
 International Journal of

Geo-Information

Article

3-Dimensional Modeling and Simulation of the Cloud
Based on Cellular Automata and Particle System

Shuoben Bi 1,*, Shengjie Bi 2, Xiaowen Zeng 1, Yuan Lu 1 and Hao Zhou 1

1 School of Geography & Remote Sensing, Nanjing University of Information Science and Technology,
Nanjing 210044, China; xiaowenzeng@163.com (X.Z.); luyuan100@126.com (Y.L.);
hao.z.nuist@foxmail.com (H.Z.)

2 Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles,
CA 90095-1594, USA; bishengjie@gmail.com

* Correspondence: bishuoben@163.com; Tel.: +86-25-5869-5671

Academic Editors: Tanvir Islam and Wolfgang Kainz
Received: 28 February 2016; Accepted: 26 May 2016; Published: 6 June 2016

Abstract: The authors combine the cellular automata with particle system to realize the
three-dimensional modeling and visualization of the cloud in the paper. First, we use the principle
of particle systems to simulate the outline of the cloud; generate uniform particles in the bounding
volumes of the cloud through random function; build the cloud particle system; and initialize the
particle number, size, location and related properties. Then the principle of cellular automata system
is adopted to deal with uniform particles simulated by the particle system to make it conform to the
rules set by the user, and calculate its continuous field density. We render the final cloud particles
with a texture map and simulate the more realistic three-dimensional cloud. This method not only
obtains the real effect in the simulation, but also improves the rendering performance.

Keywords: cellular automata; particle system; three-dimensional modeling; simulation; the cloud

1. Introduction

Clouds are a common atmospheric phenomenon. With the development of computer visualization
technologies, computer simulation of clouds becomes possible. Researchers around the world have
done a lot of research on this topic. The research results have been widely used in virtual battlefield
simulations, flight simulations, natural environment building in games and animations. Particularly, the
simulation of clouds in weather forecasting study is even more important. As one of the main weather
information sources, satellite cloud images play a critical role in cloud simulation as original data
sources. Currently, most primary meteorological departments use two-dimensional display technologies
to display and process satellite cloud images. If the cloud images are displayed using three-dimensional
simulation, the spatial distribution of clouds can be recovered. The contrast of clouds at different levels
can be enhanced. Therefore, forecasters can analyze and judge typical weather phenomena, such as
thunderstorms, low vortex, and frontal rain, more easily. Furthermore, the weather forecasting will
be more precise [1]. Scholars around the world have carried out numerous studies and experiments
on cloud modeling and obtained many effective cloud modeling algorithms. These algorithms can be
divided into numerical simulation methods and modeling methods based on appearance.

In order to simulate large-scale clouds, in 2006, Dobashi et al. [2] solved the atmospheric fluid
dynamics equations by mapping them to grids in the polar coordinates, achieving the simulation of
earth-scale clouds. Recently, in order to improve the efficiency of cloud simulation, Wang et al. [3]
divided the three-dimensional space into a one-dimensional space in the vertical direction and a
two-dimensional space in the horizontal direction, transforming complex variables to constants.
They used this simplified solution to implement the simulation of cumulus clouds and reduce

ISPRS Int. J. Geo-Inf. 2016, 5, 86; doi:10.3390/ijgi5060086 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2016, 5, 86 2 of 14

the computational overhead. However, the amount of computation of solving atmospheric fluid
dynamics equations is still large. Therefore, numerical simulation methods are rarely used in fast
cloud simulation. The modeling methods based on appearance include the fractal geometry [4],
metaball algorithm [5], and particle systems [6]. Nishita et al. [5] combined the metaball algorithm
with the fractal algorithm to generate an irregular cloud which looks real with a flat bottom and an
irregular top. Dobashi et al. [7] placed metaballs according to satellite cloud images. They finally
implemented the cloud simulation by adjusting the radii and concentration of the metaballs. In 2008,
Wang et al. [6] utilized the particle system to carry out their research. They controlled the upward
motion of vapor particles by using an approximate numerical model to simulate physical factors.
Meanwhile, the life cycle of a particle determines its cohesion time on the grid and its position
change on the grid determines the phase change of the grid, thereby obtaining the cloud form data.
In summary, these methods are simple and have smaller amount of computation. Based on the above
analysis, a three-dimensional modeling algorithm based on the cellular automaton and particle system
is proposed in this paper. In addition, corresponding dynamic simulation is carried out.

2. Simulating Uniform Cloud Particles Using the Particle System

2.1. Overview of the Particle System

The basic idea of the particle system is to assume that an object is composed of numerous
simple-shape particles. Each particle has its own life cycle and the particle will experience four stages
during its lifetime: “birth”, “motion”, “growth”, and “disappearance”. The motion characteristics
of the object can be described by random processes. All particles move and change their shapes
constantly, reflecting the internal nature and dynamics of the irregular object [8,9].

Figure 1 illustrates the flow chart of a closed particle system. First of all, a given number of
particles are generated randomly in the three-dimensional space describing the shape of an object.
Then each particle is given physical properties, such as the state, speed, position, color, and life cycle
based on particle properties. Finally, according to the motion rules of the object, the dynamic property
change equations of the particle are established. During the motion process of particles, we need to
detect whether a particle’s lifetime exceeds a predetermined value. If yes, we should remove these
particles and produce a number of new particles as needed. Finally, rendering and drawing operations
are carried out on the three-dimensional model which is established using the particle system.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 2 of 14 

 

dynamics equations is still large. Therefore, numerical simulation methods are rarely used in fast 

cloud simulation. The modeling methods based on appearance include the fractal geometry [4], 

metaball algorithm [5], and particle systems [6]. Nishita et al. [5] combined the metaball algorithm 

with the fractal algorithm to generate an irregular cloud which looks real with a flat bottom and an 

irregular top. Dobashi et al. [7] placed metaballs according to satellite cloud images. They finally 

implemented the cloud simulation by adjusting the radii and concentration of the metaballs. In 2008, 

Wang et al. [6] utilized the particle system to carry out their research. They controlled the upward 

motion of vapor particles by using an approximate numerical model to simulate physical factors. 

Meanwhile, the life cycle of a particle determines its cohesion time on the grid and its position change 

on the grid determines the phase change of the grid, thereby obtaining the cloud form data. In 

summary, these methods are simple and have smaller amount of computation. Based on the above 

analysis, a three-dimensional modeling algorithm based on the cellular automaton and particle system 

is proposed in this paper. In addition, corresponding dynamic simulation is carried out. 

2. Simulating Uniform Cloud Particles Using the Particle System 

2.1. Overview of the Particle System 

The basic idea of the particle system is to assume that an object is composed of numerous simple-

shape particles. Each particle has its own life cycle and the particle will experience four stages during 

its lifetime: “birth”, “motion”, “growth”, and “disappearance”. The motion characteristics of the 

object can be described by random processes. All particles move and change their shapes constantly, 

reflecting the internal nature and dynamics of the irregular object [8,9]. 

Figure 1 illustrates the flow chart of a closed particle system. First of all, a given number of 

particles are generated randomly in the three-dimensional space describing the shape of an object. 

Then each particle is given physical properties, such as the state, speed, position, color, and life cycle 

based on particle properties. Finally, according to the motion rules of the object, the dynamic property 

change equations of the particle are established. During the motion process of particles, we need to 

detect whether a particle’s lifetime exceeds a predetermined value. If yes, we should remove these 

particles and produce a number of new particles as needed. Finally, rendering and drawing operations 

are carried out on the three-dimensional model which is established using the particle system. 

Start

End

Generate new particles and add them 

to the particle system

Calculate states, positions, and speed

Whether the lifetime of a 

particle expires

Remove dead particles

Render and display base on model 

data

Whether to regenerate 

new particles

No

Yes

No

Yes

 

Figure 1. Flow chart of a particle system. Figure 1. Flow chart of a particle system.



ISPRS Int. J. Geo-Inf. 2016, 5, 86 3 of 14

Whether the modeled object is solid, liquid, or gaseous, such as flame, clouds, smoke, etc., all of
them can be simulated using the particle system. The particle system can effectively reflect the dynamic
characteristics of fuzzy and irregular objects, such as clouds, fog, smoke, etc. Therefore, the particle
system is a good graphics generation algorithm for simulating irregular and fuzzy objects.

2.2. Using Spheres to Simulate the Cloud Contour

Each cloud looks like a quasi-sphere or an irregular sphere; therefore, we use spheres to simulate
the cloud contour. A cloud with any shape can be formed using a large number of spheres of different
sizes. For the sake of convenience, we use three spheres with different radii to form a cloud. As a
result, only a few simple structures are needed to describe these three spheres. Figure 2 shows the
cloud contour simulated using different balls.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 3 of 14 

 

Whether the modeled object is solid, liquid, or gaseous, such as flame, clouds, smoke, etc., all 

of them can be simulated using the particle system. The particle system can effectively reflect the 

dynamic characteristics of fuzzy and irregular objects, such as clouds, fog, smoke, etc. Therefore, the 

particle system is a good graphics generation algorithm for simulating irregular and fuzzy objects. 

2.2. Using Spheres to Simulate the Cloud Contour 

Each cloud looks like a quasi-sphere or an irregular sphere; therefore, we use spheres to simulate 

the cloud contour. A cloud with any shape can be formed using a large number of spheres of different 

sizes. For the sake of convenience, we use three spheres with different radii to form a cloud. As a 

result, only a few simple structures are needed to describe these three spheres. Figure 2 shows the 

cloud contour simulated using different balls. 

 

Figure 2. Cloud contour composed of different spheres. 

2.3. Solving the Bounding Box 

Assume that the center coordinates of the three balls are (𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2), and (𝑥3, 𝑦3, 𝑧3) 

respectively, their radii are R1, R2, and R3, respectively. The first thing is to calculate the rectangular 

bounding box. Assume that the coordinates of the minimum vertex of the bounding box are 

(𝑥min, 𝑦min, 𝑧min), and the coordinates of the maximum vertex are (𝑥max, 𝑦max, 𝑧max), then: 















},,min{

},,min{

},,min{

332211min

332211min

332211min

RzRzRzz

RyRyRyy

RxRxRxx

 

(1) 















},,max{

},,max{

},,max{

332211max

332211max

332211max

RzRzRzz

RyRyRyy

RxRxRxx

 

(2) 

The circumscribed sphere of the three-dimensional contour can be obtained based on these two 

points. Assume that the center of the circumscribed circle is (x,y,z), that is (( 𝑥max − 𝑥min)/2, 

(𝑦max − 𝑦min)/2, (𝑧max − 𝑧min)/2) , then the radius of the sphere based on geometric principles is  

R =  √(𝑥max − 𝑥min)2 + (𝑦max − 𝑦min)2 + (𝑧max − 𝑧min)2. The inscribed rectangular of this sphere is 

the bounding box which generates cloud particles, as shown in Figures 3 and 4. The three-

dimensional shape of the cloud is the space which is composed of the three spheres. 

Figure 2. Cloud contour composed of different spheres.

2.3. Solving the Bounding Box

Assume that the center coordinates of the three balls are px1, y1, z1q, px2, y2, z2q, and px3, y3, z3q

respectively, their radii are R1, R2, and R3, respectively. The first thing is to calculate the rectangular
bounding box. Assume that the coordinates of the minimum vertex of the bounding box are
pxmin, ymin, zminq, and the coordinates of the maximum vertex are pxmax, ymax, zmaxq, then:

$

’

&

’

%

xmin “ min tx1 ´ R1, x2 ´ R2, x3 ´ R3u

ymin “ min ty1 ´ R1, y2 ´ R2, y3 ´ R3u

zmin “ min tz1 ´ R1, z2 ´ R2, z3 ´ R3u

(1)

$

’

&

’

%

xmax “ max tx1 ` R1, x2 ` R2, x3 ` R3u

ymax “ max ty1 ` R1, y2 ` R2, y3 ` R3u

zmax “ max tz1 ` R1, z2 ` R2, z3 ` R3u

(2)

The circumscribed sphere of the three-dimensional contour can be obtained based on these
two points. Assume that the center of the circumscribed circle is (x,y,z), that is ((xmax ´ xminq{2,
pymax ´ yminq {2, pzmax ´ zminq {2q, then the radius of the sphere based on geometric principles is

R “

b

pxmax ´ xminq
2
` pymax ´ yminq

2
` pzmax ´ zminq

2. The inscribed rectangular of this sphere is
the bounding box which generates cloud particles, as shown in Figures 3 and 4. The three-dimensional
shape of the cloud is the space which is composed of the three spheres.



ISPRS Int. J. Geo-Inf. 2016, 5, 86 4 of 14
ISPRS Int. J. Geo-Inf. 2016, 5, 86 4 of 14 

 

 

Figure 3. Bounding box in the side view. 

 

Figure 4. Bounding box in the front view. 

We use two vertices along a diagonal line of the bounding box to describe the bounding box. 

The vertex whose coordinates are positive and the vertex whose coordinates are negative are used in 

this paper. The structure of the bounding box is as follows: 

Struct BoundingBox 

{Vector Origin; 

Vector MinPt; 

Vector MaxPt; 

Line Boundaries [10];}; 

In the structure shown above, the “origin” represents the center coordinates of the bounding 

box, “MaxPt” represents the positive vertex, and “MinPt” represents the negative vertex. We can 

determine the size of the bounding box through the sphere radius and center coordinates of the 

circumscribed sphere. We use the center coordinates of three initial spheres to subtract the radius of 

the circumscribed sphere and compare the results. The minimum value is the MinPt. Similarly, add 

the center coordinates of each sphere to the radius of the circumscribed sphere, then the maximum 

value is the MaxPt. In order to facilitate post-drawing of the bounding box, the structure should 

contain a Line structure which represents the side information of the bounding box. The Line 

structure is defined as follows: 

Struct Line 

{Vector Origin; 

Vector End;}; 

Obviously, the “origin” in the Line structure indicates the starting point of a side of the bounding 

box, while the “end” indicates the ending point of the side. Figures 3 and 4 show the effect pictures 

of the bounding box. 

Figure 3. Bounding box in the side view.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 4 of 14 

 

 

Figure 3. Bounding box in the side view. 

 

Figure 4. Bounding box in the front view. 

We use two vertices along a diagonal line of the bounding box to describe the bounding box. 

The vertex whose coordinates are positive and the vertex whose coordinates are negative are used in 

this paper. The structure of the bounding box is as follows: 

Struct BoundingBox 

{Vector Origin; 

Vector MinPt; 

Vector MaxPt; 

Line Boundaries [10];}; 

In the structure shown above, the “origin” represents the center coordinates of the bounding 

box, “MaxPt” represents the positive vertex, and “MinPt” represents the negative vertex. We can 

determine the size of the bounding box through the sphere radius and center coordinates of the 

circumscribed sphere. We use the center coordinates of three initial spheres to subtract the radius of 

the circumscribed sphere and compare the results. The minimum value is the MinPt. Similarly, add 

the center coordinates of each sphere to the radius of the circumscribed sphere, then the maximum 

value is the MaxPt. In order to facilitate post-drawing of the bounding box, the structure should 

contain a Line structure which represents the side information of the bounding box. The Line 

structure is defined as follows: 

Struct Line 

{Vector Origin; 

Vector End;}; 

Obviously, the “origin” in the Line structure indicates the starting point of a side of the bounding 

box, while the “end” indicates the ending point of the side. Figures 3 and 4 show the effect pictures 

of the bounding box. 

Figure 4. Bounding box in the front view.

We use two vertices along a diagonal line of the bounding box to describe the bounding box.
The vertex whose coordinates are positive and the vertex whose coordinates are negative are used in
this paper. The structure of the bounding box is as follows:

Struct BoundingBox
{Vector Origin;
Vector MinPt;
Vector MaxPt;
Line Boundaries [10];};

In the structure shown above, the “origin” represents the center coordinates of the bounding box,
“MaxPt” represents the positive vertex, and “MinPt” represents the negative vertex. We can determine
the size of the bounding box through the sphere radius and center coordinates of the circumscribed
sphere. We use the center coordinates of three initial spheres to subtract the radius of the circumscribed
sphere and compare the results. The minimum value is the MinPt. Similarly, add the center coordinates
of each sphere to the radius of the circumscribed sphere, then the maximum value is the MaxPt.
In order to facilitate post-drawing of the bounding box, the structure should contain a Line structure
which represents the side information of the bounding box. The Line structure is defined as follows:

Struct Line
{Vector Origin;

Vector End;};

Obviously, the “origin” in the Line structure indicates the starting point of a side of the bounding
box, while the “end” indicates the ending point of the side. Figures 3 and 4 show the effect pictures of
the bounding box.



ISPRS Int. J. Geo-Inf. 2016, 5, 86 5 of 14

2.4. Generation of Particles in the Bounding Box

The particle system helps generate cloud particles in the bounding box. To produce cloud particles,
two aspects should be taken into account. The first is the initial number of particles, followed by the
size of the particles.

In the particle system, the generation of new particles is controlled by a random function. The
random function randomly generates a certain number of particles within the given particle space,
where the number of particles is the number of particles generated in one frame. This number
determines the density of the cloud. If the number of particles is too small, then the lifelikeness
requirements cannot be met. If it is too large, the data processing time will be increased, failing to meet
the real-time requirements [10]. In order to satisfy both lifelikeness and real-time requirements, we use
the following random function to determine the number of cloud particles.

Nsum “ N f rame ` randpq ˆ Nmax (3)

where Nsum is the total number of particles generated in each frame, Nframe is the number of particles
in the rendering process of each frame, and Nmax is the maximum change of the particle number.

Particle size has a significant impact on the fineness of clouds. According to human visual
principles, when the viewpoint is far from the cloud center, human eyes are insensitive to the cloud, so
we can use large-size particles. Conversely, if the viewpoint is near to the cloud center, human eyes are
sensitive to the cloud and the fineness requirements are high, so we should reduce the particle size for
rendering. This method ensures the lifelikeness of clouds and reduces the number of needed particles,
improving the rendering speed. Figure 5 shows the drawing effect.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 5 of 14 

 

2.4. Generation of Particles in the Bounding Box 

The particle system helps generate cloud particles in the bounding box. To produce cloud 

particles, two aspects should be taken into account. The first is the initial number of particles, 

followed by the size of the particles. 

In the particle system, the generation of new particles is controlled by a random function. The 

random function randomly generates a certain number of particles within the given particle space, 

where the number of particles is the number of particles generated in one frame. This number 

determines the density of the cloud. If the number of particles is too small, then the lifelikeness 

requirements cannot be met. If it is too large, the data processing time will be increased, failing to 

meet the real-time requirements [10]. In order to satisfy both lifelikeness and real-time requirements, 

we use the following random function to determine the number of cloud particles. 

max()sum frameN N rand N    (3) 

where Nsum is the total number of particles generated in each frame, Nframe is the number of particles in 

the rendering process of each frame, and Nmax is the maximum change of the particle number. 

Particle size has a significant impact on the fineness of clouds. According to human visual 

principles, when the viewpoint is far from the cloud center, human eyes are insensitive to the cloud, 

so we can use large-size particles. Conversely, if the viewpoint is near to the cloud center, human 

eyes are sensitive to the cloud and the fineness requirements are high, so we should reduce the 

particle size for rendering. This method ensures the lifelikeness of clouds and reduces the number of 

needed particles, improving the rendering speed. Figure 5 shows the drawing effect. 

 

Figure 5. Bounding box filled with particles. 

Then we use the three spheres to cut the uniform particles in the bounding box (shown in Figure 

6), and delete the left particles and sphere parts. Figure 7 shows the results. 

 

Figure 6. Spheres filled with particles. 

Figure 5. Bounding box filled with particles.

Then we use the three spheres to cut the uniform particles in the bounding box (shown in Figure 6),
and delete the left particles and sphere parts. Figure 7 shows the results.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 5 of 14 

 

2.4. Generation of Particles in the Bounding Box 

The particle system helps generate cloud particles in the bounding box. To produce cloud 

particles, two aspects should be taken into account. The first is the initial number of particles, 

followed by the size of the particles. 

In the particle system, the generation of new particles is controlled by a random function. The 

random function randomly generates a certain number of particles within the given particle space, 

where the number of particles is the number of particles generated in one frame. This number 

determines the density of the cloud. If the number of particles is too small, then the lifelikeness 

requirements cannot be met. If it is too large, the data processing time will be increased, failing to 

meet the real-time requirements [10]. In order to satisfy both lifelikeness and real-time requirements, 

we use the following random function to determine the number of cloud particles. 

max()sum frameN N rand N    (3) 

where Nsum is the total number of particles generated in each frame, Nframe is the number of particles in 

the rendering process of each frame, and Nmax is the maximum change of the particle number. 

Particle size has a significant impact on the fineness of clouds. According to human visual 

principles, when the viewpoint is far from the cloud center, human eyes are insensitive to the cloud, 

so we can use large-size particles. Conversely, if the viewpoint is near to the cloud center, human 

eyes are sensitive to the cloud and the fineness requirements are high, so we should reduce the 

particle size for rendering. This method ensures the lifelikeness of clouds and reduces the number of 

needed particles, improving the rendering speed. Figure 5 shows the drawing effect. 

 

Figure 5. Bounding box filled with particles. 

Then we use the three spheres to cut the uniform particles in the bounding box (shown in Figure 

6), and delete the left particles and sphere parts. Figure 7 shows the results. 

 

Figure 6. Spheres filled with particles. Figure 6. Spheres filled with particles.



ISPRS Int. J. Geo-Inf. 2016, 5, 86 6 of 14
ISPRS Int. J. Geo-Inf. 2016, 5, 86 6 of 14 

 

 

Figure 7. Spheres filled with uniform particles. 

3. Simulating Cloud Particles Using the Cellular Automaton 

3.1. Overview of the Cellular Automaton 

A cellular automaton is an idealized physical model which is discrete in space and time. Its 

physical parameters only have limited sets of values. According to the cellular automaton theory, the 

simulation space can be divided using 3D grids, as shown in Figure 8. Each grid represents a cell and 

each cell represents a vapor particles. All cells are given three state variables: hum, cld, and act, which 

represent water vapor, the cloud, and the changing state from water vapor to cloud (water) 

respectively. Each state variable has a value of 1 or 0. 1 indicates that vapor particles exist in the form 

of water vapor. 0 indicates that vapor particles exist in the form of ice crystals or cooled water 

droplets. 

act=0

hum=0

cld=0

act=1

hum=1

cld=1

time t t+1 t+2

 

Figure 8. Space division and cell state variables. 

3.2. Using Cells to Replace the Uniform Particles 

hum = 1 indicates that there is enough water vapor to form a cloud. act = 1 indicates the state 

change from water vapor to the cloud (water) is taking place. cld = 1 indicates that the cloud has been 

generated. Cloud generating is simulated using Boolean operations. Figure 9 shows the basic rules of 

cell state transitions. Assume that the states of a cell from ti to ti+1 change as follows: act changes from 

0 to 1, hum changes from 1 to 0, and cld changes from 0 to 1, then the corresponding conversion 

formulas are: 

),,,(),,,(),,,( 1 iii tkjiacttkjihumtkjihum   
(4) 

),,,(),,,(),,,( 1 iii tkjiacttkjicldtkjicld   
(5) 

),,(),,,(),,,(),,,( 1 kjiftkjihumtkjiacttkjiact actiii   
(6) 

where fact(i,j,k) is a Boolean operation function. Taking into account that tiny water droplets will rise 

and diffuse to the horizontal direction with the atmospheric motion, the value of this function should 

be determined by the act and hum states of 11 rounding cells. Thus, the function can be expressed as: 

Figure 7. Spheres filled with uniform particles.

3. Simulating Cloud Particles Using the Cellular Automaton

3.1. Overview of the Cellular Automaton

A cellular automaton is an idealized physical model which is discrete in space and time.
Its physical parameters only have limited sets of values. According to the cellular automaton theory,
the simulation space can be divided using 3D grids, as shown in Figure 8. Each grid represents a cell
and each cell represents a vapor particles. All cells are given three state variables: hum, cld, and act,
which represent water vapor, the cloud, and the changing state from water vapor to cloud (water)
respectively. Each state variable has a value of 1 or 0. 1 indicates that vapor particles exist in the form
of water vapor. 0 indicates that vapor particles exist in the form of ice crystals or cooled water droplets.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 6 of 14 

 

 

Figure 7. Spheres filled with uniform particles. 

3. Simulating Cloud Particles Using the Cellular Automaton 

3.1. Overview of the Cellular Automaton 

A cellular automaton is an idealized physical model which is discrete in space and time. Its 

physical parameters only have limited sets of values. According to the cellular automaton theory, the 

simulation space can be divided using 3D grids, as shown in Figure 8. Each grid represents a cell and 

each cell represents a vapor particles. All cells are given three state variables: hum, cld, and act, which 

represent water vapor, the cloud, and the changing state from water vapor to cloud (water) 

respectively. Each state variable has a value of 1 or 0. 1 indicates that vapor particles exist in the form 

of water vapor. 0 indicates that vapor particles exist in the form of ice crystals or cooled water 

droplets. 

act=0

hum=0

cld=0

act=1

hum=1

cld=1

time t t+1 t+2

 

Figure 8. Space division and cell state variables. 

3.2. Using Cells to Replace the Uniform Particles 

hum = 1 indicates that there is enough water vapor to form a cloud. act = 1 indicates the state 

change from water vapor to the cloud (water) is taking place. cld = 1 indicates that the cloud has been 

generated. Cloud generating is simulated using Boolean operations. Figure 9 shows the basic rules of 

cell state transitions. Assume that the states of a cell from ti to ti+1 change as follows: act changes from 

0 to 1, hum changes from 1 to 0, and cld changes from 0 to 1, then the corresponding conversion 

formulas are: 

),,,(),,,(),,,( 1 iii tkjiacttkjihumtkjihum   
(4) 

),,,(),,,(),,,( 1 iii tkjiacttkjicldtkjicld   
(5) 

),,(),,,(),,,(),,,( 1 kjiftkjihumtkjiacttkjiact actiii   
(6) 

where fact(i,j,k) is a Boolean operation function. Taking into account that tiny water droplets will rise 

and diffuse to the horizontal direction with the atmospheric motion, the value of this function should 

be determined by the act and hum states of 11 rounding cells. Thus, the function can be expressed as: 

Figure 8. Space division and cell state variables.

3.2. Using Cells to Replace the Uniform Particles

hum = 1 indicates that there is enough water vapor to form a cloud. act = 1 indicates the state
change from water vapor to the cloud (water) is taking place. cld = 1 indicates that the cloud has been
generated. Cloud generating is simulated using Boolean operations. Figure 9 shows the basic rules
of cell state transitions. Assume that the states of a cell from ti to ti+1 change as follows: act changes
from 0 to 1, hum changes from 1 to 0, and cld changes from 0 to 1, then the corresponding conversion
formulas are:

humpi, j, k, ti`1q “ humpi, j, k, tiq ^ actpi, j, k, tiq (4)

cldpi, j, k, ti`1q “ cldpi, j, k, tiq _ actpi, j, k, tiq (5)

actpi, j, k, ti`1q “  actpi, j, k, tiq ^ humpi, j, k, tiq ^ factpi, j, kq (6)

where fact(i,j,k) is a Boolean operation function. Taking into account that tiny water droplets will rise
and diffuse to the horizontal direction with the atmospheric motion, the value of this function should
be determined by the act and hum states of 11 rounding cells. Thus, the function can be expressed as:



ISPRS Int. J. Geo-Inf. 2016, 5, 86 7 of 14

factpi, j, kq “ actpi` 1, j, k, tiq _ actpi, j` 1, k, tiq

_actpi, j, k` 1, tiq _ actpi´ 1, j, k, tiq _ actpi, j´ 1, k, tiq

_actpi, j, k´ 1, tiq _ actpi´ 2, j, k, tiq _ actpi, j´ 2, k, tiq

_actpi` 2, j, k, tiq _ actpi, j` 2, k, tiq _ actpi, j, k´ 2, tiq

(7)

ISPRS Int. J. Geo-Inf. 2016, 5, 86 7 of 14 

 

),2,,(),,2,(),,,2(

),,2,(),,,2(),1,,(

),,1,(),,,1(),1,,(

),,1,(),,,1(),,(

iii

iii

iii

iiact

tkjiacttkjiacttkjiact

tkjiacttkjiacttkjiact

tkjiacttkjiacttkjiact

tkjiacttkjiactkjif









 

(7) 

（i,j,k） （i,j,k）

time t time t+1

z

x

y

 

（i,j,k） （i,j,k）

time t time t+1

z

x

y

 

Figure 9. Rules for cell state transitions. 

We can use Equations (4) to (7) to control the cloud generation. However, we find that the cld 

will always maintain 1 after it changes to 1. Therefore, a new state variable is introduced to solve this 

problem. At first, we define a vanishing probability pext and then generate a random value rnd 

(ranging from 0 to 1) for all cells whose cld is 1. If rnd < pext, then the cld becomes 0. Similarly, the 

corresponding vanishing probability phum and pact of the hum and act are also defined, 

respectively. If rnd < phum, then hum = 1. If rnd < pact, then act = 1. The formula is described as 

follows: 

)),,,((),,,(),,,( 1 iii tkjipextrndIStkjicldtkjicld   
(8) 

)),,,((),,,(),,,( 1 iii tkjiphumrndIStkjihumtkjihum   
(9) 

)),,,((),,,(),,,( 1 iii tkjipactrndIStkijacttkjiact   (10) 

With above seven formulas, we can control the state values of each cell, obtaining the discrete 

density model of the cloud. 

3.3. Calculating Continuous Density 

A cell has two parameters: The central density and the effective radius. As shown in Figure 10, 

the vertical axis represents the density and the horizontal axis represents the distance from the center 

to the cell. Each cell is a sphere defined by a field function. We use the cellular automaton to calculate 

the continuous density distribution. For simplicity, we define a dimension to represent the 

continuous density distribution. As shown in Figure 11, the cells are placed on grid points, then the 

weighted sum of field functions represents the continuous density distribution. Continuous density 

distribution can be obtained by adjusting the center density and effective radius based on the binary 

distribution. The effective radius R can be assigned. 

Figure 9. Rules for cell state transitions.

We can use Equations (4) to (7) to control the cloud generation. However, we find that the cld
will always maintain 1 after it changes to 1. Therefore, a new state variable is introduced to solve
this problem. At first, we define a vanishing probability pext and then generate a random value rnd
(ranging from 0 to 1) for all cells whose cld is 1. If rnd < pext, then the cld becomes 0. Similarly, the
corresponding vanishing probability phum and pact of the hum and act are also defined, respectively.
If rnd < phum, then hum = 1. If rnd < pact, then act = 1. The formula is described as follows:

cldpi, j, k, ti`1q “ cldpi, j, k, tiq ^ ISprnd ą pextpi, j, k, tiqq (8)

humpi, j, k, ti`1q “ humpi, j, k, tiq _ ISprnd ă phumpi, j, k, tiqq (9)

actpi, j, k, ti`1q “ actpj, i, k, tiq _ ISprnd ă pactpi, j, k, tiqq (10)

With above seven formulas, we can control the state values of each cell, obtaining the discrete
density model of the cloud.

3.3. Calculating Continuous Density

A cell has two parameters: The central density and the effective radius. As shown in Figure 10,
the vertical axis represents the density and the horizontal axis represents the distance from the center
to the cell. Each cell is a sphere defined by a field function. We use the cellular automaton to calculate
the continuous density distribution. For simplicity, we define a dimension to represent the continuous
density distribution. As shown in Figure 11, the cells are placed on grid points, then the weighted
sum of field functions represents the continuous density distribution. Continuous density distribution
can be obtained by adjusting the center density and effective radius based on the binary distribution.
The effective radius R can be assigned.



ISPRS Int. J. Geo-Inf. 2016, 5, 86 8 of 14

f prq “

#

´ 4
9 a6 ` 17

9 a4 ´ 22
9 a2 ` 1 pr ď Rq

0 pr ą Rq
(11)

ISPRS Int. J. Geo-Inf. 2016, 5, 86 8 of 14 

 














   )(r                                            0

)(      1
9

22

9

17

9

4

)(

246

R

Rraaa
rf

 

(11) 

Central density qk

Field 

function

Effective radius 

R 

Cell
 

Figure 10. Definition of a cell. 

Field function

Density

Continuous 

distribution Bivariate 

distribution

metaball

0.0

1.0

x

 

Figure 11. Continuous density distribution of the cells. 

We assume that cld is the discrete density value. Xl,m,n represents the coordinates of the cell 

(l,m,n). Ω(Xl,m,n) is the cell set whose cells satisfy |Xi,j,k − Xl,m,n| < R in the metaball. N is the number of 

cells in the metaball. Then the cell density q at the metaball center can be obtained using (12): 





c

nml

n

nml

nml

c

cld
n

q
)(,,

,,kj,i,

,,

)(
1

 
(12) 

The continuous density of the cloud at some point can be calculated after obtaining the density 

of the metaball. The continuous density of the cloud can be expressed as: 

Figure 10. Definition of a cell.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 8 of 14 

 














   )(r                                            0

)(      1
9

22

9

17

9

4

)(

246

R

Rraaa
rf

 

(11) 

Central density qk

Field 

function

Effective radius 

R 

Cell
 

Figure 10. Definition of a cell. 

Field function

Density

Continuous 

distribution Bivariate 

distribution

metaball

0.0

1.0

x

 

Figure 11. Continuous density distribution of the cells. 

We assume that cld is the discrete density value. Xl,m,n represents the coordinates of the cell 

(l,m,n). Ω(Xl,m,n) is the cell set whose cells satisfy |Xi,j,k − Xl,m,n| < R in the metaball. N is the number of 

cells in the metaball. Then the cell density q at the metaball center can be obtained using (12): 





c

nml

n

nml

nml

c

cld
n

q
)(,,

,,kj,i,

,,

)(
1

 
(12) 

The continuous density of the cloud at some point can be calculated after obtaining the density 

of the metaball. The continuous density of the cloud can be expressed as: 

Figure 11. Continuous density distribution of the cells.

We assume that cld is the discrete density value. Xl,m,n represents the coordinates of the cell
(l,m,n). Ω(Xl,m,n) is the cell set whose cells satisfy |Xi,j,k ´ Xl,m,n| < R in the metaball. N is the number
of cells in the metaball. Then the cell density q at the metaball center can be obtained using (12):

qi,j,k “
1
nc
ˆ

nc
ÿ

l,m,nPΩpl,m,nq

cldpl,m,nq (12)

The continuous density of the cloud at some point can be calculated after obtaining the density of
the metaball. The continuous density of the cloud can be expressed as:



ISPRS Int. J. Geo-Inf. 2016, 5, 86 9 of 14

ρpq “
N
ÿ

i,j,kPΩpq

qi,j,k f p
ˇ

ˇ

ˇ
´i,j,k

ˇ

ˇ

ˇ
q (13)

where Ω(X) is the set of all cells which are centered at X and have radii of R. The density of each point
can be obtained by using the density of each metaball and the sum of products of its weights at this
point. The weights of the metaball on this point can be obtained by calculating the Murakami function
(a constant function).

The uniform cloud particles produced by the particle system are processed according to the rules
of cellular automaton. As shown in Figure 12, the continuous particle density is calculated, obtaining
the final simulated cloud particles.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 9 of 14 

 





N

)(,,

,,,, )(
kji

kjikji fq）（
 

(13) 

where Ω(X) is the set of all cells which are centered at X and have radii of R. The density of each point 

can be obtained by using the density of each metaball and the sum of products of its weights at this 

point. The weights of the metaball on this point can be obtained by calculating the Murakami function 

(a constant function). 

The uniform cloud particles produced by the particle system are processed according to the rules 

of cellular automaton. As shown in Figure 12, the continuous particle density is calculated, obtaining 

the final simulated cloud particles. 

 

Figure 12. Final cloud particles. 

Start

Set up state parameters and the 

number of simulations

Render cloud cells to generate the 

dynamic cloud

Utilized functions to obtain the 

density of random cells

Obtain the random cells and put 

them in the linked list

Smooth processing of the density 

on grid points

Control grid logic variables to obtain 

discrete density values

Cellular automaton generates and initializes 

parameters

End

Output simulation results

Does an invent 

occur?

Yes

t>T

Yes

No

No

 

Figure 13. Flow chart of the cellular automation simulation. 

Figure 12. Final cloud particles.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 9 of 14 

 





N

)(,,

,,,, )(
kji

kjikji fq）（
 

(13) 

where Ω(X) is the set of all cells which are centered at X and have radii of R. The density of each point 

can be obtained by using the density of each metaball and the sum of products of its weights at this 

point. The weights of the metaball on this point can be obtained by calculating the Murakami function 

(a constant function). 

The uniform cloud particles produced by the particle system are processed according to the rules 

of cellular automaton. As shown in Figure 12, the continuous particle density is calculated, obtaining 

the final simulated cloud particles. 

 

Figure 12. Final cloud particles. 

Start

Set up state parameters and the 

number of simulations

Render cloud cells to generate the 

dynamic cloud

Utilized functions to obtain the 

density of random cells

Obtain the random cells and put 

them in the linked list

Smooth processing of the density 

on grid points

Control grid logic variables to obtain 

discrete density values

Cellular automaton generates and initializes 

parameters

End

Output simulation results

Does an invent 

occur?

Yes

t>T

Yes

No

No

 

Figure 13. Flow chart of the cellular automation simulation. Figure 13. Flow chart of the cellular automation simulation.



ISPRS Int. J. Geo-Inf. 2016, 5, 86 10 of 14

3.4. Flowchart of the Cellular Automaton Simulation

When using a cellular automaton model to simulate three-dimensional clouds, we need to
initialize parameters first. Then based on the parameter status of each moment, we need to determine
the parameters of the next moment according to certain rules. Figure 13 shows the specific flow chart
of the cellular automaton simulation.

4. Texture Rendering

In the 3D visualization of the cloud, every cloud particle needs to be attached with a texture.
The single texture in this paper is described in the RGBA form and R = G = B = A. A is the transparency.
Transparency is inversely proportional to the grayscale value because the thickness of the cloud
particles decreases from the center to the edge. The grayscale value of cloud particle texture should
also be consistent with this rule. It also must have the capability of continuous transition. We can use
Gaussian distribution to simulate this trend and the formula is [8,11,12]:

hpdq “
ρ

?
2πσ

expp´
d2

2σ2 q (14)

where d represents the distance from the sphere center. h(d) represents the grayscale value of the
texture at the d from the sphere center. σ is the variance of Gaussian distribution and we set it to 3. ρ is
the modulation value of the central peak. It should be 0.4 according to the simulation results and ρ = σ

in this case. Figure 14 shows the generated texture map.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 10 of 14 

 

3.4. Flowchart of the Cellular Automaton Simulation 

When using a cellular automaton model to simulate three-dimensional clouds, we need to 

initialize parameters first. Then based on the parameter status of each moment, we need to determine 

the parameters of the next moment according to certain rules. Figure 13 shows the specific flow chart 

of the cellular automaton simulation. 

4. Texture Rendering 

In the 3D visualization of the cloud, every cloud particle needs to be attached with a texture. The 

single texture in this paper is described in the RGBA form and R = G = B = A. A is the transparency. 

Transparency is inversely proportional to the grayscale value because the thickness of the cloud 

particles decreases from the center to the edge. The grayscale value of cloud particle texture should 

also be consistent with this rule. It also must have the capability of continuous transition. We can use 

Gaussian distribution to simulate this trend and the formula is [8,11,12]: 

)
2

exp(
2

)(
2

2



 d
dh 

 
(14) 

where d represents the distance from the sphere center. h(d) represents the grayscale value of the 

texture at the d from the sphere center. σ is the variance of Gaussian distribution and we set it to 3. 𝜌 

is the modulation value of the central peak. It should be 0.4 according to the simulation results and  

𝜌 = σ in this case. Figure 14 shows the generated texture map. 

 

Figure 14. Texture map of the particle. 

The cloud particles generated in Figure 12 are added with the texture mapping in Figure 14. 

Figure 15 shows the final effect. 

  

Figure 15. Cloud added with the texture (front view and side view). 

5. Results and Analysis 

Harris et al. [13] used Impostor technology to accelerate the clouds using the correlation between 

frames in order to achieve real-time rendering of the scene requirements. However, in this kind of 

rendering method, the clouds size, position, and color are fixed. He Huaiqing et al. [14] improved 

Figure 14. Texture map of the particle.

The cloud particles generated in Figure 12 are added with the texture mapping in Figure 14.
Figure 15 shows the final effect.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 10 of 14 

 

3.4. Flowchart of the Cellular Automaton Simulation 

When using a cellular automaton model to simulate three-dimensional clouds, we need to 

initialize parameters first. Then based on the parameter status of each moment, we need to determine 

the parameters of the next moment according to certain rules. Figure 13 shows the specific flow chart 

of the cellular automaton simulation. 

4. Texture Rendering 

In the 3D visualization of the cloud, every cloud particle needs to be attached with a texture. The 

single texture in this paper is described in the RGBA form and R = G = B = A. A is the transparency. 

Transparency is inversely proportional to the grayscale value because the thickness of the cloud 

particles decreases from the center to the edge. The grayscale value of cloud particle texture should 

also be consistent with this rule. It also must have the capability of continuous transition. We can use 

Gaussian distribution to simulate this trend and the formula is [8,11,12]: 

)
2

exp(
2

)(
2

2



 d
dh 

 
(14) 

where d represents the distance from the sphere center. h(d) represents the grayscale value of the 

texture at the d from the sphere center. σ is the variance of Gaussian distribution and we set it to 3. 𝜌 

is the modulation value of the central peak. It should be 0.4 according to the simulation results and  

𝜌 = σ in this case. Figure 14 shows the generated texture map. 

 

Figure 14. Texture map of the particle. 

The cloud particles generated in Figure 12 are added with the texture mapping in Figure 14. 

Figure 15 shows the final effect. 

  

Figure 15. Cloud added with the texture (front view and side view). 

5. Results and Analysis 

Harris et al. [13] used Impostor technology to accelerate the clouds using the correlation between 

frames in order to achieve real-time rendering of the scene requirements. However, in this kind of 

rendering method, the clouds size, position, and color are fixed. He Huaiqing et al. [14] improved 

Figure 15. Cloud added with the texture (front view and side view).



ISPRS Int. J. Geo-Inf. 2016, 5, 86 11 of 14

5. Results and Analysis

Harris et al. [13] used Impostor technology to accelerate the clouds using the correlation between
frames in order to achieve real-time rendering of the scene requirements. However, in this kind of
rendering method, the clouds size, position, and color are fixed. He Huaiqing et al. [14] improved
Gardner ellipsoid model, and achieved good effect on penetrating the clouds, but this model has lack
of liquidity and light simulation of the clouds. Lu Huaxing [15], Huang Bing et al. [16] used a modeling
method based on particle systems, and have combined law motion and illumination model of clouds
to obtain real results. Tang Zhao et al. [17] has solved the problems that occurred in using impostor
technology application in alpha fusion scene and improved the clouds rendering speed. However,
the above method does not solve the problem of large-scale realistic and smooth three-dimensional
rendering of the clouds. Wang [18] used camera-oriented regular octagon rings to realize impostor
technology, reducing the number of triangles drawn and accelerated the speed of rendering clouds.
The advantage of this approach is that the formation of clouds is completed before rendering, and the
rendering process does not need to calculate the shape of clouds, so the cloud rendering efficiency
is very high and has also a strong sense of reality. However, the approach can not achieve a smooth
light processing and self-shadowing effect. Li Gang et al. [19] proposed a framework totally based
on the GPU to simulate and rending the three-dimensional clouds. In rendering the clouds, he used
bitonic sort method implemented on the GPU to the composition of the three-dimensional clouds
patch sorted for proper alpha blending. However, this method requires additional time overhead and
hardware support. He Xiaoxi et al. [20] proposed an improved three-dimensional clouds simulation.
In real-time rendering of the clouds, he proposed a lighting model based on the sunlight direction and
the weather conditions, and used an improved cyclic mpostor technology to improve a wide range of
clouds rendering speed.

The proposed method in this paper utilizes the particle system to simulate the user-defined
cloud contour quickly and generates the initial cloud particles by taking advantage of the particle
system. Then we use the cells in the cellular automaton to replace the initial particles and convert
them according to the rules of cellular automaton. Finally, the related OpenGL technologies are used
to render the cloud. Figures 16 and 17 show the comparison between the combined methods proposed
in this paper and the particle system algorithm.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 11 of 14 

 

Gardner ellipsoid model, and achieved good effect on penetrating the clouds, but this model has lack 

of liquidity and light simulation of the clouds. Lu Huaxing [15], Huang Bing et al. [16] used a 

modeling method based on particle systems, and have combined law motion and illumination model 

of clouds to obtain real results. Tang Zhao et al. [17] has solved the problems that occurred in using 

impostor technology application in alpha fusion scene and improved the clouds rendering speed. 

However, the above method does not solve the problem of large-scale realistic and smooth three-

dimensional rendering of the clouds. Wang [18] used camera-oriented regular octagon rings to realize 

impostor technology, reducing the number of triangles drawn and accelerated the speed of rendering 

clouds. The advantage of this approach is that the formation of clouds is completed before rendering, 

and the rendering process does not need to calculate the shape of clouds, so the cloud rendering 

efficiency is very high and has also a strong sense of reality. However, the approach can not achieve 

a smooth light processing and self-shadowing effect. Li Gang et al. [19] proposed a framework totally 

based on the GPU to simulate and rending the three-dimensional clouds. In rendering the clouds, he 

used bitonic sort method implemented on the GPU to the composition of the three-dimensional 

clouds patch sorted for proper alpha blending. However, this method requires additional time 

overhead and hardware support. He Xiaoxi et al. [20] proposed an improved three-dimensional 

clouds simulation. In real-time rendering of the clouds, he proposed a lighting model based on the 

sunlight direction and the weather conditions, and used an improved cyclic mpostor technology to 

improve a wide range of clouds rendering speed. 

The proposed method in this paper utilizes the particle system to simulate the user-defined 

cloud contour quickly and generates the initial cloud particles by taking advantage of the particle 

system. Then we use the cells in the cellular automaton to replace the initial particles and convert 

them according to the rules of cellular automaton. Finally, the related OpenGL technologies are used 

to render the cloud. Figures 16 and 17 show the comparison between the combined methods 

proposed in this paper and the particle system algorithm. 

  

Figure 16. The cloud simulated with the particle system before and after adding texture. 

  

Figure 17. The cloud simulated with the proposed method before and after adding texture. 

According to experiments, the method proposed in this paper can implement the 3D simulation 

of clouds with very good lifelikeness. In addition, various cloud shapes can be obtained by changing 

the number of simulating spheres. The simulated cloud obtained using the combination of two 

methods in this section is more real than that obtained using only the particle system. 

Figure 16. The cloud simulated with the particle system before and after adding texture.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 11 of 14 

 

Gardner ellipsoid model, and achieved good effect on penetrating the clouds, but this model has lack 

of liquidity and light simulation of the clouds. Lu Huaxing [15], Huang Bing et al. [16] used a 

modeling method based on particle systems, and have combined law motion and illumination model 

of clouds to obtain real results. Tang Zhao et al. [17] has solved the problems that occurred in using 

impostor technology application in alpha fusion scene and improved the clouds rendering speed. 

However, the above method does not solve the problem of large-scale realistic and smooth three-

dimensional rendering of the clouds. Wang [18] used camera-oriented regular octagon rings to realize 

impostor technology, reducing the number of triangles drawn and accelerated the speed of rendering 

clouds. The advantage of this approach is that the formation of clouds is completed before rendering, 

and the rendering process does not need to calculate the shape of clouds, so the cloud rendering 

efficiency is very high and has also a strong sense of reality. However, the approach can not achieve 

a smooth light processing and self-shadowing effect. Li Gang et al. [19] proposed a framework totally 

based on the GPU to simulate and rending the three-dimensional clouds. In rendering the clouds, he 

used bitonic sort method implemented on the GPU to the composition of the three-dimensional 

clouds patch sorted for proper alpha blending. However, this method requires additional time 

overhead and hardware support. He Xiaoxi et al. [20] proposed an improved three-dimensional 

clouds simulation. In real-time rendering of the clouds, he proposed a lighting model based on the 

sunlight direction and the weather conditions, and used an improved cyclic mpostor technology to 

improve a wide range of clouds rendering speed. 

The proposed method in this paper utilizes the particle system to simulate the user-defined 

cloud contour quickly and generates the initial cloud particles by taking advantage of the particle 

system. Then we use the cells in the cellular automaton to replace the initial particles and convert 

them according to the rules of cellular automaton. Finally, the related OpenGL technologies are used 

to render the cloud. Figures 16 and 17 show the comparison between the combined methods 

proposed in this paper and the particle system algorithm. 

  

Figure 16. The cloud simulated with the particle system before and after adding texture. 

  

Figure 17. The cloud simulated with the proposed method before and after adding texture. 

According to experiments, the method proposed in this paper can implement the 3D simulation 

of clouds with very good lifelikeness. In addition, various cloud shapes can be obtained by changing 

the number of simulating spheres. The simulated cloud obtained using the combination of two 

methods in this section is more real than that obtained using only the particle system. 

Figure 17. The cloud simulated with the proposed method before and after adding texture.



ISPRS Int. J. Geo-Inf. 2016, 5, 86 12 of 14

According to experiments, the method proposed in this paper can implement the 3D simulation of
clouds with very good lifelikeness. In addition, various cloud shapes can be obtained by changing the
number of simulating spheres. The simulated cloud obtained using the combination of two methods
in this section is more real than that obtained using only the particle system.

To better illustrate the advantages of the proposed method, we compare the performance of
the proposed method and the particle systems. The experimental hardware includes: Pentium (R)
Dual-Core 2.8 GHZ processor, 2.00 GB memory, and Windows XP (OS).

However, it can be seen from Table 1 that the proposed algorithm and the traditional particle
system algorithm are both real-time algorithms. In order to compare the real-time performance of
these two methods, performance experiments are carried out. The most important performance of
real-time algorithms is the number of rendered frames per second. The number of particles in the
experiments is 1000, 2500, 5000, and 7500. Experiment results have shown that the performance of the
proposed method in this paper (combining the particle system with the cellular automaton) is better
than the traditional particle system. Figure 18 shows the frame rate comparison.

ISPRS Int. J. Geo-Inf. 2016, 5, 86 12 of 14 

 

To better illustrate the advantages of the proposed method, we compare the performance of the 

proposed method and the particle systems. The experimental hardware includes: Pentium (R) Dual-

Core 2.8 GHZ processor, 2.00 GB memory, and Windows XP (OS). 

However, it can be seen from Table 1 that the proposed algorithm and the traditional particle 

system algorithm are both real-time algorithms. In order to compare the real-time performance of 

these two methods, performance experiments are carried out. The most important performance of 

real-time algorithms is the number of rendered frames per second. The number of particles in the 

experiments is 1000, 2500, 5000, and 7500. Experiment results have shown that the performance of 

the proposed method in this paper (combining the particle system with the cellular automaton) is 

better than the traditional particle system. Figure 18 shows the frame rate comparison. 

Table 1. Comparison of results of different cloud modeling methods. 

Algorithm Comparison Particle System Algorithm Method in This Paper 

Modeling method Particle system Cellular automaton system 
Particle system + cellular 

automaton system 

Whether it can customize the 

cloud contour 
Yes No Yes 

Lighting simulation Impostor Single reflection Impostor 

Three-dimensional cloud Yes Yes Yes 

Whether it contains 

movement 
Yes Yes Yes 

Whether it is a real-time 

algorithm 
Yes Yes Yes 

 

Figure 18. Frame rate comparison. 

6. Conclusions 

The basic concepts, principles, and workflow of the cellular automaton and particle system are 

described in this paper. First, we use a random function to generate uniform particles in the bounding 

box of a cloud, establishing a cloud particle system. We also initialize the related properties of 

particles, such as number, size, and location. Then we utilize the rules of cellular automaton to 

process the uniform particles simulated by the particle system and calculate its continuous field 

density, obtaining the final cloud particles. After that, texture mapping is used to render cloud 

particles, obtaining a lifelike three-dimensional cloud. 

According to experiments, the method proposed in this paper can implement the 3D simulation 

of clouds with very good lifelikeness. In addition, various cloud shapes can be obtained by changing 

the number of simulating spheres. The simulated cloud obtained using the proposed method is more 

real than that obtained using only the particle system. 

0
5
10
15
20
25
30
35
40
45
50

1000 2500 5000 7500

Number of particles

F
r
a
m
e
 
r
a
t
e

Particle system

The proposed method

Figure 18. Frame rate comparison.

Table 1. Comparison of results of different cloud modeling methods.

Algorithm Comparison Particle System Algorithm Method in This Paper

Modeling method Particle system Cellular automaton
system

Particle system + cellular
automaton system

Whether it can customize the
cloud contour Yes No Yes

Lighting simulation Impostor Single reflection Impostor
Three-dimensional cloud Yes Yes Yes
Whether it contains movement Yes Yes Yes
Whether it is a real-time algorithm Yes Yes Yes

6. Conclusions

The basic concepts, principles, and workflow of the cellular automaton and particle system are
described in this paper. First, we use a random function to generate uniform particles in the bounding
box of a cloud, establishing a cloud particle system. We also initialize the related properties of particles,
such as number, size, and location. Then we utilize the rules of cellular automaton to process the
uniform particles simulated by the particle system and calculate its continuous field density, obtaining
the final cloud particles. After that, texture mapping is used to render cloud particles, obtaining a
lifelike three-dimensional cloud.

According to experiments, the method proposed in this paper can implement the 3D simulation
of clouds with very good lifelikeness. In addition, various cloud shapes can be obtained by changing



ISPRS Int. J. Geo-Inf. 2016, 5, 86 13 of 14

the number of simulating spheres. The simulated cloud obtained using the proposed method is more
real than that obtained using only the particle system.

In order to compare the real-time performance of these two methods, performance experiments
are carried out. The number of particles in the experiments is 1000, 2500, 5000, and 7500. Experiment
results have shown that the performance of the proposed method in the paper is better than the
traditional particle system.

This method not only obtains the real effect in the simulation, but also improves the
rendering performance.

Acknowledgments: This work was financially supported by the National Nature Science Foundation of China
(No. 41071253, No. 41271410). The authors would like to thank the handling editor and anonymous reviewers for
their careful reading and helpful remarks.

Author Contributions: Shuoben Bi and Xiaowen Zeng conceived and designed the experiments; Xiaowen Zeng
and Yuan Lu performed the experiments; Shuoben Bi and Xiaowen Zeng wrote the chinese paper; Shengjie Bi and
Hao Zhou translated the paper.

Conflicts of Interest: The authors declare that they do not have any commercial or associative interest that
represents a conflict of interests in connection with the paper they submitted.

References

1. Wang, B.; Peng, J.L.; Kwak, Y.; Kuo, C. Efficient and realistic cumulus cloud simulation based on similarity
approach. In Proceedings of the International Symposium on Visual Computing’07, Nevada, CA, USA,
26–28 November 2007; pp. 781–791.

2. Wang, B.; Peng, J.L.; Kuo, C.J. Cumulus cloud synthesis with similarity solution and particle/voxel modeling.
In Proceedings of the International Symposium on Visual Computing’08, Las Vegas, NV, USA, 1–3 December
2008; pp. 65–74.

3. Dobashi, Y.; Nishita, T.; Yamashita, H. Using metaballs to modeling and animate clouds from satellite images.
Vis. Comput. 1999, 15, 471–482. [CrossRef]

4. Dobashi, Y.; Yamamoto, T.; Nishita, T. A controllable method for animation of earth-scale clouds.
In Proceedings of the CASA’06, Geneva, Switzerland, 5–7 July 2006; pp. 43–52.

5. Liao, H.S.; Ho, T.; Chuang, J.; Lin, C. Fast rendering of dynamic clouds. Comput. Gr. 2005, 29, 29–40.
[CrossRef]

6. Xu, H.L. Simulation of 3D Cloud Based on Particle System. Master’s Thesis, Wuhan University of Technology,
Wuhan, China, 2010. (In Chinese)

7. Lopes, A.; Brodlie, K. Improving the robustness and accuracy of the marching cubes algorithm for
isosurfacing. Vis. Comput. Gr. 2003, 9, 16–29. [CrossRef]

8. Nishita, T.; Dobashi, Y.; Nakamae, E. Display of clouds taking into account multiple anisotropic scattering
and sky light. In Proceedings of the ACM Siggraph’96, New Orleans, LA, USA, 4–9 August 1996; pp. 379–386.

9. Bi, S.B.; Zeng, X.W.; Pan, Q.Y.; Shi, Y. 3D simulation and predigestion algorithms for clouds images based on
particle system. J. Syst. Simul. 2014, 11, 2630–2636. (In Chinese)

10. Hu, X.Y.; Sun, B.; Ling, X.H. An improved cloud rendering method. In Proceeding of the International
Conference on Image and Graphics, Xi’an, China, 1 June 2009; pp. 853–858.

11. You, Y.J.; Kang, F.J.; Tang, K. Research of sea battlefield distributed virtual environment based on fractal.
J. Syst. Simul. 2009, 21, 7190–7194. (In Chinese)

12. Tuo, Y.F.; Wang, W.; Qiu, K.; Song, F.H.; Yu, F.F.; Wang, Y.; Wang, Y.S. Application of 3D simulation
technology of AWX format infrared satellite cloud image based on OpenGL. J. Meteorol. Environ. 2011, 27,
25–31. (In Chinese)

13. Harrism, M.J.; Lastra, A. Real-time cloud rendering. Comput. Gr. Forum 2001, 20, 76–84. [CrossRef]
14. He, H.Q.; Liu, H.H.; Liu, J.X.; Yang, G.Q. Improved simulation method on 3D clouds. J. Syst. Simul. 2008, 20,

2620–2623.
15. Lu, H.X. Cloud modeling and rendering. Aircr. Des. 2009, 29, 64–68.
16. Huang, B.; Chen, J.; Wan, W.G. Cloud rendering in flight simulation and its implementation. J. Shanghai Univ.

(Nat. Sci.) 2009, 15, 342–345. (In Chinese)

http://dx.doi.org/10.1007/s003710050193
http://dx.doi.org/10.1016/j.cag.2004.11.005
http://dx.doi.org/10.1109/TVCG.2003.1175094
http://dx.doi.org/10.1111/1467-8659.00500


ISPRS Int. J. Geo-Inf. 2016, 5, 86 14 of 14

17. Tang, Z.; Wu, P.B. Real-Time modeling and rendering of 3D Cloud and its application in industrial
simulations. J. Comput.-Aided Des. Comput. Gr. 2007, 19, 1051–1055.

18. Wang, N. Realistic and fast cloud rendering. J. Gr. Tools 2004, 9, 21–40. [CrossRef]
19. Li, G.; Li, H. All in GPU real-time 3D cloud simulation. J. Syst. Simul. 2009, 21, 7511–7514.
20. He, X.X.; Chen, L.T.; Zhu, Q.X. Simplified fluid method for fast simulation of large three-dimensional cloud

scene. Appl. Res. Comput. 2012, 29, 2357–2359.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/10867651.2004.10504895
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Simulating Uniform Cloud Particles Using the Particle System 
	Overview of the Particle System 
	Using Spheres to Simulate the Cloud Contour 
	Solving the Bounding Box 
	Generation of Particles in the Bounding Box 

	Simulating Cloud Particles Using the Cellular Automaton 
	Overview of the Cellular Automaton 
	Using Cells to Replace the Uniform Particles 
	Calculating Continuous Density 
	Flowchart of the Cellular Automaton Simulation 

	Texture Rendering 
	Results and Analysis 
	Conclusions 

