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Abstract: In some digital Earth engineering applications, spatial interpolation algorithms are required
to process and analyze large amounts of data. Due to its powerful computing capacity, heterogeneous
computing has been used in many applications for data processing in various fields. In this study,
we explore the design and implementation of a parallel universal kriging spatial interpolation
algorithm using the OpenCL programming model on heterogeneous computing platforms for massive
Geo-spatial data processing. This study focuses primarily on transforming the hotspots in serial
algorithms, i.e., the universal kriging interpolation function, into the corresponding kernel function
in OpenCL. We also employ parallelization and optimization techniques in our implementation
to improve the code performance. Finally, based on the results of experiments performed on two
different high performance heterogeneous platforms, i.e., an NVIDIA graphics processing unit system
and an Intel Xeon Phi system (MIC), we show that the parallel universal kriging algorithm can
achieve the highest speedup of up to 40ˆ with a single computing device and the highest speedup of
up to 80ˆwith multiple devices.

Keywords: heterogeneous computing; OpenCL; universal kriging algorithm; Graphics Processing
Unit (GPU); Intel Xeon Phi

1. Introduction

Spatial Interpolation (SI) is a process employed to estimate the values of properties at unknown
points within an area covered by existing observed points [1]. In many situations, SI is performed to
provide contours so data can be displayed graphically, to calculate property values for the surface at a
given point or to analyze and predict a trend surface. In Digital Earth (DE) research, SI has always
been a powerful tool for modeling and simulation [2,3]. Technological developments have greatly
enriched the methods that are available for acquiring and accessing data, and in many large-scale
engineering applications, huge amounts of data need to be processed using interpolation algorithms.
Indeed, SI is particularly important for prediction and representation in many fields, including
geographical information systems and remote sensing [4–6], geology [7], mining [8], hydrogeology [9],
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soil research [10], geophysics [11], oceanography [12], meteorology [13], ecology and environmental
studies [14,15].

Several different types of classification methods are used by SI procedures, e.g., point-area,
global-local and exact-approximate interpolation [16]. Many techniques exist for both global and local
interpolation. Trend surface analysis and Fourier series are examples of global techniques, whereas
proximal, kriging and B-splines are local techniques. In particular, the kriging SI algorithm is a typical
local interpolation algorithm. The universal kriging interpolation algorithm is a type of linear and
unbiased optimal kriging SI algorithm, which is used widely in many scientific and engineering
applications. However, in many applications, severe performance bottlenecks occur when using the
serial universal kriging algorithm because the computational cost increases exponentially with the
input data size [17,18].

In order to accelerate the process and obtain better performance, researchers have developed
different methods in the past decades to implement parallel SI algorithms that target high performance
computing systems, e.g., MasPar [19], Cray T3D [20], parallel clusters [21], multi-core platforms [22]
and grid computing environments [23]. In particular, there have been several studies of parallel kriging
interpolation algorithm design. For example, Kerry et al. [24] used a dedicated high performance
computer to implement a parallel kriging algorithm that greatly reduces the CPU time. However,
this method is quite expensive, and it demands a high standard hardware configuration to accelerate
processing. Pedelty et al. [25] implemented a parallel kriging algorithm using the message passing
interface parallel programming model on a commodity cluster, where their implementation achieved
satisfactory performance and good efficiency. However, the requirement for real-time processing
and the rapid growth in the data size demands many more computing nodes, which inevitably
increases both the hardware and maintenance costs, as well as requiring high energy consumption [26].
Some studies have also developed parallel kriging algorithms using multi-core parallelism methods.
For example, Strzelczyk et al. [27] designed a parallel kriging algorithm based on multiple cores,
but there were efficiency issues when multi-core parallelism was applied to specialized scientific
applications, e.g., big data processing, because of the slow system memory access.

Recently, due to the rapid increase in the computing capacity of accelerators, such as Graphics
Processor Units (GPUs) and Intel Xeon Phi (Intel Many Integrated Core architecture (MIC)), the use
of accelerators for big data processing has become a hot research topic in various fields. Many
studies of GPUs have been conducted in the geo-sciences field [28–31]. In particular, there have
been some studies of universal kriging algorithms; for example, Cheng et al. implemented a parallel
universal kriging algorithm using the NVIDIA Compute Unified Device Architecture (CUDA) on a
GPU platform [32]. However, there have been few studies on the Intel MIC platform because MIC is a
relatively new accelerator technology. Previous studies based on MIC focused mainly on comparisons
with GPU or programming aspects of the platform instead of the design or implementation of a
parallel SI algorithm or applications. For instance, Heinecke et al. [33] compared the architecture
and performance of a General Purpose GPU (GPGPU) with an Intel MIC and demonstrated the
benefits of MIC. Wang et al. [34] described measures to avoid bottlenecks in the memory capacity,
network bandwidth, etc., and enhanced the parallel programming thread extensibility on the MIC
platform. However, their implementations were not portable across different platforms because
different computing platforms, i.e., GPU and MIC, require different programming models and tools.

A heterogeneous computing system is a computing system that can integrate the GPU and Intel
Xeon Phi acceleration components into conventional computing systems to implement computing
tasks together with the CPU. Heterogeneous computing integrates each heterogeneous platform in
an asynchronous manner by utilizing separate resources for computing or task scheduling, thereby
maximizing the overall efficiency of a computing system by assigning tasks based on considerations of
the capacities of each computing device [35].

Heterogeneous computing is playing increasingly important roles in big data processing, and we
envision the rapid adoption of heterogeneous computing for large-scale spatial data interpolation
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processing using improved algorithms. This approach can potentially achieve high performance on
coprocessor computing platforms with speedups of more than 10ˆ, as well as effectively avoiding the
aforementioned problems that are encountered on a traditional CPU-only cluster. It is also desirable to
have an optimized cross-platform implementation of a parallel universal kriging algorithm that runs
on different heterogeneous platforms. To the best of our knowledge, few studies have addressed the
application of heterogeneous computing in the geo-sciences field.

In this study, we present the design and implementation of a parallel universal kriging algorithm,
as well as demonstrating its performance and cross-platform features. The remainder of this
paper is organized as follows. In Section 2, we give a brief introduction to the universal kriging
algorithm, heterogeneous computing and the OpenCL development model. Section 3 focuses on the
implementation of the serial kriging algorithm, hotspot analysis and the corresponding parallelization
techniques. In Section 4, we describe the design and implementation of the parallel universal kriging
algorithm. Section 5 presents the experimental results and analysis. Finally, we give our conclusions
in Section 6.

2. Background

2.1. Principle of the Universal Kriging Interpolation Algorithm

The universal kriging algorithm is a type of linear unbiased optimal SI algorithm. In contrast to
other commonly-used SI algorithms, such as Voronoi and the inverse distance weighting method [36],
it considers the spatial correlation between the points that need to be interpolated and their neighboring
points, as well as giving the estimation error. The universal kriging algorithm provides more accurate
interpolation results, and it is applied widely in the geological interpolation area. The principle of the
algorithm is expressed by Equation (1):

Z˚ px0q “

n
ÿ

i“1

λiZ pxiq (1)

where Z˚ px0q is the value at the point that needs to be interpolated and λi represents the weighted
coefficient of point i, with the measured value Z pxiq. When the expectation of random variable Z pxq
is a variable in the area of interest, we have,

E rZ pxqs “ m pxq (2)

In this case, the universal kriging algorithm is required for interpolation. In Equation (2), m pxq is
the drift function, which can be represented as follows,

m pxq “
k
ÿ

l“0

ul fl pxq (3)

where fl pxq is a known equation and ul is the unknown parameter. To ensure that the evaluated and
estimated values are as similar as possible, the universal kriging interpolation algorithm should meet
the following two conditions.

‚ Condition 1: The unbiased condition, i.e., the expected value of the difference between the
evaluated and estimated values is zero, E rZ˚ px0q ´ Z px0qs ” 0, which leads to the equation:
řn

i“1 λi “ 1. By combining this with Equations (1) and (3), the universal kriging algorithm can be
expressed by Equation (4).

n
ÿ

i“1

λi fl pxiq “ fl px0q , pl “ 0, 1, . . . , kq (4)
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‚ Condition 2: The estimated minimum variance conditions. To minimize the variance between the
estimated and measured value, the universal kriging interpolation algorithm needs to satisfy the
following condition.

σ2
E “ E rZ˚ px0q ´ Z px0qs

2 (5)

Using Equations (1) and (5), we can obtain Equation (6).

σ2
E “ ´

n
ÿ

i“1

n
ÿ

j“1

λiλjγpxi, xjq ` 2
n
ÿ

i“1

λiγ pxi, x0q (6)

where γ means the variation function. Using the Lagrange multiplier method and Equations (4) and
(6), we can obtain the target function, as shown in Equation (7).

F “ σ2
E ´ 2

k
ÿ

l“0

ul

«

n
ÿ

i“1

λi fl pxiq ´ fl px0q

ff

(7)

By taking the partial derivatives of λi and ul , and making them equal to zero, we obtain the
equation set of the universal kriging algorithm. The estimated values of the points of interest are
obtained by solving the corresponding equations in matrix form, which comprises a series of product
operations for the measured value and the corresponding weight of each point.

2.2. Heterogeneous Computing

A heterogeneous computing system comprises different processors with diverse functions or
performance, which connect via a specific interconnection structure. In general, they comprise one
or more general purpose microprocessors and special accelerated processors. At present, the most
widely-used heterogeneous computing platforms contain both CPU and GPU. NVIDIA released
the first general purpose GPU in 1999, which was a dedicated coprocessor designed to solve the
problem of complex calculations [37]. Due to its highly parallel multi-core structure and higher
memory access bandwidth, the GPU offers higher peak computing capacities and higher memory
throughput than the contemporary CPU. With support from CUDA and OpenCL, it has gradually
become a type of general-purpose processor. On 18 June 2012, Intel Cooperation introduced the MIC
(Many Integrated Core architecture) platform, which is a many-core architecture that differs from that
of a GPU [38]. MIC is a coprocessor with a multiple ˆ86 core architecture. These cores are integrated
into a single computing node as coprocessor hardware peripherals, and they work together with the
CPU. MIC is compatible with the ˆ86 CPU instruction set and the single instruction-multiple data
instruction sets, which can reduce the difficulty of transplantation from a traditional cluster to the MIC
architecture. In addition, it supports complex, but flexible programming strategies. Thus, MIC has led
application development into a new period. The combination of CPU and MIC provides a new option
for heterogeneous computing.

The experiments presented in this study were performed on two heterogeneous computing
platforms: a CPU + GPU platform called Shelob located at Louisiana State University in the
United States and a CPU + MIC platform at Tsinghua University in China.

2.3. OpenCL Programming Model

OpenCL is the first general parallel programming standard for heterogeneous computing.
It was originally developed by Apple Incorporated, and it is free, cross-platform, with good
interoperability [39]. OpenCL provides a unified programming environment for software developers.
It facilitates the development of software for high performance computing servers, desktop computing
systems and hand-held devices, as well as applications in multicore processors (CPU/MIC), GPUs,
digital signal processors and other many-core processors. OpenCL has many application fields, and it
has a promising future in the consumer market.
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OpenCL is an implementation rather than a developing language. It provides the C-like
programming language (based on C99) to develop a kernel function that can run on different
OpenCL devices and a group of application programming interfaces (APIs), which can define
and control heterogeneous platforms. OpenCL provides two parallel computing mechanisms [35],
i.e.: (1) based on task segmentation; and (2) based on data segmentation. According to the official
manual for OpenCL development, the constructed algorithms/applications can run on a variety of
equipment. Furthermore, OpenCL supports the implementation of multiple levels of parallelism, and
each parallelism level can be mapped efficiently onto hardware on homogeneous or heterogeneous
architectures. During the design and development of a parallel algorithm that is compliant with
the OpenCL specification, it is important to follow four prescribed models, i.e., the platform model,
the implementation model, the memory model and the programming model. The platform model
is a high-level description of the heterogeneous computing system with abstractions to the system’s
hardware basis. The implementation model describes how the kernels run on the OpenCL platform
and how the kernel interacts with the host end. The memory model is an abstraction of the underlying
memory space, which describes the memory area set in OpenCL and defines the interactions of
different memory spaces during calculations. The programming model is a high-level abstraction of
the applications implemented by program developers, which defines the mappings of the OpenCL
program with the host and the processing unit with the memory spaces.

A parallel algorithm will achieve better performance if suitable memory types are considered
during OpenCL programming. OpenCL defines a four-level memory hierarchy for the computing
device: global, constant, local and private memory. The global memory can be shared by all of the
processing elements, but it has high access latency. The constant memory is also visible to all of the
computing units on the device, where it is part of the global memory. Any element of the constant
memory is accessible simultaneously to all of the work-items. The local memory belongs to the
computing unit and it is typically implemented on-chip, where it is shared by all of the work-items
within a workgroup. It has low access latency, but its capacity is limited. Private memory belongs to a
work-item, and it is typically implemented on-chip in registers.

OpenCL has gained wide support from major coprocessor manufacturers, and it has the
advantages of being open source and cross-platform [39], so in this study, we used OpenCL as our
development tool to implement the parallel universal kriging algorithm on different heterogeneous
computing platforms.

3. Serial Universal Kriging Algorithm

3.1. Implementation of the Serial Universal Kriging Algorithm

The primary task involved in the implementation of the serial algorithm is selecting an appropriate
space variation function model, as well as code development for this variation function model. In this
study, we calculate the estimated value for each point using the neighboring points searching approach.

3.1.1. Selecting the Variation Function Model

The variation function model can be divided into three categories in geo-statistics: (1) the model
with sill [40], which includes a spherical model, an index model and a Gaussian model; (2) the model
without sill [2], which includes a power function and a linear model; and (3) the cavity effect model [41].
We use the spherical model, which is employed frequently in geo-statistics, as our serial universal
kriging algorithm’s variogram function. The spherical model can be expressed by Equation (8):

γ phq “

$

’

&

’

%

0 h “ 0

c0 ` c
´

3h
2a ´

h3

2a3

¯

0 ă h ď a

c0 ` c h ą a

(8)
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where c0 is the nugget effect, c is the partial sill of the semi-variogram model and a is the range
of influence.

3.1.2. Implementation of the Serial Algorithm

Following the principle of the universal kriging algorithm, using the selected variation function,
the serial algorithm can be implemented based mainly on three components: (1) the File Manipulation
Module (FMM); (2) the Adjacent Points Searching Module (APSM); and (3) the Universal Kriging
Interpolation Function Module (UKIFM). FMM is responsible for reading the input shape file to obtain
the three-dimensional coordinates for the known points and other information. When the interpolation
results are ready, this module also writes the data as the output. These functions are implemented
using an open-source spatial data format conversion library, GDAL (Geospatial Data Abstraction
Library) [16]. APSM focuses mainly on calculating the plane coordinates px, yq of the unknown points
according to the coordinate range of the known points and using a fixed step. The n neighbor points of
every unknown point are searched where the searching procedure employs the k-nearest neighborhood
algorithm [42], which searches k neighbors of the search point. The UKIFM module is the numerical
kernel used for interpolation (see Figure 1).

ISPRS Int. J. Geo-Inf. 2016, 5, 96 6 of 21 

 

Following the principle of the universal kriging algorithm, using the selected variation function, 

the serial algorithm can be implemented based mainly on three components: (1) the File Manipulation 

Module (FMM); (2) the Adjacent Points Searching Module (APSM); and (3) the Universal Kriging 

Interpolation Function Module (UKIFM). FMM is responsible for reading the input shape file to 

obtain the three-dimensional coordinates for the known points and other information. When the 

interpolation results are ready, this module also writes the data as the output. These functions are 

implemented using an open-source spatial data format conversion library, GDAL (Geospatial Data 

Abstraction Library) [16]. APSM focuses mainly on calculating the plane coordinates (𝑥, 𝑦) of the 

unknown points according to the coordinate range of the known points and using a fixed step. The n 

neighbor points of every unknown point are searched where the searching procedure employs the k-

nearest neighborhood algorithm [42], which searches k neighbors of the search point. The UKIFM 

module is the numerical kernel used for interpolation (see Figure 1). 

 

Figure 1. Modules in the serial universal kriging algorithm. 

All of the modules use some shared global variables to complete data interaction and data 

processing. First, the serial algorithm needs two global arrays, i.e., double dp[n_known] and 

ip[n_unknown] in FMM, where the former is for the known points and the latter is for the points where 

interpolation takes place. Thus, the array dp[n_known] is initialized to store the data extracted from 

the input shape file, and the array ip[n_unknown] is filled with the plane coordinates’ information, i.e., 

(𝑥, 𝑦), for each unknown point by searching the appropriate points with a fixed step length on a 

global scale for the whole input image. Second, during the search process, an extra array called 

double near_points[n_nearby] is introduced to store the n_nearby adjacent points found for each 

unknown point. Third, UKIFM uses the plane coordinates (𝑥, 𝑦) of the unknown points and the 

coordinates of their corresponding adjacent points to calculate the estimated values, which are output 

together with the coordinates, i.e., (𝑥, 𝑦, 𝑧), for these unknown points. 

Specifically, the serial algorithm can be expressed in detail by the following four steps. 

 Step (1): Read the data information, i.e., (𝑥, 𝑦, 𝑧), the three-dimensional coordinates of the known 

points from source files. 

 Step (2): Calculate the plane coordinates of the unknown points according to the coordinate 

range of the known points. Based on the known points, select the points that need to be 

interpolated with a specified space interval and then calculate their corresponding plane 

coordinates (𝑥, 𝑦). 

 Step (3): Establish a k-d tree using the three-dimensional coordinates’ information for the known 

points and then search the neighboring points (among the known points) for each unknown 

point according to the algorithm. 

 Step (4): Transfer the coordinates’ information (𝑥, 𝑦)  for the unknown points and the  

three-dimensional coordinates (𝑥, 𝑦, 𝑧) of their neighboring points to the UKIFM to calculate 

the estimated values of the unknown points. 

In particular, Step (2) and Step (3) are used to provide the known points and the plane 

coordinates’ information for the points that need to be inserted, while Step (4) is the main calculation 

File 

Manipulation 

Module

Adjacent Points 

Searching 

Module

Universal Kriging 

Interpolation Function 

Module

Shared 

Global 

Variables 
dp[n_known]

ip[n_unknown] near_points[n_nearby]

Extra 

information

dp,ip,near_points

Figure 1. Modules in the serial universal kriging algorithm.

All of the modules use some shared global variables to complete data interaction and data
processing. First, the serial algorithm needs two global arrays, i.e., double dp[n_known] and
ip[n_unknown] in FMM, where the former is for the known points and the latter is for the points
where interpolation takes place. Thus, the array dp[n_known] is initialized to store the data extracted
from the input shape file, and the array ip[n_unknown] is filled with the plane coordinates’ information,
i.e., px, yq, for each unknown point by searching the appropriate points with a fixed step length on a
global scale for the whole input image. Second, during the search process, an extra array called double
near_points[n_nearby] is introduced to store the n_nearby adjacent points found for each unknown point.
Third, UKIFM uses the plane coordinates px, yq of the unknown points and the coordinates of their
corresponding adjacent points to calculate the estimated values, which are output together with the
coordinates, i.e., px, y, zq for these unknown points.

Specifically, the serial algorithm can be expressed in detail by the following four steps.

‚ Step (1): Read the data information, i.e., px, y, zq, the three-dimensional coordinates of the known
points from source files.

‚ Step (2): Calculate the plane coordinates of the unknown points according to the coordinate range
of the known points. Based on the known points, select the points that need to be interpolated
with a specified space interval and then calculate their corresponding plane coordinates px, yq.

‚ Step (3): Establish a k-d tree using the three-dimensional coordinates’ information for the known
points and then search the neighboring points (among the known points) for each unknown point
according to the algorithm.
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‚ Step (4): Transfer the coordinates’ information px, yq for the unknown points and the
three-dimensional coordinates px, y, zq of their neighboring points to the UKIFM to calculate the
estimated values of the unknown points.

In particular, Step (2) and Step (3) are used to provide the known points and the plane coordinates’
information for the points that need to be inserted, while Step (4) is the main calculation component of
the serial universal kriging algorithm. In fact, the implementation of Step (4) is complex, and it can be
further divided into seven sub-steps (Sub-steps a–g) (Figure 2), as follows.
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‚ Sub-step a: Calculate the distance between a point that needs to be interpolated and its adjacent
points (known points, where the sum is n), i.e., d1, d2, ¨ ¨ ¨ , dn.

‚ Sub-step b: Sort the distance values obtained into ascending order.
‚ Sub-step c: Divide the sorted values into k groups.
‚ Sub-step d: Calculate the average distance hi in each group according to their values.

The estimated parameters of the variation function are then calculated using Equation (8).
According to the selected theoretical mode of the variation function, function fitting is conducted
to determine the variation function and the regression coefficient.

‚ Sub-step e: Place the distance values of the sampling points and the point into the variation
function to construct the coefficient matrix.

‚ Sub-step f: Solve the inverse matrix of the coefficient matrix in Sub-step (e).
‚ Sub-step g: Calculate the estimated value of the unknown point until all of the points have

been processed.

3.2. Hotspot Analysis and the Corresponding Parallelism Approach

After performing the time consumption analysis using the serial universal kriging algorithm,
we found that Step 4, i.e., the kriging interpolation function module, required 85.2%–97.6% of the total
elapsed time for different dataset sizes, e.g., small, medium and large datasets. The time consumption
percentage was closely related to the number of interpolation points involved and the searches of the
adjacent points. Thus, as the number increased, the time consumption percentage tended to increase.
For example, the number of search points was set to six in our test, but when this number was 12,
which is that used by most real-world applications, the time consumption proportion increased to
90.0%–95.6% with the same dataset groups. Clearly, Step 4 is the hotspot in the serial algorithm.

Therefore, in order to fully accelerate the serial universal kriging algorithm to obtain good
performance, the hotspot, i.e., Step 4, requires full consideration. In this step, the calculations of the
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unknown points are independent of each other, which facilitates the parallelization procedure. Thus,
the present study focused mainly on the implementation of parallelism for this step. It should be noted
that some specific application issues, such as the estimation of the variogram and the parameters’
settings, are not considered in the parallel implementation. Thus, the parameters used in the proposed
parallel algorithm are identified by serial interpolation.

4. Parallel Universal Kriging Algorithm Design and Implementation with OpenCL

4.1. Design and Framework of the Parallel Algorithm

According to the analysis given above, it is clear that Step 4 should be parallelized. However,
during the design and implementation of the corresponding efficient parallel algorithm, aspects such as
the data structure, data transmission between the host and devices, task partition granularity and load
balancing for multiple types of cooperating equipment also require full consideration [43]. Some of
these issues are independent of others, whereas there are specific dependencies on others.

To fully consider aspects, such as different platforms, the number of equipped accelerated
processors and system memory limitations, we propose the overall framework for the parallel
algorithm shown in Figure 3.
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Figure 3. Overall framework for the parallel universal kriging algorithm implementation.

According to Figure 3, the framework can be divided into two parts: the host and the device
end. Obviously, the main calculation is accomplished in the device. The host only performs control
tasks, such as data distribution and collecting results. The host and the device are related by some
shared variables.
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To develop a parallel algorithm with OpenCL, it is very important to design and implement
modules that are highly compliant with the OpenCL framework. When designing the parallel universal
kriging algorithm for high performance computing equipment, the main focus is on how to make
Step 4, the hotspot, fully fused with the parallel framework in OpenCL. This problem depends mainly
on the specific combination, design and implementation of four different programming models:
(1) the platform model; (2) the execution model; (3) the memory model; and (4) the programming
model. These programming models complement each other, and they are integrated into the overall
framework. Thus, other models may be involved when designing and implementing a specific model.
According to this rule, in the following, we describe the four models and the proposed framework
in detail.

4.2. Platform Model Implementation

The OpenCL platform model defines a manifestation when using a heterogeneous platform [44].
This blocks the underlying implementation of the equipment, which can only be used by developers
in the form of a device, so an additional collaboration pattern between the host and multiple devices
needs to be designed. First, the function for creating threads will create suitable threads according to
the number of devices. Then, the subsequent steps involve creating platforms, selecting the equipment
and creating buffers. Thus, the devices can complete all of the computing tasks cooperatively, and the
corresponding implementation is shown in Figure 4.
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Figure 4. Implementation of the platform model.

In Figure 4, the main thread shares information with its child threads. The information includes
the task assignment information, platform information pointing to the current equipment and variable
information for the insertion time shared by threads. The main thread first obtains the number
of available platforms and the devices on each platform, before calculating the total number of all
available devices. Next, an equipotent number of threads is created, and some shared variables that
transform information with child threads are constructed. Thus, the device ID number stored in the
variables shared by each piece of equipment is initialized. Subsequently, the child threads perform
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operations to recreate the platforms, and they can obtain the corresponding device information given
by the main threads.

In the following experiments, we employed two heterogeneous computing platforms: a GPU
platform equipped with two GPU cards and an Intel Xeon Phi platform equipped with three MIC
cards. In general, a similar procedure was followed to implement the platforms. In the GPU computing
platforms, the two GPU cards were treated as OpenCL devices. First, the main process was created in
the host end, where its responsibility was to manage the OpenCL platforms and OpenCL devices. Next,
two sub-processes were created after the main process found these two OpenCL devices, which mainly
operated after the OpenCL device’s initialization. The initialization process mainly comprised context
creation, buffer creation, command queue creation, program creation and setting the kernel parameters.
Finally, the parallel algorithm sent the kernel and the corresponding data to the appropriate devices,
as described above.

4.3. Execution Model Implementation

The OpenCL execution model defines the method for executing the kernel function that runs
on equipment supporting OpenCL. The OpenCL application comprises two parts: the host machine
program and one or more kernels. However, the OpenCL execution model does not define the details of
the host machine program. Thus, when there are multiple devices, meticulous work is still required by
the developer to divide the workload and to design the tasks collaboratively. In this study, the kernel
function was transformed from the part of the serial universal kriging function that needs to be
parallelized. When using the data decomposition parallelism method, the host device distributes
the kernel function programs to every device (in this case, Computing Units (CUs)). These kernel
programs were executed by their corresponding threads; in fact, these threads were created by the host
(see Figure 5). It should be noted that the calculations for every unknown point are independent of
each other, so there was no need to consider the communication among the kernels or threads.
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As shown in Figure 5, the calculation can be completed at one time for a small dataset. The process
includes operations, such as data filling, computing and retrieving results. Given that fairly large
datasets need to be calculated, it is useful to employ a loop operation to perform the task due to memory
limitations. In this case, the data are first divided into n groups according to the memory capacity and
the number of CUs (shown on the left in Figure 5). Each group, e.g., group i, is transformed into the
devices during an iteration and then decomposed into p portions, which are suitable for calculation by
one CU. In this manner, these operations can be repeated many times during one iteration to process
large amounts of data. In addition, the host must formulate the distribution of data over multiple
devices to ensure the orderly processing of data.

4.4. Memory Model Implementation

The memory model represents how OpenCL divides the memory among the host and the devices
for data interactions, where we use the memory object to complete data transmission. In this study,
the problem of memory implementation has two aspects: (1) memory mode implementation on the
host; and (2) memory mode implementation on computing devices; which are described separately in
the following.

1. Memory mode implementation on the host: In the host, the three-dimensional coordinate
information for the interpolation data points is read into the system memory first. The array size
is determined by the number of points n_points, which is pre-read from the Shapefile formatted
file. Next, the number of units that need to be interpolated is created according to the number of
parallel threads and the size of memory that can be used by the operating system. The size of the
interpolation units is search_n+1, where search_n units are stored with the data information of the
search_n neighboring points for the last point that needs to be interpolated. The organization of
the data structure for the interpolation unit in each thread is shown in Figure 6.
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Figure 6. Data organization structure.

To avoid wasting time on frequent memory allocation and deallocation, as well as the problem
of memory shortages in the computing devices, the memory should be controlled to a certain degree
while interpolating. In this study, the maximum limit is V, which is determined by controlling the
memory percentage or giving a specific size. The optimization code is described as follows.

MAX_MEM_FOR_DATA_STRUCT=1*1024*1024; // Memory is set to 1 MB in the default calculation method

MAX_MEM_FOR_DATA_STRUCT=s_info.totalram*Ration; // Use the memory usage percentage controlling method
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Finally, buffers are constructed by the corresponding threads in each device. Thus, operations
such as transferring the interpolation data unit to the buffer and sending back the results can be
processed continuously. The transmission of data between the master and equipment is completed
over several time iterations.

2. Memory mode implementation on computing devices: the data units that need to be processed
can be shared in the form of a global memory between the kernel function and the kernel calling
function. The function located on computing devices defines some variables in the form of a
private memory to complete data processing in the devices.

Large amounts of data are involved in massive data processing application, where a large number
of threads run on the computing devices, so the shared memory and private memory become valuable
because these resources are usually limited on hardware. Therefore, we employ a method that directly
reads and writes the global variable several times, rather than loading all of the interpolation data from
the global variable into the devices each time. This optimization method will affect the processing
speed to some extent, but it increases the number of threads that can be run on the devices at the same
time, thereby improving the overall performance.

4.5. Programming Model Implementation

The programming model determines the operational strategy that allows the algorithm to
be parallelized and to run on OpenCL devices. There are two different programming models in
OpenCL: tasks in parallel and data in parallel [39]. It is important to apply the most suitable mode for
this algorithm.

Based on Section 3.1.2, when implementing the parallel universal kriging algorithm, the key step
is to parallelize Step 4, which is implemented by the universal kriging function. This function also has
seven sub-steps (a–g), which represent operations such as sorting, grouping and calculating the matrix
inversion. According to the analyses of the time consumed by every sub-step using a professional
performance analyzer, the results for different dataset sizes with various setting parameters are
illustrated in Figure 7.

ISPRS Int. J. Geo-Inf. 2016, 5, 96 12 of 21 

 

tasks in parallel and data in parallel [39]. It is important to apply the most suitable mode for this 

algorithm. 

Based on Section 3.1.2, when implementing the parallel universal kriging algorithm, the key step 

is to parallelize Step 4, which is implemented by the universal kriging function. This function also 

has seven sub-steps (a–g), which represent operations such as sorting, grouping and calculating the 

matrix inversion. According to the analyses of the time consumed by every sub-step using a 

professional performance analyzer, the results for different dataset sizes with various setting 

parameters are illustrated in Figure 7. 

 

Figure 7. Time consumption by each sub-step in the universal kriging function. 

Figure 7 shows that the matrix inversion calculation procedure accounts for 61.9%–72.9% of the 

runtime for the serial algorithm, which is the highest proportion among all of the sub-steps, and it 

contains no other steps, such as data reading or searching for adjacent points. However, if we regard 

this step as the hotspot, the acceleration effect will be very limited. In addition, there are dependencies 

among other steps, so the task level parallelization mode is not suitable for this algorithm. By contrast, 

the data that need to be processed can be executed in parallel using the designed structure, where 

each work-item does not require interactions with other data and there are no data dependencies. 

Thus, this is the most suitable level for data parallelization. We use this form of data parallelization 

to implement universal kriging algorithm parallelization (as shown in Figure 3). 

4.6. Load Balancing Strategy for Multiple Devices 

The task partition granularity and the load-balancing problem must be addressed when there 

are multiple computing devices. The main thread needs to distribute the overall task to multiple 

devices for processing, before collecting and combining the computing results to obtain the final SI 

results. Based on our experimental verification, the parallel algorithm uses a strategy that divides the 

specific memory according to the average number of equipment, where it considers the maximum 

number of points that the memory can allow for insertion as the parallelism granularity. In addition, 

we use the lock mechanism to implement the dynamic load-balancing strategy to compute the task 

distribution schedule. The detailed implementation of the load-balancing scheduling strategy is 

illustrated in Figure 8. 

4
.1

1
%

4
.0

3
%

4
.1

0
%

3
.2

3
%

3
.3

5
%

3
.3

7
%

2
.9

1
%

2
.8

3
%

2
.8

2
%8
.0

5
%

8
.1

2
%

7
.8

7
%

1
1
.9

4
%

1
1
.6

3
%

1
1
.4

6
%

1
2
.1

9
%

1
2
.1

5
%

1
2
.2

9
%

1
.7

4
%

1
.6

7
%

1
.6

4
%

0
.4

6
%

0
.4

2
%

0
.4

4
%

0
.2

0
%

0
.1

6
%

0
.1

8
%

9
.2

0
%

8
.3

3
%

9
.1

1
%

8
.5

6
%

8
.5

2
%

8
.4

6
%

7
.4

8
%

7
.4

8
%

7
.5

9
%

7
.3

0
%

7
.2

1
%

7
.3

5
%

2
.1

1
%

2
.0

4
%

2
.1

1
%

0
.8

9
%

0
.8

2
%

0
.8

1
%

6
2
.1

3
%

6
3
.0

7
%

6
1
.9

6
% 6
8
.7

1
%

6
9
.1

7
%

6
9
.3

5
%

7
2
.8

5
%

7
2
.9

2
%

7
2
.7

9
%

7
.4

8
%

7
.5

7
%

7
.9

7
%

4
.9

9
%

4
.8

7
%

4
.8

1
%

3
.4

7
%

3
.6

4
%

3
.5

3
%

1 2 3 4 5 6 7 8 9

P
ro

p
o
rt

io
n
 (

%
)

Sub-Step a Sub-Step b Sub-Step c Sub-Step d Sub-Step e Sub-Step f Sub-Step g

Figure 7. Time consumption by each sub-step in the universal kriging function.

Figure 7 shows that the matrix inversion calculation procedure accounts for 61.9%–72.9% of the
runtime for the serial algorithm, which is the highest proportion among all of the sub-steps, and it
contains no other steps, such as data reading or searching for adjacent points. However, if we regard
this step as the hotspot, the acceleration effect will be very limited. In addition, there are dependencies
among other steps, so the task level parallelization mode is not suitable for this algorithm. By contrast,
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the data that need to be processed can be executed in parallel using the designed structure, where each
work-item does not require interactions with other data and there are no data dependencies. Thus,
this is the most suitable level for data parallelization. We use this form of data parallelization to
implement universal kriging algorithm parallelization (as shown in Figure 3).

4.6. Load Balancing Strategy for Multiple Devices

The task partition granularity and the load-balancing problem must be addressed when there
are multiple computing devices. The main thread needs to distribute the overall task to multiple
devices for processing, before collecting and combining the computing results to obtain the final SI
results. Based on our experimental verification, the parallel algorithm uses a strategy that divides the
specific memory according to the average number of equipment, where it considers the maximum
number of points that the memory can allow for insertion as the parallelism granularity. In addition,
we use the lock mechanism to implement the dynamic load-balancing strategy to compute the task
distribution schedule. The detailed implementation of the load-balancing scheduling strategy is
illustrated in Figure 8.ISPRS Int. J. Geo-Inf. 2016, 5, 96 13 of 21 
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5. Experiments and Analysis

5.1. Configuration of the Experimental Environment

We performed experiments on two types of platform: (1) a GPU-based platform; and (2) an Intel
Xeon Phi-based platform. The hardware configuration is shown in Table 1. There were differences
in the hardware architecture and design of these two platforms. In these experiments, we aimed to
determine the differences in the acceleration obtained and the heterogeneity of the parallel algorithm
on different heterogeneous computing platforms.



ISPRS Int. J. Geo-Inf. 2016, 5, 96 14 of 22

Table 1. Detailed configurations of the experimental platforms.

Platform Hardware Configuration Software Configuration

Shelob

CPU

Intel(R) E5-2670 CPU @ 2.60 GHz

Linux shelob1 2.6.32-358.23.2.el6.x86_64
OpenCL 1.2 LINUX gdal-1.10.1,

proj-4.8.0, geos-3.4.2

Processor number: 16
Device global memory: 64,398 MB

Cache size: 20,480 KB

GPU

Tesla K20Xm
Shading Units: 2688

Device global memory: 5759 MB
Device number: 2

Tsinghua Intel
Xeon Phi

CPU

Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70 GHz

Linux Tsinghua3MIC
2.6.32-358.el6.x86_64 OpenCL 1.2

LINUX gdal-1.10.1, proj-4.8.0, geos-3.4.2

Processor number: 24
Device global memory: 64,390 MB

Cache size: 30,720 KB

MIC

Intel(R) Many Integrated Core Acceleration Card
Core number: 60

Device global memory: 5773 MB
Device number: 3

5.2. Experimental Methodology and Procedure

In the design of the experiments, we considered the following features.

‚ The difference in performance on various heterogeneous computing platforms also reflects the
parallel algorithm’s cross-platform capability.

‚ Each heterogeneous computing platform was equipped with several acceleration cards, i.e., Shelob
had two GPU cards and Tsinghua Intel Xeon Phi three MIC cards, so there may have been
differences due to the hardware employed.

‚ The created threads’ number could be varied, and thus, we investigated how to choose the most
suitable number for the experiments.

‚ The experimental datasets differed in size, i.e., the number of discrete points that required
interpolation differed in scale.

‚ The parameters’ setting used by the algorithm could influence the performance, e.g., the output
image pixel size and the number of neighboring points searched.

‚ To address the issues defined above, we employed the following experimental design.

1. The experiments were divided into two groups according to the number of accelerator cards.
The first used a single card on each heterogeneous computing platform, and the second used all
of the accelerator cards.

2. In each experimental group, a suitable number of threads was determined for each computing
platform. The datasets differed in size, and the parameters in the algorithm were also changed in
each experiment.

In order to assess the differences in performance, the sequential and parallel algorithms were
tested in experiments. For the parallel algorithm, the number of threads created T was set to the integral
multiple times the number of cores provided by the platform. However, the final number of threads
depended on the length of time elapsed. Thus, the hardware’s performance could be utilized to the
maximum degree. According to different experiments using various datasets, the numbers of threads
with the shortest elapsed time were 26,880 for Shelob and 24,000 for the Intel Xeon Phi platform.

In order to verify the correctness of the parallel program and the acceleration performance,
we used several datasets with different sizes to assess the sequential and parallel algorithms. Detailed
information related to the datasets is provided in Table 2.
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Table 2. Details of the datasets used in the experiments.

Data Sizes Data Attributes Data Sources

Small Dataset Discrete points’ number: 23,447; saved with
Shapefile format; file size is 642 KB.

Contour line generated
parameter set to 250 m.

Medium Dataset Discrete points’ number: 300,431; saved
with Shapefile format; file size is 8.02 MB.

Contour line generated
parameter set to 20 m.

Large Dataset Discrete points’ number: 999,894; saved
with Shapefile format; file size is 26.7 MB.

Contour line generated
parameter set to 6 m.

Table 2 shows that three groups of datasets were generated from the original image called
srtm_41_14.tif (download from srtm.csi.cgiar.org) with serial analysis operations, such as contour line
generation and lining objects to points using ArcGIS software. According to Table 2, the number of
points in the small, medium and large datasets could be assigned to three different scales: 20 thousand,
300 thousand and one million, respectively.

To run the parallel algorithm on these heterogeneous computing platforms, we used the following
command line:

./kriging -d ./data_file/little/Export_Output_little_250.shp -p 0.001 -n 6

where “-d” is the path of the input dataset that needs to be interpolated by the universal kriging
algorithm, “-p” is the pixel size for the generated output image and “-n” indicates the number of
search points.

We used the speedup to evaluate the performance of the proposed parallel algorithm, which is
the most popular index for this purpose. The speedup Sp is defined as follows:

Sp “
T1

Tp
(9)

where T1 represents the execution time of the serial program and Tp is the execution time of the parallel
algorithm with p processors. In this study, the parallel universal kriging algorithm was influenced
by different factors, such as the dataset size and the parameter settings. In order to determine the
differences in performance under various conditions, we calculated several speedup values in this
experiment. First, according to Equation (9), we calculated the speedup of the entire parallel algorithm
and the specific speedup only for the UKIFM part. Second, the relative time consumption by the hotspot
changed due to various factors, so we also calculated the current theoretical speedup. The theoretical
speedup was calculated using Amdahl’s law [45].

Speedup ď
1

p1´ pctParq ` pctPar
p

(10)

For the inequality, pctPar indicates the percentage of the serial program that needs to be
parallelized, and the number of threads/cores is p. When p reaches the highest value in theory,
the acceleration limitation equation for the program is as follows.

Speedup ď
1

p1´ pctParq
(11)

For simplicity, we use SpeedupA, SpeedupI and SpeedupT to represent the aforementioned
speedup values, respectively.
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5.3. Experiment Results and Analysis

5.3.1. Test Results with a Single Computing Device

Tables 3–5 show the experimental results obtained using a single accelerator device with three
different dataset sizes on the Shelob platform. For the same conditions, the experimental results
obtained on the Intel Xeon Phi platform are given in Tables 6–8. In these tables, n is the parameter
setting for the neighborhood search number and p is the original spatial resolution value, where the
output image’s resolution was set as less than, equal to or greater than p in this experiment. The data
used to calculate SpeedupT came from the serial algorithm’s hotspot detection.

Table 3. Speedup obtained with a single card on Shelob (small dataset).

Speedup
Small Dataset

n = 6 n = 12 n = 18

>p =p <p >p =p <p >p =p <p

SpeedupI 38.85 40.05 40.13 29.42 28.64 29.81 27.10 27.58 29.20
SpeedupA 9.41 9.91 10.23 14.17 13.9 14.52 17.35 17.69 18.64
SpeedupT 9.43 10.83 10.94 23.47 22.68 23.28 41.15 40.98 40.5

Table 4. Speedup obtained with a single card on Shelob (medium dataset).

Speedup
Medium Dataset

n = 6 n = 12 n = 18

>p =p <p >p =p <p >p =p <p

SpeedupI 38.70 39.11 39.17 27.82 26.64 27.23 25.12 24.60 25.68
SpeedupA 6.81 7.54 8.58 11.47 11.57 12.6 14.77 14.91 16.13
SpeedupT 6.83 7.97 9.28 16.55 17.86 19.63 29.65 30.74 34.96

Table 5. Speedup obtained with a single card on Shelob (large dataset).

Speedup
Large Dataset

n = 6 n = 12 n = 18

>p =p <p >p =p <p >p =p <p

SpeedupI 41.79 38.79 42.85 27.11 26.01 27.64 24.72 24.86 24.84
SpeedupA 4.59 5.3 6.95 8.5 9.18 11.42 12.29 13.22 14.66
SpeedupT 4.68 5.35 6.99 11.11 12.24 16.31 21.23 23.98 28.6

Table 6. Speedup obtained with a single card on Intel Xeon Phi (small dataset).

Speedup
Small Dataset

n = 6 n = 12 n = 18

>p =p <p >p =p <p >p =p <p

SpeedupI 11.43 11.30 11.42 10.96 10.87 10.76 11.77 11.67 11.66
SpeedupA 5.02 5.74 6.09 7.46 7.53 7.74 9.18 9.23 9.37
SpeedupT 10.64 10.66 11.15 21.26 22.89 22.89 37.33 38.24 40.15
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Table 7. Speedup obtained with a single card on Intel Xeon Phi (medium dataset).

Speedup
Medium Dataset

n = 6 n = 12 n = 18

>p =p <p >p =p <p >p =p <p

SpeedupI 11.55 11.59 11.56 11.00 11.03 11.00 11.77 11.79 11.72
SpeedupA 4.39 4.87 5.57 6.61 7.02 7.43 8.53 8.8 9.05
SpeedupT 6.84 7.67 8.91 15.52 16.8 19.22 28.04 30.15 33.56

Table 8. Speedup obtained with a single card on Intel Xeon Phi (large dataset).

Speedup
Large Dataset

n = 6 n = 12 n = 18

>p =p <p >p =p <p >p =p <p

SpeedupI 11.50 11.58 11.62 10.91 10.92 10.96 11.78 11.66 11.72
SpeedupA 2.91 3.53 4.57 5.35 5.94 6.78 7.5 7.93 8.66
SpeedupT 4.21 5.11 6.95 9.95 11.79 15.27 18.54 22.85 27.99

Tables 3–5 show the following. (1) In general, the parallel algorithm obtained good acceleration
performance, and it could reduce the processing time to a certain degree. In particular, when we only
considered the universal kriging interpolation part, the highest speedup reached up to 40ˆ, but the
value of SpeedupI decreased as the number of search points increased. (2) SpeedupI and SpeedupT
also decreased as the dataset size increased. In theory, these decreasing trends were caused mainly
by the need for more registers in each thread when the thread number was fixed. In these conditions,
the parallelism granularity decreased and a longer running time was required.

Tables 6–8 show the following. (1) The speedup exhibited a similar trend to that on Shelob.
(2) The speedup obtained on the Intel Xeon Phi platform was far less than that on Shelob. This was due
mainly to differences in the computing capacity of the MIC card and NVIDIA card. The peak number
for the MIC card was 508 GFLOPS (giga floating point operations per second) in theory, whereas that
for the NVIDIA card was 1311 GFLOPS, and thus, it was more powerful than the former.

5.3.2. Test Results with Multiple Computing Devices

When all of the accelerator cards were used, i.e., two GPU cards on Shelob and three MIC cards
on Intel Xeon Phi, load balancing also played a role. In the same manner as the experiments described
above, we compared the SpeedupI and SpeedupA calculated with different accelerator cards. Figures 9
and 10 compared the speedup obtained on the Shelob platform.

Using multiple devices, the speedup was almost doubled in both cases. Moreover, the speedup
ratio increased when the dataset size was larger.

Figures 11 and 12 compare the speedup results obtained with a single card and multiple cards on
the Intel Xeon Phi platform.

Similarly, compared to a single device, SpeedupI and SpeedupA increased by three times,
which was the number of multiple devices. In addition, the speedup ratio also increased.

Therefore, the results of these experiments demonstrate that the speedup changed in a linear
manner compared to that on a single device when we used multiple devices, which verified that our
load-balancing strategy was useful and effective.
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6. Conclusions and Future Directions

In this study, we focused mainly on the design and implementation of a parallel universal kriging
interpolation algorithm using the OpenCL programming model on heterogeneous platforms. In the
future, the source codes will be made available on GitHub. Based on the experimental results, we can
make the following conclusions.

1. The universal kriging interpolation algorithm developed with OpenCL could run on different
heterogeneous computing platforms without any modifications, i.e., GPU-based or MIC-based
platforms. Therefore, the proposed method has satisfactory cross-platform capability.

2. Compared to the serial algorithm that runs only on the CPU platform, the parallel universal
kriging algorithm, especially its interpolation calculation part, can achieve a good acceleration
ratio on different heterogeneous platforms.

3. The use of multiple computing devices, i.e., more GPU/MIC cards for computation, obtained
almost linear increases in the acceleration ratio and better performance than single computing
devices. However, the OpenCL-based heterogeneous computing approach also has its
weaknesses, including complex programming, high memory demands, little usage of recursive
functions and relatively low efficiency compared to CUDA.

In addition, there is still the possibility of further optimization of the proposed parallel universal
kriging program. For example, using a larger interpolation scale, the step employed to search for
neighboring points in the parallel program would gradually become the major hotspot. Therefore, this
hotspot requires greater consideration to further enhance the performance of the parallel algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

SI Spatial Interpolation
DE Digital Earth
GPU Graphics Processing Unit
MIC Intel Many Integrated Core Architecture
CUDA Compute Unified Device Architecture
GPGPU General Purpose GPU
API Application Programming Interface
FMM File Manipulation Module
APSM Adjacent Points Searching Module
UKIFM Universal Kriging Interpolation Function Module
CU Computing Units
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