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Abstract: The Space-time prism (STP) is a key concept in time geography for analyzing human
activity-travel behavior under various Space-time constraints. Most existing time-geographic studies
use a straightforward algorithm to construct STPs in road networks by using two one-to-all shortest
path searches. However, this straightforward algorithm can introduce considerable computational
overhead, given the fact that accessible links in a STP are generally a small portion of the whole
network. To address this issue, an efficient geo-computational algorithm, called NTP-A*, is proposed.
The proposed NTP-A* algorithm employs the A* and branch-and-bound techniques to discard
inaccessible links during two shortest path searches, and thereby improves the STP construction
performance. Comprehensive computational experiments are carried out to demonstrate the
computational advantage of the proposed algorithm. Several implementation techniques, including
the label-correcting technique and the hybrid link-node labeling technique, are discussed and
analyzed. Experimental results show that the proposed NTP-A* algorithm can significantly improve
STP construction performance in large-scale road networks by a factor of 100, compared with
existing algorithms.

Keywords: Space-time prism (STP); road networks; geo-computational algorithm; time geography;
big data analysis

1. Introduction

Time geography is powerful for analyzing human movements and activities through space and
time [1]. Rather than predicting activity-travel behavior directly, time geography mainly focuses on the
feasibility for an individual to participate in activities under various Space-time constraints [2]. At the
core of time geography is the Space-time prism (STP) model, which depicts Space-time extents that can
be physically reached by the individual from specified locations within a given time budget. This STP
model has been widely used for various applications, such as measuring individual accessibility to
urban services [3–7], and formulating activity-based models of travel demand [8–11].

Time geography was first introduced by Torsten Hägerstrand in the 1970s [1]. In the decades
after its introduction, time geography faded somewhat into the background [12], mainly due to
the lack of geo-computational algorithms and individual-level movement data. With the advances
in geographical information science (GIS) technologies in the 1990s, the last two decades have
witnessed a resurgence of time geography in the literature. Substantial research efforts have been
made to improving STP models to represent individuals’ accessible Space-time extents in complex
urban areas. Recognizing that human movements in urban areas are usually constrained by road
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networks, Miller [13] proposed a network-based STP (or called network-time prism, NTP) model.
Other researchers further improved this NTP model by considering travel environment complexities,
including turn restrictions [14], dynamic and heterogeneous traffic conditions [15,16] and travel
time uncertainties [17,18]. Chen et al. [19] extend the NTP model into public transit networks.
A geo-computational algorithm was developed to efficiently construct STPs in public transit networks
using the A* and branch-and-bound techniques. Several useful tools also have been developed for
visually analyzing NTPs in real road networks [20–22].

In recent years, there has been a wider resurgence of time-geographic studies due to the emerging
spatiotemporal big data, collected by a variety of geospatial technologies, including human and vehicle
trajectories collected by GPS (Global Positioning System) devices, mobile phone records, smart card
data, social media check-ins, etc. These spatiotemporal big data provide an unprecedented opportunity
for time-geographic studies to uncover people’s mobility patterns and their interactions with the
urban environment [23–30]. To support such time-geographic studies in the era of spatiotemporal big
data, efficient geo-computational algorithms for constructing NTPs in large-scale road networks are
sorely needed.

In most previous time-geographic studies, NTPs are constructed by a straightforward
algorithm [31], which utilizes two one-to-all shortest path searches, based on the Dijkstra’s algorithm.
This straightforward algorithm is hereafter referred to as the NTP-Dij algorithm for convenience. In the
NTP-Dij algorithm, a forward shortest path search is firstly carried out from the origin to determine
the earliest arrival time at every node. Then, a backward shortest path search is performed from the
destination to obtain the latest departure time at every node. Finally, the accessible nodes (and links)
can be determined by checking whether their earliest arrival time is larger than the latest departure
time. Such a NTP-Dij algorithm is easy to implement by directly using the classical shortest path
algorithm (i.e., Dijkstra’s algorithm). However, it requires exploration of the whole network twice,
and leads to considerable computational overheads, given the fact that accessible nodes in the NTP
are generally only a small portion of the entire network. To reduce the number of explored nodes,
Kuijpers and Othman [28,29] proposed an algorithm (called NTP-SN in this study) to construct the NTP
in a sub-network instead of the whole network. The sub-network is generated by selecting nodes and
links within the STP in the planar space. Nevertheless, the computational advantage of this NTP-SN
algorithm is marginal, because the STP in the planar space is generally quite large compared with
the actual NTP [28,29]. Further, although several NTP construction algorithms have been developed,
there is a lack of numerical experiments in the literature to systematically investigate the computational
performance of existing NTP construction algorithms in real road networks.

To fill this gap, this study investigates models and geo-computational algorithms for efficiently
constructing NTPs in real road networks. This study contributes to time-geography literature in the
following aspects:

Firstly, an improved NTP model is proposed by considering the complexities of road networks,
including turn restrictions and divided/undivided roads. The proposed NTP model differentiates
divided and undivided roads, and allows for individuals to make U-turns and access partial links
on undivided roads. The proposed model, thus, enhances the realistic representation of NTPs in
road networks.

Secondly, an efficient geo-computational algorithm, called NTP-A*, is developed to construct
NTPs in large-scale road networks. In the proposed NTP-A* algorithm, turn restrictions and partially
accessible links on undivided roads are explicitly considered. The A* and branch-and-bound techniques
are employed to improve the NTP construction performance by discarding inaccessible links during
shortest path searches. The label-correcting and hybrid link-node labeling techniques are also
introduced in order to improve the NTP construction performance. The proposed NTP-A* algorithm,
therefore, significantly improves the NTP construction performance in large-scale road networks.

Thirdly, a comprehensive case study using several real road networks is carried out to
examine the computational performance of the proposed NTP-A* algorithm. Two existing NTP
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construction algorithms, NTP-Dij and NTP-SN, are also implemented for comparison purposes. Several
implantation techniques (including the A* technique, branch-and-bound technique, label-correcting
technique and hybrid link-node labeling technique) in the NTP construction are examined and
discussed. The results of the case study indicate that the proposed NTP-A* algorithm can significantly
improve the existing NTP-Dij and NTP-SN algorithms by a factor of 100 in large-scale road networks.

The remainder of this paper is structured as follows. In the next section, the classical STP model
in the planar space is briefly introduced to provide a necessary background. The improved NTP model
is introduced in Section 3. The proposed NTP-A* algorithm is presented in Section 4. Computational
experiments using real-world road networks are reported in Section 5. Finally, the conclusions and
future research recommendations are given in Section 6.

2. The Classical Space-Time Prism Model in the Planar Space

This section briefly introduces the classical Space-time prism (STP) model in the planar space.
Figure 1 illustrates this prism model in a three-dimensional (3D) space, where the x and y axes represent
two-dimensional (2D) geographic space and the t axis represents time. Suppose an individual planning
to conduct two fixed activities at origin o = (xo, yo) and time instance to, and destination d = (xd, yd)

and time instance td, respectively. The STP delimits Space-time extents for the individual to schedule
another flexible activity between these two fixed activities. Analytically, the STP can be constructed
by the intersection of a forward cone, a backward cone, and a cylinder. The forward cone, FC(t),
consists of all locations that can be reached from the origin at time t; the backward cone, BC(t),
comprises all locations that can arrive at the destination given the remaining time ts − t; and the
cylinder, CY(t), delimits all geographic locations within the potential path area (PPA). According to
Reference [2], the STP in the planar space can be formally expressed as

STP(t) = FC(t) ∩ BC(t) ∩CY(t) (1)

FC(t)= {w|t ≥ to + tow
E , t ≤ td} (2)

BC(t)= {w|t ≤ td − twd
E , t ≥ to} (3)

CY(t)= {w|tow
E + twd

E ≤ td − to − cmin, to ≤ t < td} (4)

where cmin is the minimum duration for flexible activity participations, tow
E is the Euclidean travel time

from the origin to a location w = (xw, yw), and twd
E is the Euclidean travel time from the location w

to the destination. In the planar space, the Euclidean travel times (i.e., tow
E and twd

E ) can be calculated
simply as Euclidean distances (denoted by dow

E and dwd
E ) between these two locations divided by the

maximum travel speed vmax.
Projecting the STP onto the 2D geographical space forms a PPA that includes all accessible

locations for flexible activity participations in the 2D geographic space as:

PPA = {w|tow
E + twd

E ≤ b} (5)

where b = td − to − cmin is the maximum time budget for traveling. The height of the Space-time
prism at location w represents the maximum activity duration, cw, at the location as:

cw = t+w − t−w = (td − twd
E )− (to + tow

E ) (6)

where t−w = to + tow
E is the earliest arrival time at the location, and t+w = td − twd

E is the latest departure
time from the location.

The above classical STP model in the planar space can be easily constructed and have rigorous
formalization. However, this model builds on an unrealistic assumption that movements occur at
a constant speed everywhere in the planar space [2,12,13,15]. In reality, people in urban areas do not
move freely in the planar space, but, rather, within spatially embedded road networks. The classical STP
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model, thus, oversimplifies real travel environment complexities, and is inadequate for an individual’s
activity-travel scheduling.ISPRS Int. J. Geo-Inf. 2016, 5, 214 4 of 16 
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Figure 1. Space-time prism and related concepts.

3. Constructing Space-Time Prisms in Road Networks

This section formulates a network-time prism (NTP) model, considering the complexities of
road networks, including turn restrictions and divided/undivided roads. A road network can be
represented as a directed graph G(N, A, Ψ), comprising a set of nodes N, a set of links A, and a set
of allowed turns Ψ. Each directed link aij ∈ A has a tail node i, a head node j, and a link travel time
tij. A turn ψijk ∈ Ψ, passing through links aij and ajk, represents an allowed movement at node j
(e.g., right turn or U-turn). Further, ψijk /∈ Ψ means that the movement from link aij to link ajk is
restricted at node j (e.g., left turn ψ125 in Figure 2). In addition to making turns at nodes, U-turns are
allowed at any location on an undivided link (e.g., a minor road), but restricted on a divided link
(e.g., an arterial road). For example, a12 and a21 in Figure 2 are two opposite links of an undivided road,
and travelers can freely make U-turns between these two links. It should be noted that a two-way
road, regardless of whether it is divided or undivided, is represented by two opposite directed links,
while a one-way road is represented by only one directed link.
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Any location w = (xw, yw) in the network can be represented as (aij, θw) using the linear reference
technique [23,32], where θw ∈ [0, 1] is the relative position on the link aij ∈ A. For example, location
w = (a23, 0.5) in Figure 2 indicates the middle of link a23. The travel times of partial links aiw and awj
are assumed to be proportional to their distance as:

tiw = θwtij (7)

twj = (1− θw)tij (8)

Let pwl
R be the least time path between two locations, w = (xw, yw) and l = (xl , yl). The path

travel time, twl
R , can be calculated by summing the corresponding link travel times along the path:

twl
R = ∑

∀aij

tijδ
wl
ij (9)

where δwl
ij is the link-path incidence relationship, δwl

ij = 1 means that (partial) link aij is on path pwl
R ,

and otherwise δwl
ij = 0. In the road network with turn restrictions, the least time path can be determined

by shortest path algorithm using a link-based labeling technique [33]. It should be noted that the
classical node-based Dijkstra’s algorithm [34] ignores turn restrictions and may lead to infeasible paths.

Let tow
R be the least travel time from the origin to location w, and let twd

R be the least travel time
from location w to the destination. By replacing tow

R and twd
R with tow

E and twd
E in Equations (1)–(4),

the NTP in the road network can be expressed as

NTP(t)= FC(t) ∩ BC(t) ∩CY(t) (10)

FC(t)= {w|t ≥ to + tow
R , t ≤ td} (11)

BC(t)= {w|t ≤ td − twd
R , t ≥ to} (12)

CY(t)= {w|tow
R + twd

R ≤ td − to − cmin, to ≤ t < td} (13)

This NTP delimits an individual’s accessible Space-time locations in the road network between
origin o = (ao, θo) and destination d = (ad, θd) during the time period of to to td. The height of the
NTP at location w represents the maximum activity duration cw at the location as:

cw = t+w − t−w = (td − twd
R )− (to + tow

R ) (14)

where t−w = to + tow
R and t+w = td− twd

R , respectively, are the earliest arrival time and the latest departure
time from the location.

Figure 3 illustrates a simple NTP in a road network. As can be seen in the figure, the NTP
comprises a set of 2D Space-time polygons {. . . , Qij . . .} on network links. Each Space-time polygon
Qij = {(xi, yi, t+i ), . . . , (xj, yj, t+j ), (xj, yj, t−j ), . . . , (xi, yi, t−i )} represents all accessible Space-time
locations along network link aij [23]. The projection of the NTP onto the 2D geographic space is

the potential network area (PNA), comprising a set of accessible (partial) links {. . . , aij . . .}. Let poj
R be

the least time path from origin o to node j passing through link aij, and let pid
R be the least time path

from node i to destination d passing through link aij. Their path travel times are toj
R and tid

R , respectively.
Accessible link aij ∈ PNA should satisfy following travel time budget constraint:

toj
R + tid

R − tij ≤ b = td − to − cmin (15)

It can be observed from Figure 3 that divided and undivided links could have significant
differences in their 2D polygons. Firstly, identical Space-time polygons can be generated on
two opposite links of an undivided road, but not a divided road. For example, origin o = (a12, 0.5) in
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the figure is located on undivided link a12. Since travelers can make U-turns freely on the undivided
road, identical Space-time polygons (i.e., Qo2 = Q2o and Qo1 = Q1o) are generated on opposite links
a12 to a21. The situation is, however, different for destination d = (a36, 0.5), located on divided link
a36. As travelers cannot make U-turns at divided links, different shapes of Space-time polygons
(i.e., Q63 6= Q3d and Q63 6= Qd6) are generated on opposite links a36 to a63. Secondly, partial links
within the NTP can be observed only on undivided roads and not on divided roads. For example,
it can be seen from the figure that Node 1 is within the PNA, but Node 4 is not. As link a14 is undivided,
travelers can access part of the locations on the link and turn back to Node 1; and, thus, partial links
a1e and ae1 are accessible with Space-time polygons Q1e and Qe1. It can also be seen from the figure
that partial links are not accessible for divided links a56 and a65. Although Node 6 is accessible within
the PNA, travelers cannot reach other locations at the link and return to Node 6 by making U-turns on
the divided link. Therefore, divided and undivided links can have significantly different Space-time
polygons and should be explicitly considered in the NTP model.
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4. Geo-Computational Algorithms for Constructing Network-Time Prisms

Similar to the existing NTP-Dij algorithm [6,31], a straightforward algorithm for constructing
a NTP is to apply two shortest path searches using the link-based one-all Dijkstra’s algorithm [33].
The forward search is used to calculate the least travel time toj

R from origin o to every link aij
(i.e., head node j). The backward search is to calculate the least travel time tid

R from every link
aij (i.e., tail node i) to destination d. Then, accessible links ∀aij ∈ PNA satisfying toj

R + tid
R − tij ≤ b

can be identified. This straightforward algorithm is easy to implement by directly using the existing
link-based Dijkstra’s algorithm. However, it can lead to considerable computational overheads by
exploring all network links twice, given the fact that accessible links in the NTP are generally a small
portion of the entire network.

In this study, an efficient algorithm (called the NTP-A* algorithm) is proposed by using A*
and branch-and-bound techniques. The A* technique, utilizing a heuristic evaluation function,
is proved to be effective in improving shortest path search performance. The branch-and-bound
technique tries to discard inaccessible links ∀aij /∈ PNA (i.e., toj

R + tid
R − tij > b = td − to − cmin) during

forward and backward shortest path searches, rather than after the shortest path searches. Using these
two techniques, the proposed NTP-A* algorithm can significantly reduce the number of explored
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links by the two shortest path searches and can thereby improve the NTP construction performance.
The detailed steps of the NTP-A* algorithm are described below.

Step 1. Road network modification. In classical shortest path algorithms, the origin and
destination should be located at network nodes. This step is to address the situation of the origin at
link aij (destination at link auv) by adding temporary node o (d) and links aio and aoj (aud and adv) into
network G. If link aij (auv) is an undivided link, additional temporary links aoi and ajo (adu and avd) are
also added in the opposite direction.

Step 2. Forward shortest path search. This step is to determine the least travel time toj
R from

the origin to each network link aij by using the following R-FSP procedure (Road–Forward Search

Procedure). Using the A* technique, a heuristic evaluation function F(j) = toj
R + h(j) is used as heuristic

cost for the forward shortest path poj
R from the origin to link aij, where h(j) is the estimated lower

bound of tid
R − tij. Since the Euclidean travel time tjd

E from node j to the destination always satisfies

tjd
E ≤ tid

R − tij, this study adopts tjd
E as the admissible h(j) value. The tjd

E in the planar space can be

calculated by djd
E /vmax

R , where vmax
R is the maximum travel speed in the road network. Using the A*

technique, the information of each link to the destination can be fully utilized to guide the forward
shortest path search. The branch-and-bound technique is further incorporated in the forward search to
discard all paths poj

R , ∀aij ∈ A satisfying F(j) = toj
R + tjd

E > b. Because toj
R + tid

R − tij ≥ F(j) = toj
R + tjd

E
always holds, all paths satisfying F(j) > b can be identified as inaccessible links outside the NTP,
and thus can be eliminated during the forward search. In this way, the forward search explores only
a part of links poj

R 6= φ, ∀aij ∈ A; other links poj
R = φ, ∀aij ∈ A outside the NTP are not explored.

R-FSP Procedure

Inputs: origin o and destination d, travel time budget b
Outputs: the least travel times at accessible links
Step 1. Initialization:
01: For each link aij ∈ A
02: Set forward path poj

R := φ, its travel time toj
R := ∞ and heuristic cost F(j) := ∞.

03: End For
04: For each link aoj emanating from origin o
05: Create a forward path poj

R := aoj, and set toj
R := toj and F(j) := toj + tjd

E .
06: Insert poj

R into the scan eligible SE := SE ∪ {poj
R}.

07: End For
Step 2. Path selection:
08: If SE = φ, then stop; otherwise, continue.
09: Select poi

R at the top of SE, and remove it from SE := SE− {poi
R}.

Step 3. Path extension:
10: For each allowed movement ψkij from selected link aki to link aij

11: Create a forward path p̂oj
R := poi

R ⊕ aij, and set t̂oj
R := toi

R + tij and F(j) := t̂oj
R + tjd

E .
12: If F(j) ≤ b then
13: If t̂oj

R is less than the existing path travel cost toj
R then

14: If existing path poj
R ∈ SE, then set SE := SE− {poj

R}.
15: Set poj

R := p̂oj
R and SE := SE ∪ { p̂oj

R}.
16: End If
17: End If
18: End For
19: Go back to Step 2.
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Step 3. Backward shortest path search. This step is to determine the least travel time tid
R from

each network link aij to the destination by using the following R-BSP procedure (Road-Backward
Search Procedure). Using the A* technique, the heuristic evaluation function F(i) = tid

R + h(i) is used
as the path heuristic cost for the backward shortest path from the destination to link aij, where h(i) is

an estimated lower bound of toj
R − tij. In this study, the least travel time toj

R − tij calculated in the forward

search is utilized as the h(i) value in this backward search. Unexplored links (with poj
R = φ, toj

R + tjd
E > b)

in the forward search are outside the NTP and thus can be safely discarded in the backward search.
Using this method, the results of the forward search are fully utilized to speed up the backward search.
The branch-and-bound technique is incorporated to discard all links outside the NTP (i.e., all paths
satisfying F(i) = toj

R + tid
R − tij > b) during the backward shortest path search process. After the back

search, explored links with pid
R 6= φ, ∀aij ∈ A can be determined as accessible full links within the NTP.

R-BSP Procedure

Inputs: origin o and destination d, travel time budget b
Outputs: all accessible links in the network-time prism
Step 1. Initialization:
01: For each link aij ∈ A
02: Set backward path pid

R := φ, its travel time tid
R := ∞ and heuristic cost F(i) := ∞.

03: End For
04: For each link aid merging to destination d
05: If forward path pod

R 6= φ at link aid then
06: Create a backward path pid

R := aid, and set tid
R := tid and F(i) := tid

R + tod
R − tid.

07: Insert pid
R into the scan eligible SE := SE ∪ {pid

R }.
08: End If
09: End For
Step 2. Path selection:
10: If SE = φ, then stop; otherwise, continue.
11: Select pjd

R at the top of SE, and remove it from SE := SE− {pjd
R }.

Step 3. Path extension:
12: For each allowed movement ψijk from link aij to selected link ajk

13: If forward path poj
R 6= φ at link aij then

14: Create a backward path p̂id
R := aij ⊕ pjd

R , and set t̂id
R := tjd

R + tij and F(i) := t̂id
R + toj

R − tij.
15: If F(i) ≤ b then
16: If t̂id

R is less than the existing path travel cost tid
R then

17: If existing label pid
R ∈ SE, then set SE := SE− {pid

R }.
18: Set pid

R := p̂id
R and SE := SE ∪ { p̂id

R }.
19: End If
20: End If
21: End If
22: End For
23: Go back to Step 2.

Step 4. Potential network area construction. This step is to determine accessible full and partial
links in the NTP. Using the results of Step 3, all accessible full links can be easily determined as
the explored links (with pid

R 6= φ, ∀aij ∈ A). Among them, divided and undivided full links are
maintained, respectively, in two link sets, DL and UL. For each accessible undivided full link aij ∈ UL,
its opposite link aji is also included in UL. All accessible partial links are identified and stored in
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another set, PL. Any accessible partial link ajk ∈ PL can be identified if the link ajk is undivided,
satisfies ajk /∈ (DL ∪UL), and connects to an accessible link aij ∈ (DL ∪UL), ∃ψijk = (aij, ajk).

Step 5. Network–time prism construction. This step is to construct Space-time polygon Qij for
each accessible (partial) link aij. Different shapes of space-time polygons are constructed for links in
DL, UL and PL as follows:

â The divided link scenario (i.e., aij ∈ DL). The earliest arrival time and latest departure time at

tail node i can be calculated as t−i = to + toj
R − tij and t+i = td − tid

R . The earliest arrival time

and latest departure time at head node j are determined as t−j = to + toj
R and t+j = td − tid

R + tij.

The Space-time polygon can be constructed as Qij = {(xi, yi, t+i ), (xj, yj, t+j ), (xj, yj, t−j ), (xi, yi, t−i )}.
If the link aij has one or many intermediate vertices, then (xw, yw, t−w ), (xw, yw, t+w ) are also
calculated and included in Qij for each intermediate vertex w. The t−w and t+w values at each
vertex w can be interpolated from those of the tail and head nodes.

â The undivided link scenario (i.e., aij ∈ UL). Firstly, two Space-time polygons Qij and Qji are
constructed for two opposite links aij and aji, using the same method of the above-mentioned
divided link scenario. Then, constructed polygons Qij and Qji are merged into a new polygon Qij.
Finally, the merged polygon Qij is set as the polygons for both links aij and aji.

â The partial link scenario (i.e., ajk ∈ PL). Let PDS(ajk) = {ψijk = (aij, ajk) ∈ Ψ} be a set of accessible
predecessor links of the link ajk. The earliest arrival time and latest departure time at node j are

determined as t−j = min(to + toj
R ) and t+j = max(td − tid

R + tij) among all accessible predecessor
links, ∀aij ∈ PDS(ajk). To determine accessible partial link aje, its end node e = (ajk, θe) is
calculated by θe = (t+j − t−j − cmin)/(tjk + tkj). Its earliest arrival time and latest departure time

are calculated as t−e = t−j + tjkθe and t+e = t+j − tjkθe. A Space-time polygon is constructed for

partial link aje through ψijk as Qje = {(xj, yj, t+j ), (xe, ye, t+e ), (xe, ye, t−e ), (xj, yj, t−j )}. If partial link
aje has one or many intermediate vertices, then the corresponding (xw, yw, t−w ), (xw, yw, t+w ) are
also calculated and included in Qje for every intermediate vertex w. Then, using a similar method,
polygon Qek for partial link ake in the opposite direction is constructed. These two constructed
polygons, Qje and Qek, are merged into a new polygon Qjk. Finally, the merged polygon Qjk is set
as polygons for both directions.

Step 6. Road network restoration. This step is to restore road network G by removing the temporary
nodes and links added in Step 1.

The computational complexity of the proposed NTP-A* algorithm is analyzed. With the
implementation of a priority queue using the F-heap structure [35], both forward and backward
shortest path searches (Steps 2 and 3) require O(|Ψ|+ |A|Log|A|) in the worst case, where |Ψ| is the
number of turns in the road network and |A| is the number of links in the road network. In Steps 4 and
5, both PNA construction and NTP construction run in O(|A|). In summary, the total computational
time is O(|Ψ|+ |A|Log|A|). Therefore, the performance of the NTP-A* algorithm is dominated by the
two shortest path searches in Steps 2 and 3.

The improvement of the two shortest path searches (i.e., R-FSP and R-BSP algorithms) could
significantly enhance the NTP construction performance. In addition to A* and branch-and-bound
techniques, several implementation issues can affect the shortest path searching performance.
Conventionally, the A*-based shortest path searches utilize the label-setting technique by using
priority queue data structures (e.g., F-heap) for SE (scan eligible) implementation. The label-correcting
technique, by using the linked-list data structure, is suggested for the proposed NTP-A* algorithm due
to its computational efficiency. In the above-mentioned R-FSP and R-BSP algorithms, the link-based
labeling technique [33] is adopted to consider turn restrictions in the road network. Recently,
Li et al. [36] proposed a new hybrid link-node labeling technique by adaptively using a node-based
labeling technique at nodes without turn restrictions and a link-based labeling technique at
nodes with turn restrictions. It was reported [36] that the hybrid link-node labeling technique
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can determine the least time path in a road network with turn restrictions, while achieving
a similar computational performance as the classical node-based Dijkstra’s algorithm. It is noted
that, theoretically, these techniques (i.e., A* and branch-and-bound techniques, and label-correcting
and hybrid link-node labeling techniques) do not affect the worst-case complexity of the NTP-A*
algorithm (which is the same as that of the existing NTP-Dij and NTP-SN algorithms). In practice,
these techniques can significantly enhance the NTP construction performance in real-world road
networks. The effectiveness of such techniques will be examined and discussed in the next section
though a comprehensive case study.

5. Case Study

In this study, a comprehensive case study using real-world road networks is carried out to
investigate the computational performance of the proposed NTP-A* algorithm. The proposed NTP-A*
algorithm was implemented using the Visual C# programming language. A link-based adjacency list
structure [33] was employed to load the road network into the memory. The link-based label-correcting
technique was adopted for implementing the R-FSP and R-BSP procedures. For comparison, three other
NTP construction algorithms were also implemented using the same programming language.
The first algorithm, called NTP-BB, only employs the branch-and-bound technique, but sets the
heuristic evaluation function to be zero for both R-FSP and R-BSP algorithms. The second algorithm,
called NTP-Dij, employs neither the A* technique nor the branch-and-bound technique. This algorithm
was modified from the existing straightforward algorithm [31] by using the link-based Dijkstra’s
algorithm to consider the turn restrictions in road networks. The third algorithm (called NTP-SN) was
implemented based on the existing algorithm of constructing the NTP within a sub-network [28,29].
In this NTP-SN algorithm, the sub-network was constructed by selecting nodes and links within the
STP in the planar space; and then the NTP-Dij algorithm was directly utilized to construct the NTPs.
In the implementation, the sub-network was generated by simply setting an “enable” attribute as true
for corresponding nodes and links within the sub-network. The maximum travel speed (i.e., vmax

R ) was
set as 120 km/h. In this case study, all experiments were conducted on a MacBook Air laptop with
a four-core Intel i7 CPU running at 2.0 GHz and the Windows 7 operating system.

The road network in Wuhan, China, with detailed information of turn restrictions and
divided/undivided roads, was adopted for this case study. As shown in Figure 4, the Wuhan road
network consists of 19,306 nodes, 46,757 links and 128,965 turns. In this road network, 24,909 links
are divided (i.e., 53.3% of total links) and other 21,848 links (i.e., 46.7% of total links) are undivided.
The number of restricted turns is 1681, accounting for only 1.30% of total turns. To obtain link travel
times of the Wuhan road network, real-world floating car data (FCD) were collected on a typical
Thursday (3 September 2009). Figure 4 shows the estimated travel times during an evening peak
period (6 p.m.–7 p.m.). For the detailed method of estimating these travel times, interested readers
may refer to Reference [5].

Table 1 reports the computational performance of all four algorithms (i.e., NTP-A*, NTP-BB,
NTP-Dij and NTP-SN) in the Wuhan road network. The travel time budget (i.e., b) values were set
from 10 to 150 min. The size of a NTP was measured by the percentage of links within the NTP over
the whole network. The computational performance of all algorithms was measured by computational
times (̃t) and the number of selected links (ñ). The reported computational performance was the
average of 100 runs using different origin and destination (O-D) pairs. The 100 O-D pairs were
randomly generated in the network and the same set of O-D pairs was used for all algorithms.
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Table 1. Computational performance of the four algorithms.

Travel Time
Budget (min)

NTP
Size

NTP-A* NTP-BB NTP-Dij NTP-SN

t̃ ñ t̃ ñ t̃ ñ t̃ ñ

10 1.02% 5.75 3020 7.52 7694 629.23 743,853 71.28 101,899
20 2.96% 14.55 12,612 21.31 34,343 629.23 743,853 364.45 461,742
30 8.09% 36.02 36,300 63.16 99,646 629.23 743,853 539.69 671,069
40 14.18% 77.91 76,918 149.87 216,165 629.23 743,853 667.78 743,853
50 21.69% 143.75 137,844 293.11 368,942 629.23 743,853 667.78 743,853
60 31.27% 243.12 218,397 399.09 514,266 629.23 743,853 667.78 743,853
90 63.83% 468.05 472,997 565.62 697,992 629.23 743,853 667.78 743,853
120 88.32% 531.21 633,165 586.07 725,898 629.23 743,853 667.78 743,853
150 96.71% 593.18 702,050 600.09 736,739 629.23 743,853 667.78 743,853

t̃: Computational time in ms; ñ: Number of selected links.

As can be seen from the table, the computational performance of the NTP-A* algorithm degraded
with the increase of the travel time budget (i.e., b) values. For example, when b = 10 min, the NTP-A*
algorithm requires only 5.75 ms. When b = 150 min, this computational time significantly increases to
593.18 ms. This result is obvious, due to the increase in NTP size from 1.02% to 96.71% when the b values
increase from 10 to 150 min. It can be observed from the table that the travel time budget parameter has
no impact on the computational performance of the NTP-Dij algorithm, which consumed 629.23 ms
for all b values. This is because the NTP-Dij algorithm utilizes two one-to-all shortest path searches
to determine the earliest departure time and latest arrival time for every network link, regardless of
different b values. The NTP-Dij algorithm, therefore, can have a significant computational overhead
by exploring a large number of unnecessary network links, when the NTP size is small. For example,
when b = 10 min, the computational time consumed by the NTP-Dij algorithm was about 108 times
(i.e., 629.23/5.75 − 1) more than that of the proposed NTP-A* algorithm.
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Compared with the NTP-Dij algorithm, the NTP-SN algorithm constructs the NTP in a sub-network
within the STP in the planar space, instead of the whole network. It can be seen from the table that
this NTP-SN algorithm can improve the NTP construction performance when the travel time budget
is very small (e.g., b = 10 min). However, this computational improvement degrades quickly with
the increase of the travel time budget (e.g., b = 30 min). This is because the sub-network defined by
the STP in the planar space was generally quite a bit larger than the actual NTP. When the travel time
budget becomes large (e.g., b > 30 min), the sub-network may reach the whole network. In this case,
the sub-network generation can introduce an additional computational burden.

The proposed NTP-A* algorithm utilizes both A* and branch-and-bound techniques to improve
the NTP construction performance. The effectiveness of the branch-and-bound technique was investigated
through a comparison between the NTP-Dij and NTP-BB algorithms. Using the branch-and-bound
technique, the NTP-BB algorithm can discard inaccessible network links of which travel times to
the destination (i.e., tid

R ) (or from the origin, i.e., toj
R ) are larger than the given travel time budget b.

Compared with the NTP-Dij algorithm, this introduced branch-and-bound technique can significantly
reduce the number of explored unnecessary links and thereby improve the NTP construction
performance. For example, when b = 10 min, the branch-and-bound technique reduced the number of
selected links by 98.96% (i.e., 1 − 7694/743853). The NTP-BB algorithm, therefore, runs about 83 times
faster than the NTP-Dij algorithm when b = 10 min. Nevertheless, it can be found from the table that
the effectiveness of the branch-and-bound technique degrades with the increase of travel time budget
values, and becomes marginal when the size of the NTP approaches the whole network (i.e., 100%).

The effectiveness of the A* technique was examined by a comparison between the NTP-BB
and NTP-A* algorithms. In the proposed NTP-A* algorithm, both the A* and branch-and-bound
techniques were employed to discard the unnecessary links of which heuristic costs to the destination
(i.e., tid

R + h(i)) (or from the origin, i.e., toj
R + h(j)) are larger than the given travel time budget b. In the

forward search, a heuristic function h(j) = tjd
E was introduced by incorporating the information of each

link to the destination, while, in the backward search, the heuristic function h(i) = toi
R was adopted

by best using the forward search results. Compared with the NTP-BB algorithm, the introduced
A* technique was effective in reducing the number of selected links by 60.75% and improved the NTP
construction performance by 30.78% when b = 10 min. The effectiveness of this A* technique became
more distinct when a medium-size NTP was used. For example, when b = 40 min, the A* technique
can reduce the number of selected links by 62.63% and improve the NTP construction performance by
103.90%. Similar to the branch-and-bound technique, the effectiveness of the A* technique becomes
marginal when the size of the NTP approaches that of the whole network.

Several implementation techniques of the proposed NTP-A* algorithm were also examined.
Examined first was the effectiveness of the label-correcting technique in SE implementation.
Conventionally, the A*-type shortest path algorithm utilizes the label-setting technique [37,38].
For comparison, this label-setting technique was also implemented in the case study using
an F-heap data structure [35] (called the NTP-A*-LS algorithm). Figure 5 illustrates the computational
performance of the NTP-A* and NTP-A*-LS algorithms in the Wuhan road network. As shown in
the figure, the NTP-A* algorithm using the label-correcting technique runs faster than the NTP-A*-LS
algorithm using the label-setting technique. This is because the priority queue structure in the
label-setting technique was computationally expensive relative to the linked-list data structure used in
the label-correcting technique.
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The labeling techniques for considering turn restrictions were then examined. The NTP-A*
algorithm (i.e., the R-FSP and R-BSP procedures) based on the link-based labeling technique can be
further enhanced by using the hybrid link-node labeling technique [36]. The hybrid link-node labeling
technique adaptively uses the node-based labeling technique for unrestricted nodes without turn
restrictions, and the link-based labeling technique for restricted nodes with turn restrictions. Using this
hybrid link-node labeling technique, the number of paths generated, evaluated and maintained at
unrestricted nodes can be reduced compared with the link-based labeling technique. Because the
number of restricted nodes was small in most road networks (e.g., the Wuhan network), such a hybrid
link-node labeling technique can significantly improve the computational performance of the R-BSP
and R-BSP procedures. The enhanced algorithm was referred as the NTP-A*-HLN algorithm for
convenience. As can be seen in the figure, the NTP-A*-HLN algorithm runs 1.99 times faster than the
NTP-A* algorithm when b = 60 min.

The computational performance of the proposed NTP-A*-HLN algorithm was further examined
using four road networks with different sizes. Two existing algorithms (NTP-Dij and NTP-SN) were
also examined for comparison. In addition to the Wuhan network, three other networks, the Hong Kong
RTIS, the Chicago Regional and the Beijing network, were obtained from References [36,38]. Table 2
gives the computational performance of the three algorithms. The reported computational performance
was the average of 100 runs using randomly generated O-D pairs for each network. The travel time
budget parameter was set as 30 min for all networks.

Table 2. Computational times of the three NTP construction algorithms in ms.

Networks Nodes Links NTP Size NTP-A*-HLN NTP-Dij NTP-SN

Hong Kong RTIS 1367 3655 25.32% 2.85 8.76 9.61
Chicago Regional 12,981 39,018 7.32% 19.60 1459.42 1178.01
Wuhan network 19,306 46,757 8.09% 17.66 629.23 539.69
Beijing network 59,541 114,737 7.01% 52.01 7809.83 4891.62

As can be seen from the table, the computational times of the three algorithms increased with
the network size. The NTP-A*-HLN algorithm consumed only 2.85 ms for constructing NTPs in the
Hong Kong RTIS with 3655 links. When the Beijing network was used, the size of the road network
increased 30.39 times and the computational time increased by 17.24 times to 52.01 ms. Compared with the
NTP-A*-HLN algorithm, the NTP-Dij algorithm degrades significantly with network size. For example,
when the Beijing network was analyzed, the computational time required by the NTP-Dij algorithm
increased by about 890.53 times (7809.83/8.76 − 1). This is because the NTP-Dij algorithm constructs
the NTP by exploring the whole network twice. In this case, the computational time of the NTP-Dij
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algorithm is more sensitive to the network size. It can be observed from the table that the NTP-SN
algorithm runs in a similar way to the NTP-Dij algorithm. This result confirmed that the effectiveness
of constructing NTPs in the sub-networks using the STP in the planar space is marginal.

6. Conclusions

The Space-time prism is a key concept in time geography for analyzing human activity-travel
behavior under various Space-time constraints. It has broad applications in numerous time-geographic
studies. However, few efficient geo-computational algorithms have been developed in the literature for
constructing network–time prisms (NTPs) in realistic road networks. To fill this gap, this study
investigated NTP models and geo-computational algorithms. A NTP model was proposed to
differentiate divided and undivided roads, and to allow individuals to make U-turns and access
partial links on undivided roads. A geo-computational algorithm (called NTP-A*) was developed
for efficiently constructing NTP in large-scale road networks. In the proposed algorithm, the A*
and branch-and-bound techniques were employed to improve the NTP construction performance
by discarding inaccessible links during two shortest path searches. The label-correcting and hybrid
link-node labeling techniques were employed to improve the performance of constructing NTPs in road
networks with turn restrictions. A comprehensive case study using four real road networks was carried
out to demonstrate the computational advantage of the proposed NTP-A* algorithm. Experimental
results showed that the proposed NTP-A* algorithm can significantly improve the existing algorithms
(i.e., NTP-Dij and NTP-SN) by a factor of 100 in large-scale road networks (e.g., the Beijing network).

In this study, travel times in road networks are assumed to be static and deterministic.
The proposed NTP-A* algorithm can be easily extended to construct NTPs in dynamic networks,
where link travel times are varying with the time of the day. In this dynamic case, time-dependent
shortest path algorithms [39] should be adopted instead of the classical Dijkstra’s algorithm.
The introduced implementation techniques (including the A* and branch-and-bound techniques)
are still effective for such a dynamic case. The proposed NTP-A* algorithm can also be extended
to construct reliable Space-time prisms [17] in road networks with travel time uncertainties. In this
stochastic case, both the A* and branch-and-bound techniques are effective, but reliable shortest path
algorithms [38,40,41] should be employed for the two shortest path searches. However, the NTP
construction problem becomes challenging when both dynamic and stochastic characteristics of travel
times are considered. In the dynamic and stochastic networks, path travel times are found to be
non-reversible [42] and cannot be generated in the reverse direction from the destination. It is an open
question how to develop an efficient approach to determine the latest departure times for all accessible
nodes. We leave this important extension to future research.
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