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Abstract: Current time series clustering algorithms fail to effectively mine clustering distribution
characteristics of time series data without sufficient prior knowledge. Furthermore, these algorithms
fail to simultaneously consider the spatial attributes, non-spatial time series attribute values, and
non-spatial time series attribute trends. This paper proposes an adaptive density-based time series
clustering (DTSC) algorithm that simultaneously considers the three above-mentioned attributes to
relieve these limitations. In this algorithm, the Delaunay triangulation is first utilized in combination
with particle swarm optimization (PSO) to adaptively obtain objects with similar spatial attributes.
An improved density-based clustering strategy is then adopted to detect clusters with similar
non-spatial time series attribute values and time series attribute trends. The effectiveness and
efficiency of the DTSC algorithm are validated by experiments on simulated datasets and real
applications. The results indicate that the proposed DTSC algorithm effectively detects time series
clusters with arbitrary shapes and similar attributes and densities while considering noises.

Keywords: time series clustering; adaptive; density-based clustering; Delaunay triangulation;
spatial data mining

1. Introduction

Time series data are very common in the real world and generally exhibit obvious spatial
heterogeneity. Mining the spatial clustering characteristics of time series data is essential to exploring
the potential distribution mechanism underlying this kind of data.

Many time series clustering methods have been proposed to realize the spatial clustering of
the time series data. These methods can be categorized into the following five types based on the
clustering mechanism: partitioning-based time series clustering algorithms [1–3], hierarchical time
series clustering algorithms [4], density-based time series clustering algorithms [5,6], graph-based
time series clustering algorithms [7] and time series co-clustering algorithms [8,9]. Although these
algorithms can handle certain applications, they still suffer from several deficiencies and require
improvement. For example, most existing algorithms cannot adaptively detect clusters because
they require several predefined parameters that depend heavily on prior knowledge; however, prior
knowledge is always limited in real applications. As another example, current algorithms ignore
spatial heterogeneity and seldom consider spatial attributes. In real applications, many geographical
phenomena, such as surface deformation, rainfall and the heavy mental content of soil, are influenced
by the surrounding environment. The objects of these phenomena are generally similar with a short
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spatial distance. Meanwhile, if spatial attributes are neglected, clusters with similar non-spatial
attributes will overlap, and objects in clusters will be dispersedly distributed in the spatial domain.
This phenomenon partially violates the real conditions and affects the visualization effect. Hence,
spatial attributes should be considered to correctly obtain the spatial clustering characteristics of
time series data. Additionally, either the similarity of non-spatial time series attribute values or the
similarity of non-spatial time series attribute trends is considered in measuring the attribute similarity
between objects. However, objects with similar non-spatial time series attribute trends but significantly
different non-spatial time series attribute values will be incorrectly detected as similar objects in the
non-spatial domain when only the similarity of non-spatial time series attribute trends is considered in
measuring the non-spatial attribute similarity. Similarly, if the non-spatial time series attribute trends
between objects are significantly different and the non-spatial time series attribute values between
them are similar, then the objects will also be incorrectly recognized as similar objects in the non-spatial
domain if only the similarity of non-spatial time series attribute values is considered in measuring the
non-spatial attribute similarity. Furthermore, time series data with similar attribute trends and different
attribute values or similar attribute values and different attribute trends exist in real applications.
For example, areas with monsoon climates of medium latitudes are rainy during summer and dry
during winter. The rainfall trends in these areas are similar. However, the rainfall capacity depends on
location. Hence, rainfall trends and rainfall capacity should be considered simultaneously to mine
areas with similar rainfall. Therefore, the similarity of non-spatial time series attribute values and the
similarity of non-spatial time series attribute trends should be considered simultaneously to correctly
mine the clustering distribution characteristics of objects.

To overcome the above-mentioned deficiencies, a novel density-based time series clustering
(DTSC) algorithm, is proposed based on a density-based spatial clustering (DBSC) algorithm [10].
The proposed DTSC algorithm can adaptively detect clusters with similar spatial attributes, non-spatial
time series attribute values and non-spatial time series attribute trends. In addition, the corresponding
clusters are non-overlapping for a clear visualization. More importantly, applications related to
complicated time series with unequal lengths (time intervals in time series are unequal) and noises are
ubiquitous. Un-equal time intervals and noises are considered in the proposed method to simulate
complicated real-world applications.

The remainder of the paper is organized as follows. Section 2 briefly describes the strategy of the
adaptive time series spatial clustering. The proposed algorithm is introduced and the corresponding
accuracy analysis methods are discussed in Section 3. In Section 4, experiments on simulated datasets
and real applications are conducted to verify the feasibility of the proposed algorithm. Finally, the
results are discussed further in Section 5.

2. Methods for Time Series Clustering

Performing the adaptive time series clustering depends on two difficult aspects. One is the
measurement of the similarity between time series objects, and the other involves the adaptive strategy
of the time series clustering.

2.1. Measurement of Similarity between Objects

Spatial and non-spatial similarities are considered interdependently to eliminate the need to
determine suitable weightings for the similarity between objects in the spatial and non-spatial
domains. The Euclidean distance, which is useful to measure the spatial attribute similarity, is
utilized for the spatial domain in this study. On the other hand, the Euclidean distance (measuring the
similarity of non-spatial time series attribute values) or Pearson’s correlation coefficient (measuring
the similarity of non-spatial time series attribute trends) are commonly used to measure non-spatial
attribute similarities, but these methods cannot effectively separate certain phenomena, as shown in
Figures 1 and 2.
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However, if the Euclidean distance and Pearson's correlation coefficient were utilized in combination 

to measure the degree of similarity between objects, then the result would show that the degree of 

similarity between 𝑙1 and 𝑙3 is the highest among all pairs. Hence, the judging criterion of the degree of 

similarity should be based on the Euclidean distance and Pearson's correlation coefficient—the larger the 

value of the Pearson's correlation coefficient and the smaller the value of the Euclidean distance, the 
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In addition, the existing Euclidean distance and Pearson's correlation coefficient ignore the un-equal 

time series phenomenon, as is shown in the time series objects in Figure 2. Figure 2 shows that the 

un-equal time interval phenomenon hinders the existing similarity measurement methods. The  

non-spatial attribute trend between the time series objects 𝑙1  and 𝑙2  are apparently similar by 

visualization, whereas the Pearson's correlation coefficient between 𝑙1  and 𝑙2  is 0.423 with a 

significance level 0.029 and cannot represent the degree of similarity between time series objects with 

un-equal time intervals. An improved similarity measurement method that considers un-equal time 
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between time series objects. This method adopts a weighted Euclidean distance (Equation (1)) to measure 
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Figure 2. Time series objects with un-equal time interval.

Figure 1 shows that the time series object l1 is more similar with the object l3 than with the objects
l2 and l4. However, the Euclidean distance between objects l1 and l3 is equal to that between objects
l1 and l4. The Pearson’s correlation coefficient between l1 and l2 is equal to that between l1 and l3.
Using only one of the two similarity measurement methods would obviously produce an inaccurate
judgment regarding the degree of similarity between the time series objects. However, if the Euclidean
distance and Pearson’s correlation coefficient were utilized in combination to measure the degree of
similarity between objects, then the result would show that the degree of similarity between l1 and l3
is the highest among all pairs. Hence, the judging criterion of the degree of similarity should be based
on the Euclidean distance and Pearson’s correlation coefficient—the larger the value of the Pearson’s
correlation coefficient and the smaller the value of the Euclidean distance, the higher the degree of
similarity of the non-spatial attribute of the two objects will be.

In addition, the existing Euclidean distance and Pearson’s correlation coefficient ignore the
un-equal time series phenomenon, as is shown in the time series objects in Figure 2. Figure 2 shows
that the un-equal time interval phenomenon hinders the existing similarity measurement methods.
The non-spatial attribute trend between the time series objects l1 and l2 are apparently similar by
visualization, whereas the Pearson’s correlation coefficient between l1 and l2 is 0.423 with a significance
level 0.029 and cannot represent the degree of similarity between time series objects with un-equal time
intervals. An improved similarity measurement method that considers un-equal time series is proposed
to increase the accuracy of measuring the degree of similarity of non-spatial attributes between time
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series objects. This method adopts a weighted Euclidean distance (Equation (1)) to measure the
similarity of non-spatial attribute values and a weighted Pearson’s correlation coefficient (Equation (2))
to measure the similarity of non-spatial attribute trends. According to Ramirez-Lopez et al. [11], if the
Pearson’s correlation coefficient between two time series objects is larger than 0.6 and the significance
level is less than 0.1, then the time series objects represent a significantly similar attribute trend.
The weighted Pearson’s correlation coefficient between l1 and l2 is 0.786 with a significance level 0.001,
which shows that the attribute trend between l1 and l2 is significantly similar.

D(l1, l2) =

√√√√ T

∑
i=1

w(t(i))(lt(i)
1 − lt(i)

2 )2 (1)

pcw (l1, l2) =
∑T

i=1 w (t (i)) lt(i)
1 × lt(i)

2√
∑T

i=1 w (t (i)) lt(i)
1

2
√

∑T
i=1 w (t (i)) lt(i)

2

2
(2)

where lt(i)
1 is the value in the ith time point of time series object l1, and w (t (i)) = (t(i)−t(i−1))

(t(T)−t(0)) .

2.2. A New Adaptive Strategy for Time Series Clustering

A strategy of separately detecting clusters in the spatial and non-spatial domains is proposed
in this study to adaptively identify the clusters with similar spatial and non-spatial attributes.
The Euclidean distance is adopted in the spatial domain. Considering the neighboring relationship
between objects [10], spatial proximity relationships between time series objects are adaptively obtained
by removing inconsistent edges in the constructed Delaunay triangulation of objects by merging the
particle swarm optimization (PSO) algorithm [12]. Then, based on the spatial proximity relationships,
clusters with neighboring objects having similar non-spatial time series attributes are adaptively
clustered by using an improved density-based time series clustering method in the non-spatial domain.
The density based time series clustering method is improved by integrating the proposed similarity
measurements (described in Section 2.1) and the strategy of density indicator of a dual density-based
clustering method (DBSC) [10], to be introduced in Section 3.

3. The DTSC Algorithm

The DTSC algorithm comprises two phases. In phase 1, spatial proximity relationships are
constructed by removing the inconsistent edges that are excessively long at the global and local levels.
This phase is adaptively controlled by PSO, as illustrated in Section 3.1. Phase 2 is then conducted
based on the spatial proximity relationships, and an improved density based clustering method is
utilized to adaptively detect clusters with similar time series attributes, which will be discussed in
Section 3.2. The main procedures of DTSC are schematically shown in Figure 3. Eventually, to evaluate
the result of DTSC algorithm, evaluation indexes are introduced and described in Section 3.3.
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3.1. Construction of Spatial Proximity Relationships

Delaunay triangulation is a useful tool for constructing the spatial neighboring relationships [13],
but there are generally some inconsistent edges in the constructed Delaunay triangulation. Hence,
spatial proximity relationships are constructed by removing the inconsistent edges, which is derived
from the spatial proximity construction procedure of DBSC [10]. The major steps are introduced
as follows:

Step 1: The Delaunay triangulation G is constructed.
Step 2: The global distance constraint is calculated by the following equation:

Global_cut_Value (pi)

= Global_mean (G)

+ Global_mean(G)×Global_variation(G)
mean(pi)

(3)

where Global_mean (G) and Global_variation (G) are the mean value and standard deviation of the
length of the edges in G, respectively; and mean (pi) is the mean value of the length of the edges in
relation to pi.

Step 3: The long edges are deleted at a global level in G. The edge connected to pi,
which has distance larger than Global_cut_constaint (pi), should be deleted to remove the global
inconsistent edges.

Step 4: The local distance constraint is calculated by the following equation:

Local_cut_value (pi) = Mean2
Gi
+ β×Mean_variation (G) (4)
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where Mean2
Gi

is the mean length of the edges by the points equal to less than the second-order
neighbors of pi; Mean_variation (G) is the mean value of the local variation of the points in graph G;
and β is the adjustment parameter that controls the sensitivity of spatial attributes. In practice, β is set
from 1 to 2 [10]. The smaller the value of β is, the easier the long edges can be deleted.

Step 5: The long edges are deleted at the local level. The edge connected to pi, whose distance
is larger than Local_cut_value (pi), should be deleted to remove local inconsistent edges. Objects
connected are considered neighbors and sub-graphs with connected objects are obtained.

β largely affects the result of the proximity relationships. Evaluation and optimization of β are
necessary and are therefore applied in this study to obtain satisfactory results under the proper value
of β. The construction of proximity relationships is a graph based clustering method [14]. Hence,
a graph-based evaluation function [15] that considers spatial outlier effectiveness is utilized in this
phase; this method can accurately evaluate the feasibility of the spatial proximity construction results.
The evaluation function is defined as follows:

Z =
(P + Q)× min

i=1,···MFI (Gi))

∑M
i=1 FE (Gi) + ∑N

j=1 FE
(
Oj
) (5)

where P and Q are the number of clusters and noises, respectively; Z is the evaluation value; FE (Gi) is
the inter-graph similarity of sub-graph Gi; FE

(
Oj
)

is the similarity between outlier Oj and sub-graphs;
and FI (Gi) is the intra-cluster similarity of Gi.

According to the evaluation function, the value of Z will be large, if the similarity of inter-graph is
high and if the similarity of intra-graph and similarity of graph and noises are low. PSO [12] is used to
adaptively search for the good result with the largest Z and proper β automatically. The optimization
procedure terminates until the Z value converges to a global maximum. The execution time is
labeled as k. The time cost of the optimization procedure mainly depends on the data size and k.
The computational efficiency of phase 1 is O (k× (Nlog (N))). k can be significantly decreased by a
using parallel skill [16].

3.2. Clustering Objects with Similar Time Series Attributes

In the non-spatial domain, an improved time series clustering method is proposed based on the
strategy of density indicator of DBSC algorithm [10]. The procedure can be divided into two parts.
Part 1 calculates the degree of similarity based on the spatial proximity relationships. The degree of
similarity between objects without a proximity relationship is considered to be near zero [10]. Part 2
aggregates objects with similar time series attributes. Several basic principles are first introduced to
clarify the proposed method.

(1) Spatial neighbors: Objects connected by edges in the modified Delaunay triangulation.
(2) Attribute directly reachable: Objects with similar time series attribute values and attribute

trends are considered as attribute directly reachable. The object p1 and p2 are attribute directly
reachable, if

(i) pcw (p1, p2) > 0.6 and sig (p1, p2) < 0.1; and
(ii) D (p1, p2) < TS

where TS is the threshold of the non-spatial attributes, which can be calculated as follows.
First, the attribute distances D between neighboring objects are calculated. Secondly, objects
and minimum attribute distance objects are searched and labeled. The mean of the minimum
attribute distances is calculated and assigned to TS. The effectiveness of this method has been
experimentally proven [10].
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(3) Attribute reachable: Attribute reachable measures the similarity between an object and its
neighboring objects. For a set of objects S, its neighboring object p1 is considered attribute
reachable from S if the attribute distance between p1 and the mean value of S is less than TS.

(4) Density indicator: Density indicator represents the density of objects with similar attributes in the
spatial domain. For an object p1, the density indicator is calculated with the following equation:

DI (p1) = Nsdr (p1) + Nsdr (p1) /n_ND (p1) (6)

where Nsdr (p1) is the number of objects that are attribute directly reachable from p1. n_ND (p1)

is the number of neighbors of p1.

Based on the basic concepts, the procedure of the DTSC algorithm is detailed as follows:

Step 1: Calculate the attribute distance D and correlation coefficient pcw of neighboring objects.
The default value of the attribute threshold TS can be determined in this step. This calculation needs
O (2N ∗ T) time complexity.

Step 2: Calculate the density indicator by the following two parts. Part 1 is the calculation of the
attribute directly reachable objects. Part 2 is the calculation of the density indicator of every object
using Equation (6). The computation procedure costs approximately O (Nlog (N)).

Step 3: Choose an unclassified object pi with the largest density indicator. If several objects
with the same value of the largest density indicator exist, then the object with the minimum attribute
distance with its neighboring object is chosen.

Step 4: An unclassified object that is an attribute directly reachable from pi is added in descending
order based on the density indicator and clustered objects are labeled as a cluster Ci. Unclassified
objects iteratively added to Ci are attribute directly reachable from objects in Ci and are attribute
reachable from Ci.

Step 5: Ci is obtained until no further unclassified objects can be added.
Step 6: Implement Steps 3–5 iteratively. The clustering procedure stops when all objects are

judged. Objects that do not belong to any clusters are identified as noises.
The time complexity of the clustering procedure comprises three main parts: Step 1 (O (2N ∗ T)),

Step 2 (O (NlogN)), and Steps 3–6 (O (N)). Constructing spatial proximity relationships utilizes
O (k× (Nlog N)). Hence, the whole computation procedure of the DTSC algorithm costs
approximately O ((kN + N) log N + (2T + 1) N).

3.3. Accuracy Evaluation of Clustering Results

The literature provides several indexes that are useful for evaluating clustering results [17,18].
These indexes can evaluate the results of different clustering algorithms for the same dataset.
The detailed calculation methods are discussed as follows.

The Rand index assesses the ability of a particular cluster detection approach to find the known
clusters and noises. The index is expressed as follows:

Rand =
TP + TN

TP + FP + FN + TN
(7)

where TP is a true positive decision (i.e., the count of the points in correctly detected clusters based on
the mapping functions [19]), FP is a false positive decision (i.e., the count of the points in incorrectly
detected clusters), TN is a true positive decision (i.e., the total number of the correctly detected noises),
and FN is a false negative decision (i.e., the total number of incorrectly detected noises). An issue
of the accuracy index involves the simultaneous consideration of false positives and false negatives.
To address this issue, another two indexes, precision and recall are further applied to assess the
accuracy [18].
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Recall evaluates the ability of the clustering algorithm to identify the positive detection success
and is defined as follows:

Recall =
TP

TP + FN
(8)

Precision captures the subtleties of the clustering algorithm and is defined as follows:

Precision =
TP

TP + FP
(9)

Notably, the accuracy of the results is judged by all three indexes. For two clustering
results r1 and r2 of the same dataset, the final evaluating results are denoted as
{ Rand (r1) , recall (r1) , precision (r1) } and { Rand (r2) , recall (r2) , precision (r2)}, respectively. r1
is regarded as the better result if its indexes meet one of the following criteria.

Criterion 1: recall (r1) > recall (r2) and precision (r1) > precision (r2).
Criterion 2: recall (r1) > recall (r2), precision (r1) < precision (r2) and Rand (r1) > Rand (r2).

4. Results

Simulated datasets and real applications are designed and utilized to verify the effectiveness and
accuracy of DTSC. Simulated datasets are set according to several earlier studies about simulated
dataset designation [20] and characteristics of real applications. A detailed validation of the DTSC
algorithm on simulated datasets is given in Section 4.1. Rainfall data in Mainland China from 1960 to
2009 are investigated using the proposed DTSC to mine the distribution characteristics of rainfall to
validate the advantages of DTSC further. The case study of Rainfall data using DTSC is thoroughly
described in Section 4.2.

4.1. Validation of DTSC Algorithm on Simulated Datasets

This Section conducts three experiments based on simulated datasets to validate the effectiveness
and accuracy of the DTSC algorithm. Simulated datasets are designed to verify the feasibility and
accuracy of DTSC, as shown in Section 4.1.1. In Section 4.1.2, the efficiency of the proposed DTSC
algorithm is then illustrated by comparing the DTSC with a typical algorithm (the density-based
time series clustering algorithm) [6]. Experiment 2 in Section 4.1.3 is conducted to evaluate the
effectiveness of the proposed parameter optimization method that was proposed in Section 3.1. Results
with an optimal parameter and non-optimal parameters are compared with each other using the
above-mentioned accuracy evaluation functions (see Section 3.3). Experiment 3 in Section 4.1.4 is
utilized to validate the feasibility of the proposed similarity measurements that have been described
in Section 2.1, which is achieved by comparing clustering results based on the proposed similarity
measurements with those obtained based on typical similarity measurements.

4.1.1. Validation of DTSC Algorithm Based on Simulated Dataset

To provide a reasonable simulated dataset for evaluating the performance of the DTSC algorithm,
simulated datasets S1 (see Figures 4 and 5) and S2 (see Figures 6 and 7) are designed based on the
characteristics of real applications and by referring to earlier studies [20].

The characteristics of S1 and S2 are described below.

(1) S1 and S2 contain 759 and 806 objects, respectively,
(2) The time dimensionality is 20 and the neighboring time intervals are equal,
(3) Nine predefined clusters labeled as C1 to C9 in S1 (in Figure 4) and five predefined clusters

labeled as C1 to C5 in S2 (in Figure 6) exist. These clusters possess arbitrary geometrical shapes
and different densities. The non-spatial attributes of the cluster at every time point are randomly
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distributed under one range, and the mean value of attributes in every cluster are shown in
Figures 5 and 7,

(4) To maintain consistency with the real applications, noises are set in the simulated datasets and
are classified into five types. Type 1 comprises the spatial noises that have a meaning similar
to that of spatial outliers whose spatial attribute values are significantly different from those of
other objects in their spatial neighborhood; these are labeled as p (such as p1). The non-spatial
attributes of spatial noises are similar to the nearest clusters in dataset S1. Types 2 and 3 are the
non-spatial attribute noises and non-spatial attribute trend noises, respectively, which are labeled
as Ap (such as Ap1 to p8) and Tp (such as Tp1 to Tp4), respectively. The attributes of these types
of noises are significantly different from those of their neighboring objects. Type 4 comprises
noises whose attribute values and attribute trends are both significantly different from those of
neighboring objects; these noises are labeled as Atp (such as Atp1 to Atp3). Type 5 comprises
gradually changing noises, whose attribute values change in a descending or ascending fashion
along the spatial position although their attribute trends are similar. For example, the temperature
decreases as the altitude increases, and the temperature trend is similar at different altitudes with
seasonal variations. These gradually changing noises are labeled as Gp (such as Gp1).
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4.1.2. Comparison between DTSC and Typical Algorithms

Experiments are conducted on simulated datasets to verify the efficient and accuracy of DTSC
algorithm in comparison with the density-based time series clustering algorithm, which also considers
spatial and non-spatial attributes. Density-based time series clustering algorithm is based on the
Euclidean distance-based similarity measurement method. Parameters in the density-based time series
clustering algorithm are complex and comprise spatial radii and the threshold of attributes. In the
density-based time series algorithm, when objects in the radius of an object p whose attribute distances
from p are less than the threshold of attributes are iteratively aggregated. Optimal values of these
parameters are difficult to obtain; hence, we conduct a parametric study to obtain the most appropriate
result. The parametric study runs the proposed programs approximately 20 times.

The results of DTSC algorithm on S1 and S2 are obtained according to the steps in Section 3 as
follows: First, the spatial proximity relationships based on the Delaunay triangulation are obtained by
using the strategy in Section 3.1 and are shown in Figures 8 and 9. Second, the clusters with similar
spatial and non-spatial attributes (in Figures 10a and 11a) are detected by adopting the proposed
method in Section 3.2. Finally, the accuracy evaluation values of the results are shown in Table 1.
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and (b) Modified Delaunay triangulation of S1.
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Table 1. Accuracy values of clustering results on simulated datasets and its corresponding computation
cost time.

Clustering Results
Simulated Dataset Accuracy Values Computation Cost

S1 S2 Rand Precision Recall Time (s)

Results of DTSC
√

1 1 1 5

Results of density-based time
series clustering algorithm

√
0.95 0.95 1 4

Results of DTSC
√

1 1 1 4

Results of density-based time
series clustering algorithm

√
0.65 0.55 0.44 3

For comparison, the clustering results of the density-based time series clustering algorithm are
shown in Figures 10b and 11b. A cluster is labeled as the same symbol with the same color, and noises
are labeled with a black “x”. The figures show that the density-based time series clustering algorithm
is sensitive to noises. For example, noises Tp1 to Tp4 (in S1 and S2) are incorrectly recognized as a
part of the neighboring clusters and the gradually changing noises Gp1 (in S1 and S2) are incorrectly
detected as a cluster. In addition, density-based time series clustering algorithm is unsuitable for
clusters with different densities. C4 (in S2), with a relatively low density, is incorrectly recognized as
noises. The computation cost of the methods in Table 1 show that both methods are highly efficient.
Combing the accuracy evaluation indexes, we can see that the proposed DTSC algorithm can efficiently
and accurately detect non-overlapping clusters with arbitrary shapes and uneven distributions of
spatial and non-spatial time series attributes.

4.1.3. Comparison of the DTSC Algorithm with Optimal and Non-Optimal Parameters in the
Spatial Domain

This Section evaluates the applicability of the parameter optimizing method described in
Section 3.1. Clustering results of S1 obtained by the DTSC algorithm with optimal and non-optimal
parameters are compared. The optimal value of parameter β (In Equation (4)) with the largest
parameter evaluation function Z (in Figure 12) is automatically obtained by utilizing the parameter
optimizing method. The non-optimal parameter β, which is significantly different with each other and
the optimal parameter, is set among the ranges of the parameter.
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Figure 12. Values of parameter evaluation function Z in S1 with various β.

Clustering results on S1 (in Figure 13) show that the value of the parameter strongly affects
the result. When the parameter is small, several clusters, such as C1 and C7, are over-segmented,
and several objects in these clusters are incorrectly recognized as noises. When the parameter is
large, the neighboring clusters with different density are recognized as the same cluster. For example,
neighboring clusters C1 and C2 with different densities are recognized as the same cluster. Through
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the accuracy evaluation values in Figure 14, we can see that the result with the optimal parameter can
detect clusters and noises with the highest accuracy relative to the results of non-optimal parameters.
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4.1.4. Comparison of the DTSC Algorithm with Proposed Similarity Measurements and Typical
Similarity Measurements in the Non-Spatial Domain

As illustrated in Section 2.1, the similarity measurement method is a key component of the
clustering algorithm. Experiments are conducted based on the proposed similarity measurements,
Euclidean distance similarity measurement and Pearson correlation coefficient similarity measurement
to verify the proposed similarity measurements. Results on S1 are shown in Figure 15. Result of
DTSC based on Euclidean distance (Figure 15b) shows that noises of type 3 are unable to be detected.
For example, noises Tp1 to Tp4 (Figure 15b) with significantly different attribute trends from their
neighbors are incorrectly recognized as a part of the neighboring cluster. Result of DTSC based on
Pearson correlation coefficient (Figure 15b) indicates that attribute noises of types 2 and 4 cannot be
correctly recognized by this method. For example, noises Ap1 to Ap8 (Figure 15c) are incorrectly
recognized as a part of the neighboring clusters and gradually changing noises Gp1 (Figure 15c)
are also incorrectly detected as a cluster. Both the result of DTSC based on the proposed similarity
measurements (Figure 15a) and the accuracy result (Figure 16) indicate that the accuracy of DTSC with
the proposed similarity measurements is highest; therefore, the proposed similarity measurements
are effective.
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4.2. A Case Study of DTSC on Rainfall Data

The distribution of rainfall is significantly affected by the geographic location, topography,
temperature and the distance to oceans, lakes and other factors, which thus suggests that the
distribution of rainfall generally exists strong spatial heterogeneity. Characteristics of the clustering
distribution of the rainfall provide the basis for further mining of the rainfall mechanism. This
clustering will improve future rainfall prediction efforts. Time series clustering methods can accurately
detect clustering distribution features of phenomena without compromising generality. The proposed
DTSC algorithm is thus applied to the annual rainfall data to mine the clustering pattern of rainfall.
These data are provided by the China Meteorological Bureau and comprise the annual average rainfall
monitoring data of 599 rainfall stations in Mainland China from 1960 to 2009. The locations of rainfall
stations are shown in Figure 17.

The distribution trend of the rainfall in China during the studied period decreases progressively
from the southeast to the northwest. The clustering result is shown in Figures 18 and 19. Several
interesting patterns, which will be described in detail in the following paragraph, are discovered in
the results. For comparison, the density-based time series clustering algorithm is also utilized in the
dataset, and its result is shown in Figure 20.
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Figure 18 shows that 15 interesting clusters were obtained. The mean and standard deviation
of the clusters at every time point are listed in Figure 19 and Table 2. The neighboring clusters are
significantly different in terms of non-spatial time series attribute values and trends. The distribution
and statistics of clusters show that rainfall gradually increased from the northwestern to southeastern
areas. Clusters C1, C12, C13 and C15 in the northern and eastern areas have low rainfall and are
relatively stable. However, the other clusters in the eastern and southern parts experience abundant
rainfall and fluctuate heavily over time. In these areas, clusters with significantly different time series
attribute values and trends or that are separated by noises are correctly recognized by the proposed
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DTSC algorithm. Furthermore, Hou et al. [21] stated that separating line between C1 and C2, C3, C8
and C10 is consistent with the line of semi-humid and semi-arid regions; these results are consistent
with actual conditions. Regions recognized as noises are unstable and vary highly in the spatial
domain; these regions can serve as the basis for outlier events and extreme climate phenomena.

Table 2. Statistics of clusters in Figures 18 and 20.

Statistical
Variables

Statistics of the Clusters

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Value
(Figure 18) 171 153 168 150 189 160 136 169 148 167 50 98 146 162 106

Value
(Figure 20) 373 310 180

Compared with the result of the density-based time series clustering algorithm in Figure 20,
clusters with significantly different time series attribute values and trends are recognized as the same
clusters. Combing the statistics in Table 2, we can see that the standard deviations of clusters are
seriously larger than the result obtained by the DTSC algorithm.

In summary, two important findings are obtained from the application of the DTSC to the rainfall
data. First, clusters with similar time series attribute values and trends are detected using DTSC
algorithm. Second, the characteristics of clusters are analyzed by combining their statistics and
existing studies; this combination provides an important reference for rainfall mechanism analysis
and forecasting.

5. Discussion and Further Work

In this paper, a DTSC algorithm was proposed to adaptively detect the clusters of objects with
spatial proximity and similar time series attribute values and trends. The proposed algorithm uses
two important techniques to realize an automatic procedure for detecting clusters. The first technique
is the combinational use of the operation of constructing spatial proximity in DBSC and PSO, which
contributes significantly to realizing the automatic discovering of spatially homogenous object sets
with spatial proximity, similar densities and arbitrary shapes. The other technique is to combine the
strategy of non-spatial clustering in DBSC with the proposed similarity measurements, based on which
the DTSC can correctly recognize the non-overlapping clusters with similar time series attribute values
and trends.

The experiments on the simulated datasets and a real application have validated the efficiency
of the DTSC algorithm. Several conclusions are therefore summarized as follows. First, the
DTSC algorithm can separate objects with different densities and prevent over-segmentation and
under-segmentation by using PSO. Second, the DTSC algorithm automatically detects clusters with
similar spatial attributes and non-spatial time series attribute values and trends. Third, compared
with the traditional algorithms that detect clusters but require several predefined parameters, the
DTSC algorithm can adaptively mine the distribution features of data without sufficient prior
knowledge. Fourth, noises with significantly different attributes from neighbors can be recognized
easily with a reasonable accuracy. Lastly, the DTSC algorithm is more efficient and precise than the
typical algorithms when addressing clusters with arbitrary shapes, different densities and unevenly
distributed attributes under the interference of spatial and non-spatial noises.

Based on the current study, future studies should focus on: (1) enhancing the computing
efficiency of DTSC using more advanced strategies such as the dimensionality reduction method [22];
(2) extending the DTSC to applications with multiple variables; and (3) combining the association rules
with the DTSC to mine the association of clusters with other coexisting factors which can provide basic
information for further mechanism analysis.
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