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Abstract: Forest biomass is an important parameter for quantifying and understanding biological
and physical processes on the Earth’s surface. Rapid, reliable, and objective estimations of forest
biomass are essential to terrestrial ecosystem research. The Geoscience Laser Altimeter System (GLAS)
produced substantial scientific data for detecting the vegetation structure at the footprint level. This
study combined GLAS data with MODIS/BRDF (Bidirectional Reflectance Distribution Function)
and ASTER GDEM data to estimate forest aboveground biomass (AGB) in Xishuangbanna, Yunnan
Province, China. The GLAS waveform characteristic parameters were extracted using the wavelet
method. The ASTER DEM was used to compute the terrain index for reducing the topographic
influence on the GLAS canopy height estimation. A neural network method was applied to assimilate
the MODIS BRDF data with the canopy heights for estimating continuous forest heights. Forest
leaf area indices (LAls) were derived from Landsat TM imagery. A series of biomass estimation
models were developed and validated using regression analyses between field-estimated biomass,
canopy height, and LAI. The GLAS-derived canopy heights in Xishuangbanna correlated well
with the field-estimated AGB (R? = 0.61, RMSE = 52.79 Mg/ha). Combining the GLAS estimated
canopy heights and LAI yielded a stronger correlation with the field-estimated AGB (R2 =0.73,
RMSE = 38.20 Mg/ha), which indicates that the accuracy of the estimated biomass in complex terrains
can be improved significantly by integrating GLAS and optical remote sensing data.

Keywords: GLAS; forest aboveground biomass; MODIS BRDF; Landsat TM; canopy height;
LAIL Xishuangbanna

1. Introduction

As a primary component of the terrestrial ecosystem, forests are the largest terrestrial carbon sink
and the most economical carbon absorber [1]. However, spatial heterogeneity and uncertainty in carbon
sink estimates typically are common in different forests and different regions [2—4]. Forest biomass,
accounting for 90% of the terrestrial vegetation biomass on the earth [5], directly and quantitatively
reflects the amount of carbon storage in a forest and is the most important index and vegetation
structure parameter used to estimate forest ecosystem productivity and to study the carbon cycle
process. Therefore, the rapid and reliable estimation of forest biomass and its spatial distribution is
essential to the studies of regional and global carbon cycle and climate change.

Forest biomass is the total dry weight of organic matter in the forest community during a specified
time period [5]. Traditional methods for measuring forest biomass, such as field surveys that are
human- and cost-intensive, can only obtain measurements at some scales and may lead to destructive
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effects on the ecosystem. Remote sensing provides an alternative approach to monitor and measure
forest biomass more efficiently. Optical remote sensing, the most commonly used approach, has
certain advantages in obtaining forest stand level structure parameters for forest biomass estimation,
but these parameters are subject to various kinds of error and many restrictions [6], including the
vegetation index (e.g., NDVI) saturation, atmospheric correction, and cloudy and rainy weathers.
The development of microwave remote sensing has produced more reliable data for measuring
biomass under all weather conditions, but the signal saturation problem may still exist [7]. Although
polarimetric interferometry SAR/INSAR can address the loss of the estimation accuracy caused by
forest density and structure change, it has restricted data application in regional or global forest
structure parameter inversion due to costly data acquisition and other factors [8].

LiDAR (Light Detection and Ranging) has been used extensively to estimate vegetation canopy
height, forest stock, and aboveground biomass (AGB). The accuracy of LiDAR-measured vegetation
height and biomass typically is 5-10 times greater than that from optical remote sensing data [9-11].
Sun et al. [12,13] conducted theoretical simulations of the Geoscience Laser Altimeter System (GLAS)
waveform and forest structure parameter inversion. According to their results, GLAS data can be used
to estimate forest stand height. Pang et al. [14] used airborne LiDAR data to extract the average tree
height in the Mountain Zulai Forest Trial Plot, Tai’an City, Shandong Province, China, with an overall
accuracy of up to 90.59%. Means et al. [15] used airborne LiDAR to study the vegetation heights of an
Oregon forest stand in the Western United States and determined that the relationship between forest
heights and AGB was significant up to 1300 Mg/ha, even in very dense forests. Since the GLAS points
are discontinuous with relatively low spatial density, they should be combined with other continuous
remotely-sensed data to obtain a continuous high-precision canopy height distribution and biomass
estimation [16]. Therefore, to obtain forest biomass data at a regional scale, Nelson et al. [17] used
GLAS and MODIS data to estimate the forest growing stock in Siberia. The results show that the
combination of GLAS and optical data can significantly improve the accuracy of biomass derivation
results. Lefsky et al. [18] estimated forest biomass by combining forest biomass extracted from airborne
LiDAR data and stand age information extracted from Landsat TM imagery. Huang et al. [19] estimated
forest AGB within GLAS footprints in combination with airborne LiDAR data, the MODIS vegetation
conversion product (MOD44B) and the MERIS land cover product for continuous mapping of the
Yunnan forest AGB, with a coefficient of determination of 0.52 and a root mean square error (RMSE) of
31 Mg/ha.

LiDAR has great application potential for forest AGB estimation. In contrast to the high costs and
spatial limitations of airborne LiDAR, GLAS has a wide observation view and global coverage and
thus has advantages for large-scale forest biomass estimation research. Studies have been conducted
to estimate the forest biomass in Xishuangbanna, Yunnan, China [20-23], but most of these studies
focused on two-dimensional biomass modeling using optical remote sensing or a single parameter
inversion of vegetation height. Steep slopes can lead to a mixed GLAS waveform, which causes
difficulty in decomposing the waveform. In this study, we focused on forest horizontal and vertical
structure information, as well as the terrain slope effect. GLAS, MODIS BRDF (Bidirectional Reflectance
Distribution Function) data and Landsat TM imagery were used to obtain continuous canopy height,
forest type, and LAI Field measured canopy height and LAI were used to construct a multivariable
regression model to achieve accurate forest AGB estimates. The method proposed in this study serves
as an example for other forest structure and AGB estimates in high terrain areas.

2. Study Area and Experimental Data

2.1. Study Area

To evaluate and compare different models for estimating forest AGB, a study in Xishuangbanna
Forest, south of Yunnan province, China, was conducted. The study site covers approximately
20,000 km? and is dominated by tropical rainforest, seasonal rainforest, subtropical evergreen
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broad-leaved forest, coniferous forest, bamboo, shrub, and grass. Rubber plantations are rapidly
expanding. The area of rubber plantations has increased to 205,000 ha during the past 30 years
and comprises approximately 27.06% of the total forest. The second dominated trees are tropical
rainforests [24]. In this study we classified the forests into two categories: rubber plantations, and
tropical rainforests.

2.2. GLAS Data

A detailed introduction to GLAS can be found in Lefsky ef al. [10] and Wang et al. [25]. The data
used in this study were GLA0O1 and GLA14 products acquired in February, 2009. GLAO1 (Class 1A)
records the number of each footprint and full waveform information, and GLA14 (Class 2) contains
pulse record number, longitude, latitude, and elevation. A total of 1938 GLAS footprints fell within the
study area.

2.3. MODIS BRDF Data

MODIS is a sensor with 36 wave bands onboard the Terra and Aqua satellites. MODIS BRDF
is a four-level product with a spatial resolution of 500 m (Ver. 5) and in HDF-EOS format. MODIS
BRDF data reflect the anisotropy of each pixel better and have the ability to retrieve vegetation
structure [26]. The main algorithm of the MODIS BRDF represents the volumetric scattering and
geometric-optical scattering by the Ross-Thick kernel and Li-Sparse Reciprocal kernel, named RTLSR,
shown in Equation (1):

R (9, 0, 4’/ A) = fiso (A> + fvol (A) Kvol (9/ 0, 4’) + fgeo (A) ngo (Gr 0, ¢) (1)

where fis,, foo1, and feeo are weights of isotropic scattering, volumetric scattering, and geometric-optical
scattering, respectively; Kqp and Ky are trigonometric functions of view zenith 6, illumination zenith ¢,
and relative azimuth ¢; these functions provide shapes for the surface-scattering and volume-scattering
BRDFs; R (8, 9, ¢, A) is the bidirectional reflectance distribution function for the waveband A.

The sub-product of the MODIS BRDF/Albedo data, termed MCD43A1, provides the
weighting parameters for the RTLSR model, i.e., the weight of isotropic scattering, the weight of
geometrical-optical scattering, and the weight of volumetric scattering. To synchronize with the GLAS
data, the MCD43A1 products in February 2009 were used in this study.

2.4. Landsat TM Data

Landsat TM data were obtained freely from the Institute of Remote Sensing and Digital Earth
(RADI), Chinese Academy of Sciences (CAS). The data have been ortho-rectified with a spatial
resolution of 30 m from which LAI was derived. We studied 11 vegetation indices from TM data:
NDVI (normalized difference vegetation index), DVI (difference vegetation index), SRVI (simple
ratio vegetation index), PVI (perpendicular vegetation index), SAVI (soil-adjusted vegetation index),
ARVI (atmospherically resistant vegetation index), EVI (enhanced vegetation index), TVI (triangular
vegetation index), MSAVI (modified SAVI), SARVI (soil-adjusted ARVI), and MCARI (modified
chlorophyll absorption in reflectance index), and established the statistical regression model for these
indices and field measured LAI The model of MSAVI and LAI performed best, which is used to derive
LAI in the study, as shown in Equation (2) [27]:

y = 4.4212x — 0.0385 @)

where y is LAI, and x is MSAVI.
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2.5. ASTER GDEM Data

The ASTER DEM (Digital Elevation Model) data were downloaded from NASA to correct the
influence of topographic slope on GLAS waveform parameter. The data was in GeoTIFF format with a
WGS84 coordinate system. The second version of the DEM data covering the study area was used, and
the spatial resolution is 30 m.

2.6. Ground Measured Data

Ground measurements were collected in January of 2012 and April of 2013 using a quadrat survey
method and RTK-GPS, hand-held laser altimeter, measuring tape, diameter tape, angle gauge, and
3D TLS (Terrestrial Laser Scanner, Riegl VZ1000). Figure 1 shows the field sample GLAS footprints.
The coordinate of each footprint was determined using the RTK-GPS. All trees with DBH exceeding
5 cm were measured within a circular area with a diameter of 30 m and centered on the center of
each selected GLAS footprint. The geographic coordinates, dominant tree species, and terrain slope
and slope aspect of each sample plot were recorded, and the DBH, and height of each sampled tree
were measured. Some footprints were scanned with the TLS to acquire accurate vegetation heights
for validating field-measured tree heights. Results showed that the errors in the field measurements
were insignificant. The average height of all trees in one plot is used to represent the field-measured
canopy height of this plot. Sixty-five plots for rubber plantations and 31 for tropical rainforests were
sampled. A tropical seasonal rainforest biomass allometric equation is used to estimate the tropical
rainforest [20]:

w=axD? 3)

where D is DBH, w is biomass, and a and b are parameters. However, when we applied this model to
the study area, different factors, such as time change, terrain characteristics, and vegetation type, could
bring errors. Therefore, a new parameter c was added to the biomass model developed in previous
studies as follows:

w=axD+¢ 4)

where ¢ is a constant. Through a number of experiments, the c values for rubber plantation and
tropical rainforest were found to be —8.99 and —32.12, respectively. We found that the modified models
improved estimation accuracy of single tree (see Figure 2). The total biomass (Mg, dry weight) in each
sample plot is the sum of all trees, and average biomass data (Mg/ha) is calculated. Subsequently,
the biomass data were converted into a 500 m x 500 m grid corresponding to the spatial resolution of
the MODIS data.
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Figure 1. Field sample plots.
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Figure 2. The relationships of biomass and tree heights. (a) Original biomass model vs. tree heights
and (b) modified biomass model vs. tree heights (1 = 65).

3. Methods
3.1. GLAS Data Processing

3.1.1. Pre-Processing

GLAS data preprocessing includes error elimination, data decompression, voltage conversion,
and filtering. The IDL tool available on the National Snow and Ice Data Center (NSIDC) was used to
read the binary GLAS data and convert them into ASCII text files. Data outliers caused by cloud and
system noise were eliminated. To ensure that 544 samples completely comprise the vertical information
within a footprint, the GLAS system records waveforms in the form of subsection compression, and
the waveform data was decompressed based on the compression ratio. GLAO1 and GLA14 were
recorded as digital numbers in binary format. A list of ancillary products are required to produce
GLAS standard products. ANCO07 is one of GLAS ancillary products, which provides constants related
to error, atmosphere, elevation and waveforms. We obtained the ANCO? from the NSIDC. To get
high-quality waveform data, a mean filtering method was applied to the GLAS waveform data in
this study. Mean filtering is a common method for reducing the noise of waveform by averaging the
waveform intensity within a local window [28].

3.1.2. The GLAS Waveform Characteristics Extraction

The distance between the start of the signal and the last peak of a GLAS waveform is related
to the height of the tallest tree in a footprint, although it cannot describe the height information of
all trees within the footprint. Previous studies used the waveform length, leading edge, and trailing
edge of the waveform to estimate the average canopy height [10,25], which can be expressed as the
distance from the first peak of the waveform to the last peak (i.e., the peak of ground return) (Figure 3).
We analyzed the echo data by building models to obtain the peak of the waveform position of different
Gaussian waves. The wavelet analysis method is used to position the peak of the waveform and to
extract waveform length information of the vegetation height peak [25]. Here, the front edge length
of the waveform refers to the distance between the first Gaussian wave peak and the effective signal
starting point. The front edge length reflects the total influence of the vegetation canopy roughness
and the complex terrain relief on the echo signal. The distance between the last Gaussian peak at the
trailing edge of the waveform and the ending point of the effective signal reflects the influence of
topographic slope and surface relief on the echo signal.
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Figure 3. Main characteristics of the GLAS waveform data.

3.1.3. Terrain Correction

The laser echo signal of a large footprint is the result of interaction between the laser pulse and
the vegetation canopy and ground. Topographic slope has remarkable influence on the waveform,
primarily explained by broadening and aliasing the waveform. This study builds a model based on
the measured tree height (H), the waveform length (w), the leading edge length (I) and the trailing
edge length (t) of the waveform, the topographic index (g) and the topographic standard deviation (s)
to reduce the topographic slope influence [28].

The topographic index is a statistical parameter proposed by Lefsky et al. [10,11] to eliminate
the influence of the terrain effect on full waveform data. The index is expressed as the difference
between the maximum and minimum elevation values of an n x n window. The topographic standard
deviation illustrates the feature of the topographic relief and reflects the terrain influence during the
laser echo function process [11]. For the GLAS data and a DEM with a spatial resolution of 30 m,
a 3 x 3 window can be used to reduce the terrain effect on the full waveform data. The topographic
index and standard deviation can be calculated using a DEM. A total of 50 average canopy heights
were used for modeling, as shown in Table 1.

Table 1. Model fitting forest height lists.

No. Parameters Model R?
No. 1 w H = 0.74w + 2.56 0.725
No. 2 w,l H = 0.74w — 0.04] + 2.66 0.726
No. 3 w,8 H = 0.74w — 0.03g + 3.29 0.728
No. 4 w,s H = 0.75w —0.10s + 3.34 0.729
No. 5 w,l,t H = 0.76w + 0.003] + 0.33t + 1.30 0.750
No. 6 w,l, g H = 0.75w — 0.04] — 0.03g + 3.39 0.729
No. 7 w,l,s H = 0.75w — 0.04] — 0.1s + 3.45 0.730
No. 8 w,l,t, g H = 0.77w + 0.01] + 0.35¢t — 0.04g + 2.24 0.756
No. 9 w,l,t,s H = 0.78w + 0.005] + 0.35¢ — 0.13s + 2.25 0.757
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In this study, we used the average of all trees heights within the footprint as the average canopy
height of the footprint (H). From Table 1, we can see that the coefficient of determination of Model
No. 9 is the best. A strong correlation exists between the waveform length and the vegetation height.
The trailing length of the waveform can improve the correlation between the waveform length and the
vegetation height well. Model No. 9 was used to correct the terrain for the GLAS waveform data.

3.2. MODIS Data Pre-Processing

A total of 10 bands of data from MODIS1-7 and three broad bands were provided in the MCD43A1
data, and each band has three BRDF parameters. The band index method proposed by Jiang et al. [29]
was adopted to select the optimal band combination in selecting wave band. The red, blue, and
near-infrared bands were selected. Through format conversion and a multiple-image mosaic, we
obtained the BRDF image of the study area.

3.3. Fusion GLAS with MODIS to Estimate Tree Height

Due to the discontinuous distribution of the GLAS footprints, fusing GLAS with optical remote
sensing data is an effective method to estimate large scale and continuous forest canopy heights.
The model combining the MODIS BRDF data and GLAS was constructed by the BP neural network. The
input layer contains nine nodes, including three BRDF parameters in the red, blue, and near-infrared
bands. The output layer is the canopy height. The BP neural network was trained using 1938 GLAS
points [28].

3.4. Biomass Modeling

First, canopy heights generated by fusing the GLAS data and MODIS/BRDF, and the measured
biomass were used to build a univariate estimation model. Second, the above canopy heights, LAI,
and measured biomass were used to build a multivariate biomass estimation model. Considering the
coefficient of determination and F test value, we selected the optimal model and conducted a scale
transformation and re-sampled the LAI at a resolution of 500 m instead of 30 m. Finally, the best forest
AGB estimation model was developed for Xishuangbanna and was validated using an additional
21 field measured data.

4. Result Analysis

4.1. Continuous Vegetation Heights

Using GLAS sample plots and the MODIS BRDF image, we built a neural network model and
obtained continuous vegetation heights in the study area, as shown in Figure 4. Forty-six field plots of
tree heights were used for validating the estimated results, as shown in Figure 5. The results show that
the coefficient of determination is approximately 0.71 (RMSE = 3.95 m) and that the method developed
in this study can be used to estimate continuous vegetation heights.

Figure 5 shows that most vegetation heights ranged from 12 m to 25 m. The height of the tropical
rainforest in Xishuangbanna was predominantly above 30 m. Broad leaf forest (height <30 m) is the
major vegetation type and accounts for approximately 30.0% of the total area [30]. This indicates that
our results are reasonable to some extent.
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Figure 5. The validation results of the canopy heights (1 = 46).

4.2. Forest AGB Estimation Results

8of 12

A total of 75 field measured biomass data were used to build a series of regression models with
continuous forest canopy height. The results listed in Table 2 (where y is biomass, x; is canopy height,
and x; is LAI) indicate that both polynomial and power functions can produce higher R2. However,
when the power exponent of the power functions is over three, there is little difference in the results.
Moreover, the higher the power exponent, the poorer applicability of the equation. In this study,
Model 2 was used to estimate biomass, with a determination coefficient of 0.61 and F test of 59.23.

The biomass estimation result is shown in Figure 6a.
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Figure 6. Biomass map of the Xishuangbanna forest area. (a) Canopy heights vs.

(b) canopy heights and LAIs vs. biomass.
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Table 2. Regression models lists (Y represents the biomass. x; represents canopy height and x; represents LAL).

9of12

Parameters Function No Models R? F Test
‘ No. 1 y = 1.39 x x? —55.337 x x1 + 603.33 0.60 56.73

Pfﬂgf}ﬁﬁgﬁtn No. 2 y =012 x x3 — 7.43 x 12 + 16232 x x; — 1145.70 0.61 59.23

Height vs. No. 3 y = 1.64 x x22 + 9688.75 x log(x1) — 354.21 x x1 — 6789.48 0.61 59.25
Biomass Exponential No. 4 y = (623 — 5) x x40 4 (3.74¢ — 13) x exp(x1) + 1.20 x x; +17.38 0.60 59.03
function No. 5 Y =623 x exp(x1) + 6291 0.57 51.40

No. 6 y = (5.17e — 13) x exp (x1) + 235.55 x log (x1) — 250.82 0.61 58.84

Polynomial No. 7 y =142 x x2 +3.12 x x5 + 0.51 x x; x xp —59.40 x x1 + 631.70 0.68 79.20

No. 8 y =0.16 x x5 + 0.49 x x3 — 10.70 x x7 +238.61 x x1 + 0.87 x x1 x x, — 1758.11 0.70 87.29

No. 9 y = 0.01 x x313 + (1.57e — 12) x 23>0 +0.68 x x1 x xp —23.57 x x; + 353.64 0.72 99.63

Heights & LAI Power function No. 10 y=(144e-9) ><xZ'38 + (8.72¢ — 10) x x%0'37 +14.73 x xp +10.27 0.73 100.62
vs. Biomass No. 11 y = (1.90e — 12) x 3324 + 1.60 x exp(x2) + 041 x x1 x x, +15.15 0.70 87.60
Logarithmic No. 12 y = —3959.76 x log (x1) + 2.09 x exp (x2) + 83.41 x x1 + 0.10 x x1 x xp + 3505.35 0.67 78.43

function No. 13 y = —4072.12 x log(x1) + (2.79¢ — 12) x x3718 1 84.63 x x1 +0.61 x x7 x x5 + 3624.93 0.71 94.50

Exponential No. 14 y = (5.11e — 13) x exp (x1) + 1.36 x exp (x2) + 1.63 x x1 + 0.55 x x1 x xp — 18.98 0.70 88.12

function No. 15 y = (5.11e — 13) x exp (x1) + 1.71 x x1 + 0.65 x x7 x xp — 14.50 0.71 95.07
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The field measured biomass data were also used to build a regression relation with continuous
forest canopy height and LAL The coefficient of determination was higher than using a single variable,
and both were above 0.67. The power function Model 10 was the best; the coefficient of determination
was 0.73, and F test was 100.62. The biomass estimation result is shown in Figure 6b.

As shown in Figure 6, the biomass in the Xishuangbanna forest area was primarily between
40 Mg/ha and 320 Mg/ha. The estimated AGB values in this study are consistent with some other
previous study results [31].

An additional dataset of 21 field biomass measurements was used to validate these models, and
the analysis results are listed in Table 3. The results show that the mean error (ME) and RMSE in the
estimated biomass using canopy height and LAI as two input variables are less than only using canopy
height as the input parameter. The errors are slightly greater than those in Huang et al. [19]. Using the
regression models developed in this study we can also calculate the total AGB in the Xishuangbanna
forest area, which was 102,307,820 Mg (by the canopy height biomass model), and 110,084,845 Mg
(by the canopy height and LAI-biomass model). Both results are less than 124,695,430 Mg [32], and are
associated with underestimations of 18.0% and 11.7%, respectively. Figure 7 illustrates the scatterplot
of the field-estimated biomass versus the estimated biomass at 21 field-sampling sites. The coefficient
of determination for the univariate estimation biomass model was 0.67 (RMSE = 52.79 Mg/ha), while
for the multivariate estimation biomass model was 0.69 (RMSE = 38.20 Mg/ha), which indicates that
the combination of tree height and LAI can improve biomass estimation accuracy.

Table 3. Biomass estimation accuracy analysis (1 = 21).

Model ME RMSE
Canopy Heights vs. Biomass (Mg/ha) 45.60 52.79
Canopy Heights & LAI vs. Biomass (Mg/ha) 32.45 38.20
230 350 |
I =128x-358?2
T s YOI o - y = 1.65x- 69.32
- R=00 £ 300 | R*=0.69 .
= 250 L L ] d
2 ‘ ° 2 250
4 f 2
| ]
_§ A L g 200
= [ 2
= 150 ‘ g 150 |
5 100 |- 5 100 |
2 : 2 100
Q
2 2 S 50
0 ERST L N LI L7 7 B ST ST [ A I I T P M Y (N MM I P (] ) 0
0 50 100 150 200 250

Estimated Biomass (Mg/ha) Estimated Biomass (Mg/ha)
(a) (b)

Figure 7. Biomass validation results based on unused field-measured data. (a) Heights vs. biomass;
and (b) heights and LAIs vs. biomass (1 = 21).

5. Discussion and Conclusions

In this study, we used multi-source data (GLAS, MODIS, ASTER DEM, and Landsat TM) and
field measurements to build models to estimate the forest above ground biomass in Xishuangbanna
area. Our results indicated that: (1) combining the GLAS, MODIS data, and Landsat TM, we can map
forest AGB with a relatively high accuracy, especially in mountainous forest area; (2) the accuracy of
the estimated biomass strongly influenced by canopy height and LAI and, thus, including the LAI
in the AGB estimation model can improve the accuracy. However, we think that there are several
limitations needed a further study in the future.
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(1) The vegetation index saturation was not considered in the LAI inversion in this study.
Saturation exists when we use optical remote sensing data to retrieve a vegetation index, such as NDVI
or LAI In this study, we derived LAI from Landsat TM in a tropical forest. LAI saturation in some
areas can produce an underestimated AGB in this area. LIDAR can provide relatively accurate LAI
estimation in dense forests which may help to solve this problem [33].

(2) The GLAS system ceased collecting data in 2009; however, the field measurements were
conducted in 2012 and 2013. The time discrepancy between the field measurements the satellite
observations can bring errors in the estimated vegetation height and LAL

(3) In this study, we classified the forests into two categories: tropical rainforest and rubber
plantation, and we used the sum of rubber plantation AGB and tropical rainforest AGB as the total
AGB of the study area. Therefore, error may arise in the final biomass estimation. A biomass estimation
model including all forest types in the study area will improve the estimation accuracy.
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