 8 goes from red to blue, with darker red showing 

over-predicting and darker blue showing under-predicting. White shows a perfect match of the model with 

the data. Even the simple experiment (Scenario 1) demonstrates simple emergent phenomena as agents 

interact with their environment and each other to develop paths over time. What is clear from this scenario 

is that with no other information, the ABM is under-predicting actual traffic. This is evident in Figure 9 

which shows the difference between over- and under-predication in each of the scenarios where the Y 

axis is the log of the number of pixels having a given error value from the heat map comparison. 
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Figure 9. Bar charts of a specific simulation scenario comparing the difference between the 

average simulation output and the actual data. (a) Scenario 1: No realistic information about 

entrances, exits, or heat maps; (b) Scenario 2: realistic entrance/exit probabilities but 

disabled heat maps; (c) Scenario 3: realistic heat maps but disabled entrance/exit 

probabilities; (d) Scenario 4: realistic entrance/exit probabilities and heat maps enabled. 

Table 3 shows the summary statistics for the errors of each scenario (In addition to this test we also 

found that different neighborhood types (e.g., Moore, von Neumann, Hamiltonian) made little difference 

on the simulation outcome). Here we define error as the simulation results minus the true heat map. 

While in all scenarios the standard deviation of the error and the maximum absolute difference remain 

roughly the same, this is not the case for the mean error and the skewness, which drops considerably in 

scenario 4. For example, the mean error drops an order of magnitude, from −0.000533 in scenario 1 to 

0.000062 in scenario 4 while the skewness drops similarly from −7.17441 to −4.72599. From the 

examination of the other scenarios we can see that by adding further information into the SA2-ABM the 

model starts matching the ground truth more, and therefore the accuracy of the SA2-ABM is improving. 

A smaller mean error value as we progress from scenario 1 to 4 implies a reduced bias. As can be 

seen from the results, without incorporating both entrance and exit information and the heat maps the 

model is still under-predicting paths between entrances and exits. This could be explained by the fact 

that without realistic entrance-exit selection, people will walk less on paths that are objectively more 

frequently traveled and more on infrequently traveled paths, smoothing the overall usage statistics. 

Without any scene-specific information, the ABM would have its pedestrians traversing the scene 

following the shortest path connecting an entrance and an exit, thereby producing a lower number of 

total number of steps in the scene compared to reality, the predominate blue colors in Figure 8a–c. 

However, when incorporating scene-specific information, one can see how the model avoids this bias, 

producing balanced errors, and this can be explained by the route-planning of the ABM. In all of the 

scenarios we are under-predicting in many of the same places (e.g., X30, Y10 and X24, Y30 and X10 
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Y32 and X14 Y29 of Figure 8). Looking back to the scene activity information, these areas have the 

highest traffic (as shown in Figure 7), but also mark areas of entrances and exits; this relates to how the 

scene information is being captured. People are recorded every second they are in the environment, so 

that if they pause or meet someone at a specific location, this increases the weight of that cell. In the 

ABM, agents only have simple behavior to navigate throughout the scene as quickly as possible and to 

avoid obstacles. The argument we make here is that this shows that there are some fine dynamics with 

entering and exiting the space (such as jostling at the door) that the video does catch but the SA2-ABM 

does not. This behavior / discovery will be a point of further work. 

Table 3. Summary statistics from the different scenarios. 

Scenario 
Mean of 

Error 

Standard 

Deviation of Error 

Max Absolute 

Difference 

Max 

Count 

Value of 

Max Count 
Skewness 

No information −0.000533 0.001390 0.023400 398 0.000036 −7.17441 

Realistic entrance and exit 

probabilities but disabled entrance-

exit probabilities 

−0.000458 0.001310 0.023400 516 −0.000020 −7.9975 

Heat maps enabled but disabled 

entrance-exit probabilities 
−0.000334 0.001370 0.023200 425 0.000097 −7.31764 

Both realistic entrance-exit 

probabilities and heat maps enabled 
0.000062 0.001430 0.023000 501 −0.000070 −4.72599 

Nevertheless, the above scenarios have demonstrated how we can gain some sense of validity with 

our model, namely where we are able to compare the output from the individual interactions and compare 

it to aggregate data collected from the real-world. In a sense one could consider these scenarios as a 

method of calibration, fine-tuning the model to a particular dataset. However, this is not calibrating 

specific agent parameters (such as movement rules, walking speeds etc.) but giving the agents more 

information on which to make their routing decisions. 

5.2. Accuracy Assessment: Activity Forecasting 

An essential goal of agent-based modeling (and modeling in general) is the ability to forecast 

activities in order to carry out what if scenarios. Here we carry out two such scenarios, specifically “how 

well can we simulate missing data?” and “can we forecast the effect of added obstacles in the patterns 

of movement in the scene?” Given our data availability, the first scenario serves as an assessment of the 

accuracy of the model (as we will be comparing simulated data to actual information, as we will see later 

in this section), whereas the second scenario serves as a demonstration of the model’s potential. 

Regarding the first example, the practical challenge that we are addressing is how well we can 

reconstruct a scene activity with our SA2-ABM if the system experiences a power outage and goes down 

for one hour. In order to explore how well movement patterns could be extrapolated from limited data, 

we created artificial data gaps by removing all data recorded between 8 a.m. and 9 a.m., one of the 

highest-traffic hours, from the record for August 25th. This set of points is indicated in Figure 10a, and 

their omission effectively imitates a sensor failure. Constructing the heat maps and entrance/exit 

probability distributions from this limited dataset, we attempted to recreate a realistic projection of what 
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the missing hour of data might have looked like. In Figure 10b we show the actual heat map between 

8 a.m. and 9 a.m., which was not used in the experiment but instead was later used as a reference dataset 

to assess the accuracy of our simulation results. We use the heat map generated throughout the day, 

excluding only the information collected between 8 and 9 a.m., as our heat map to guide agent 

movement. We then ran two experiments, one where the number of agents between 8 a.m. and 9 a.m. is 

known (but not their entrance and exit probabilities) and the second where agents were randomly 

generated (that is, agents were generated based on the distributions drawn from the rest of the day). 

Figure 11 compares our results with the actual use patterns during the missing hour. Our success in 

predicting the general flow of traffic is particularly interesting in light of the fact that usage patterns can 

differ across the day, the morning rush displaying different characteristics than the lunch crowd or the 

peregrinations of janitors during the quieter periods of the day. Despite the fact that we left data from 

the busiest period of the day out of the model, our projections of use patterns line up nicely with the 

reality, as shown in the summary statistics of Table 4. 

 

Figure 10. Scene Information (a) Distribution of people through the scene over time;  

(b) The actual heat map of traffic from 8 a.m.–9 a.m. 

In the second scenario, we use the model we have constructed to project how pedestrians would 

respond to new circumstances. Specifically we use the model to predict how agents would react in the 

face of a changing environment, as may be the case when a large obstacle (e.g., a piece of artwork or 

furniture) measuring 2 m by 2 m is installed in the middle of a major pathway (Location X = 13 Y = 15). 

By modifying the layer representing stationary obstacles in the environment, we introduced a situation 

where individuals had to balance avoidance of elements of the environment with the normal patterns of 

movement as shown in Figure 12a. In addition we also assess the performance of the model under heavy 

traffic conditions, we generated in this scenario a situation with 30 pedestrians in the scene at any one time 

(We could have added more pedestrians in the scene but at greater numbers, such as 60 agents in the scene 

at any one time leads to bottlenecks forming around exits (i.e., doors)). The probability of entrance and 

exit selection is unchanged: pedestrians are merely added to the simulation more frequently. This makes 
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the assumption that the number of pedestrians using the space increases without their door selection 

patterns varying. 

 

Figure 11. Comparison of the two experiments against the real data. (a) Agents generated 

from the actual counts between 8 a.m. and 9 a.m.; (b) Agents generated from the data for the 

rest of the day. 

Figure 12b shows the results of just increasing the number of pedestrians in the scene, without 

additional obstacles. This is similar to Figures 7 and 8, suggesting that the model can handle more traffic. 

The introduction of obstacles leads to more interesting observations. Figure 12c,d show the resulting 

heat maps as the agents are avoiding this newly introduced obstacle. Figure 12c shows the results of an 

average traffic situation (same settings as in Section 5.1), while Figure 12d shows the results of high 

traffic volumes. In all three cases (Figure 12b–d), the agents are initialized with realistic entrance and 

exit probabilities and also informed by the canonical heat maps. By adding additional pedestrians into 

the scene, more space was utilized (i.e., 91 more cells (6.6%) were traversed), which is to be expected, 

as agents not only have to navigate around the obstacle but also around each other. If we compare the 

situation where no obstacle was added to the scene (Figure 12b) and the one with the obstacle, the 

obstacle accounted for 20 more cells (1.5%) being traversed. 
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Table 4. Summary statistics from the two different experiments. 

Scenario 
Mean of 

Error 

Standard 

Deviation of Error 

Max Absolute 

Difference 

Max 

Count 

Value of 

Max Count 
Skewness 

Agents generated from the actual 

counts between 8 am and 9 am 
0.0000706 0.00135 0.0155 340 −0.0000611 −9.48E−17 

Agents generated from the data for 

the rest of the day 
0.0000693 0.00135 0.0154 357 −0.0000493 1.76E−17 

 

Figure 12. (a) Obstacles (black squares) added to the scene; (b) Heat map of increased traffic 

without obstacle; Normalized heat maps for low (c) and high (d) volumes of pedestrian 

traffic following the introduction of the obstacle for the 25th of August. 

Lacking real data against which to verify these paths, it is impossible to quantify how accurately our 

model predicts what the true paths would be. However, the movement patterns appear realistic and 

reasonable in the sense that agents take different paths around the obstacles and emulate the patterns of 

movement from previous experiments. To paraphrase Mandelbrot [87] models that generate spatial or 

physical predictions that can be mapped or visualized must “look right”; our model meets this qualitative 

evaluation. This suggests that the methodology could help planners quickly recalculate the parameters 

of normal movement through the space. This is one of the reasons for using agent-based models: in areas 

where data is lacking, absent, or unobtainable, we can experiment with what if scenarios once we have 

confidence in the basic model structure and dynamics. 
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6. Outlook 

As discussed in the introduction, traditional pedestrian ABMs have been lacking grounding onto real 

datasets. This has been a reflection of the composite challenge of collecting and analyzing large amounts of 

such data. As big trajectory data are becoming more readily available to our community we are now at a 

position where we can leverage such information to build more precise and accurate geographically-explicit 

pedestrian models. In this paper we introduced an approach to use real scene mobility information to 

improve the performance and accuracy of a pedestrian ABM, producing a Scene- and Activity-Aware 

ABM (SA2-ABM). We see this as an essential step towards further bridging the current gap between the 

agent-based modeling and the geoinformatics communities. 

Specifically, we have demonstrated that when using a standard ABM without any scene information 

the performance of the model may vary considerably, which limits its utility for analysis and prediction. 

This is remedied by adding scene information, and specifically using entrance and exit probabilities, and/or 

activity summarizations in the form of heat maps of that scene. While each piece of information 

singlehandedly improves the basic ABM, it was their combination that improved it the most. The 

improvement can be seen as a reduction of mean error and skewness. Simply put, the SA2-ABM simulation 

is a better approximation of reality than just a simple ABM lacking scene information. 

The proposed approach takes advantage of the proliferation of video surveillance technologies, by 

harvesting activity information from video-derived trajectories and using it to inform an ABM for the 

depicted scene. By doing so we gain substantial and non-trivial knowledge about the depicted scene, 

recognizing for example important patterns of activity, and gaining a greater understanding on how 

humans use the scene in everyday life. This allows us to move beyond simply exploring the scene 

geometry (i.e., the form of the scene) to taking into account the scene’s function as it is reflected through 

the patterns of movement in that scene. 

This work can also be extended in the future to actively support video surveillance, rather than simply 

feeding on its results. Firstly, the activity models that are generated for an area through the approach we 

described in this paper can be used to extrapolate human activities for the gap areas  

in-between neighboring surveillance fields of view. Thus, the movement of a person tracked in one 

camera as part of a system of non-overlapping video feeds can be extrapolated using the corresponding 

SA2-ABM to predict where that person is heading and estimate the camera in which he/she will be 

appearing next. 

Furthermore, the SA2-ABM can be used to provide reference baselines for future video feeds in a 

scene, supporting the detection of unusual activity as deviations from this model. Having a profile of 

movement relative to some baseline can help us explain and identify deviance when it occurs. Both of 

these emerging opportunities highlight the evolving nature of pedestrian modeling, which is transitioning 

from simple simulation support to a valuable tool for describing real and anticipated activities in a scene. 

More generally, with respect to geographically explicit agent-based models, we can explore human-like 

behaviors that the data alone cannot provide [23]: motion capture/surveillance equipment alone will not 

tell us what might happen if an obstacle was placed in the center of the scene or a door was blocked, 

while an agent-based model could. Furthermore, by modeling the individual pedestrians in space and 

time, we can explore how basic assumptions or ideas about how one utilizes their spatial environment 
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can be played out within a computer simulation and compared with scene information to determine 

whether these patterns are seen in the real-world. 

Given the wide variety of urban spaces and activities within them, along with the emergence of 

diverse new sources of tracking data, this contribution should be viewed as a first step towards future 

explorations, rather than as a final product. This is one reason why we provide the source code and data: 

for other researchers to explore the model in different situations if they so desire. Furthermore, the model 

itself can become more complex through the introduction of additional parameters or by exploring other 

techniques such as machine learning or different cognitive frameworks (see [88]) for agent behaviors 

allowing for example the incorporation of complex activities such as stopping to talk to people, jostling 

around entrances and exit points. By showing that even a relatively simple geographically explicit  

agent-based model like SA2-ABM can replicate the main patterns of a dynamic scene we have 

demonstrated the huge potential of this approach for the emerging opportunities presented through the 

coupling of agent-based models with spatiotemporal data. 
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