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Abstract: Automatic discovery of isolated land cover web map services (LCWMSs) can potentially
help in sharing land cover data. Currently, various search engine-based and crawler-based approaches
have been developed for finding services dispersed throughout the surface web. In fact, with
the prevalence of geospatial web applications, a considerable number of LCWMSs are hidden in
JavaScript code, which belongs to the deep web. However, discovering LCWMSs from JavaScript
code remains an open challenge. This paper aims to solve this challenge by proposing a focused deep
web crawler for finding more LCWMSs from deep web JavaScript code and the surface web. First, the
names of a group of JavaScript links are abstracted as initial judgements. Through name matching,
these judgements are utilized to judge whether or not the fetched webpages contain predefined
JavaScript links that may prompt JavaScript code to invoke WMSs. Secondly, some JavaScript
invocation functions and URL formats for WMS are summarized as JavaScript invocation rules from
prior knowledge of how WMSs are employed and coded in JavaScript. These invocation rules are used
to identify the JavaScript code for extracting candidate WMSs through rule matching. The above two
operations are incorporated into a traditional focused crawling strategy situated between the tasks of
fetching webpages and parsing webpages. Thirdly, LCWMSs are selected by matching services with
a set of land cover keywords. Moreover, a search engine for LCWMSs is implemented that uses the
focused deep web crawler to retrieve and integrate the LCWMSs it discovers. In the first experiment,
eight online geospatial web applications serve as seed URLs (Uniform Resource Locators) and
crawling scopes; the proposed crawler addresses only the JavaScript code in these eight applications.
All 32 available WMSs hidden in JavaScript code were found using the proposed crawler, while
not one WMS was discovered through the focused crawler-based approach. This result shows
that the proposed crawler has the ability to discover WMSs hidden in JavaScript code. The second
experiment uses 4842 seed URLs updated daily. The crawler found a total of 17,874 available WMSs,
of which 11,901 were LCWMSs. Our approach discovered a greater number of services than those
found using previous approaches. It indicates that the proposed crawler has a large advantage in
discovering LCWMSs from the surface web and from JavaScript code. Furthermore, a simple case
study demonstrates that the designed LCWMS search engine represents an important step towards
realizing land cover information integration for global mapping and monitoring purposes.
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1. Introduction

A web map service (WMS) is an international standard protocol for publishing and accessing
geo-referenced maps on the web [1–3]. This standard has facilitated the integration, access and
value-added applications of geospatial information [1,4,5]. In the past few years, an increasing volume
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of land cover data and maps has been made available through WMSs for facilitating on-line open
data access [6,7], supporting collaborative data production [8,9], and assisting in crowd-sourcing
sampling and validation [10–13]. One example is the WMS-based information service system, which
enables the open access and sharing of one of the world’s first 30 m Earth land cover maps, called
GlobeLand30 (www.globeland30.org) [14]. There are many other land cover web map services
(LCWMSs) that provide global, national or local land cover data/maps. Some of these LCWMSs are
registered in catalogues (e.g., the Catalogue Service for the Web, CSW) on the basis of Service-Oriented
Architecture [15,16]. These LCWMSs can be discovered easily by matching keywords in corresponding
catalogues. Some LCWMSs are dispersed in the surface web, which refers to content stored in
static pages [17]. These can be accessed directly by visiting the hyperlinks associated with these
static pages [18]. However, others are hidden in the deep web, which refers to content hidden
in dynamic pages (often behind query interfaces), in script code, and so on [17,19]. In particular,
with the rapid adoption of the Open Geospatial Consortium (OGC) standards, such services are
increasingly employed by geospatial web applications that use JavaScript code supplemented by
third-party JavaScript libraries (e.g., OpenLayers and ArcGIS for JavaScript) [20,21]. This JavaScript
code and the libraries are often referenced in the form of JavaScript links, such as “<script src= ‘
../OpenLayers.js’></script>”. Such deep web LCWMSs are difficult to discover by simply visiting
hyperlinks. For example, the LCWMSs for GlobeLand30 can be discovered only by analysing the
JavaScript code exposed by the service system (www.globeland30.org).

Recently, discovery and integration of these dispersed land cover data services have been
stimulated by a wide range of development agendas, research programmes and practical
applications [10,22–24]. One example is the United Nation’s 2030 sustainable development agenda,
which critically depends on the availability and utilization of land cover information at global, national
and local scales. Unfortunately, no one single land cover data set or service can currently meet the
needs of all users. Moreover, many LCWMSs exist as isolated “information islands” and are not
well connected [25]; therefore, it is natural to consider linking all the land cover information services
scattered around the world to provide a more reliable land cover information service. This issue arose
and was discussed at the 9–10 June 2015 international workshop organized by the International Society
for Photogrammetry and Remote Sensing (ISPRS) and the Group on Earth Observations (GEO) [22].
It was proposed to design and develop a Collaborative Global Land information service platform
(CoGland); however, doing so faces a number of technical challenges [22]. One of these challenges is
to automate the discovery and connection of the existing but isolated LCWMSs to form a “one stop”
portal for an integrated information service [25].

Automatic discovery of LCWMSs can be realized in either a passive or active manner. The passive
method uses a keyword-matching approach to discover services in registered catalogues [15,16,26].
The success of this method depends largely on the willingness of service providers to register their
WMSs and make them available [15,16,26]. However, numerous services published on the web are
not registered in any catalogues, and thus cannot be found through catalogue searches [2,27]. Various
search engines, which use web crawlers to continuously traverse static pages [28–30], have been
developed for finding services dispersed in the surface web [31,32]. General-purpose search engines
(such as Google and Bing), customized search engines with general crawlers and focused crawlers are
the three most commonly used approaches [16,27,31–34]. In essence, however, these active approaches
can only find geospatial web services that reside in static pages. Nevertheless, a considerable number
of WMSs exist behind query interfaces and are hidden within JavaScript code [16,20,21]. The key
challenge here is to detect and understand the deep web query interfaces and JavaScript code that
signify WMSs and to extract them. The detection and understanding of query interfaces has received
some attention [35]; however, few efforts have been devoted to the detection and understanding of
JavaScript code specifically for discovering WMSs. Therefore, discovering WMSs from JavaScript code
in geospatial web applications remains an open question [21].
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This paper aims to solve this problem. It proposes a focused deep web crawler that can find
more LCWMSs from both the deep web’s JavaScript code and from the surface web. First, a group of
JavaScript link names are abstracted as initial judgements. Through name matching, these judgements
are used to judge whether a fetched webpage contains a predefined JavaScript link that may execute
other JavaScript code to potentially invoke WMSs. Secondly, some JavaScript invocation functions and
URL formats for WMS are summarized as rules from prior knowledge of how WMSs are employed
and presented in JavaScript code. Through rule matching, the rules can be used to understand how
geospatial web applications invoke WMSs using JavaScript code for extracting candidate WMSs.
The above operations are fused into a traditional focused crawling strategy situated between the tasks
of fetching webpages and parsing webpages. Thirdly, LCWMSs are selected from the list of extracted
candidate WMSs through WMS validation and matching land cover keywords. Finally, a LCWMS
search engine (LCWMS-SE) is designed and implemented that uses a rule-based approach to assist
users in retrieving the discovered LCWMSs.

The remainder of this paper is organized as follows. Section 2 reviews related work about
both the surface and deep geospatial web service discovery as well as the discovery of other deep
web resources from JavaScript code. Section 3 outlines the active discovery approach, including
a description of the initial judgements, the JavaScript invocation rules and the proposed focused
deep web crawler. The design and implementation of the search engine that retrieves the discovered
LCWMSs is described in Section 4. Preliminary experiments and analysis are presented in Section 5,
and Section 6 concludes the paper.

2. Related Work

A WMS provides three operations: GetCapabilities, GetMap, and GetFeatureInfo to support
requests for metadata, static maps and feature information about the corresponding georeferenced
maps, respectively [1,16]. The GetCapabilities operation is intended to request service metadata,
such as service abstract, reference coordinate system, the format, etc. [16]. The GetMap operation
enables users to obtain static maps from multiple servers by submitting parameters that include layer
names, bounding boxes, format, styles, etc. [3,16]. The GetFeatureInfo operation requests metadata
for the selected features [16]. Because metadata can help users find the service layers they need and
determine how best to use them [36], in general, discovering WMSs means finding the URLs of the
GetCapabilities operation. Other OGC geospatial services such as the Web Feature Service (WFS) and
the Web Coverage Service (WCS) also have GetCapabilities operations. Therefore, discovery methods
for those services are analogous to the discovery methods for WMSs.

2.1. Surface Geospatial Web Services Discovery

The most notable research for actively discovering surface geospatial web services can
be divided into two types of approaches. The first type of discovery approach utilizes the
application programming interfaces (APIs) of general-purpose search engines, employing predefined
queries to search the Internet for discovering OGC geospatial web services [27,32,33,37,38].
For example, the Refractions Research OGC Survey [37] used the Google web API with two
queries “request = getcapabilities” and “request = capabilities” to extract the results and then used
a number of Perl “regular expressions” for a complete capabilities URL in each returned page.
Lopez-Pellicer et al. [33] employed Bing, Google and Yahoo! APIs with two sets of 1000 queries
to measure the performances of the three search engines in discovering OGC geospatial web services.
They finally identified Yahoo! as the best performer. In the last two years, Bone et al. [32] designed
a geospatial search engine for discovering multi-format geospatial data using the Google search
engine with both user-specified and predefined terms. Kliment et al. [27,39] used the advanced query
operators “inurl:” of the Google search engine to discover specific OGC geospatial services stored in
Google’s indexes. This type of discovery approach is easily implemented, is low cost and can avoid the
performance issues of systems that attempt to crawl the entire web [32]. However, a general-purpose
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search engine is intended to cover entire topics without considering the characteristics of OGC
geospatial web services; thus, with this approach, actual OGC geospatial services will be inundated
with a large amount of search results [16]. Moreover, although general-purpose search engines
(e.g., Google) have already attempted to incorporate deep web resources hidden behind hypertext
markup language (HTML) forms [35], they still ignore some resources hidden in JavaScript code,
especially OGC geospatial web services invoked by JavaScript libraries. Furthermore, the public API
of general-purpose search engines has some calling limitations imposed through permissions, allowed
numbers of call, special policies, and so on. For instance, the API of the Google custom search engine
provides only 100 free search queries per day [40].

The second type of discovery approach is to utilize customized search engines. Customized search
engines can be categorized into general-purpose and topic-specific search engines [29]. Customized
general-purpose search engines are equipped with a web crawler, which can continually collect large
numbers of webpages by starting from a series of seed URLs (a list of URLs that the crawler starts
with) and without a specific topic [32,41,42]. For example, Sample et al. [43] utilized Google search
APIs to generate a set of candidate seed URLs for GIS-related websites and developed a web crawler
to discover WMSs. Shen et al. [15] developed a WMS crawler based on the open source software
NwebCrawler to support active service evaluation and quality monitoring. Patil et al. [44] proposed a
framework for discovering WFSs using a spatial web crawler. Compared to general-purpose search
engines, customized general-purpose search engines can easily control the process for discovering
geospatial web services and can dramatically scale down the set of URLs to crawl. However, the
crawled URLs still go far beyond only geospatial pages that contain geospatial web services [16].

To solve the above problems, topic-specific search engines with focused crawlers were developed.
With a series of seed URLs and a given topic, focused crawlers aim to continually crawl as many
webpages relevant to the given topic and keep the amount of irrelevant webpages crawled to the
minimum [41]. For example, Lopez-Pellicer et al. [26,45] developed a focused crawler for geospatial
web services. This crawler utilized Bing, Google and Yahoo! search APIs to generate seed URLs and
used best first and shark-search strategies to assign priority to these URLs. Li et al. [16], Wu et al. [46]
and Shen et al. [34] also developed focused crawlers based on different URL priority assignment
approaches to discover OGC geospatial web services. Because they further scale down the set of
URLs that must be crawled, these methods can improve discovery performance in both technical and
economic perspectives [16]. However, the above crawlers in the customized search engines parse
webpages solely through HTML parsing engines, which have no ability to identify and submit HTML
forms and do not address JavaScript code. Therefore, these customized search engines are not able to
discover WMSs in the deep web.

2.2. Deep Geospatial Web Services Discovery

The deep web refers to data hidden behind query interfaces, scripted code and other types of
objects [17,47]. From this perspective, the underlying geospatial web services registered in catalogues
are opaque because they are hidden behind catalogue query interfaces [47,48]; as such, geospatial web
services registered in catalogues form part of the Deep Web. In general, searching services from known
catalogues is implemented by keyword matching approaches [16]. However, a number of catalogues
are unknown to the public. Therefore, discovering services from these unknown catalogues depends
on successfully detecting and understanding the query interfaces of these unknown catalogues [47,48].
In the past few years, several works have been performed to address the query interface detection and
understanding problem. For example, Dong et al. [49] proposed a novel deep web query interface
matching approach based on evidence theory and task assignment. These works can be used for
detecting and understanding the query interfaces of unknown catalogues, but their original purposes
were not focused on discovering geospatial web services from the deep web.

Recently, some efforts have been made to discover geospatial web services from the deep web. For
example, Lopez-Pellicer et al. [20,21] analysed the characteristics of the deep web geospatial content in
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detail. They pointed out that disconnected content, opaque content, ignored content, dynamic content,
real-time content, contextual content, scripted content and restricted content are all part of the deep
web geospatial content. Furthermore, they summarized six heuristics on the characteristics of the deep
web content in the form of texts. Then, they designed an advanced geospatial crawler with plugin
architecture and introduced several extension plugins for implementing some of the heuristics to
discover part of geospatial contents hidden in the deep web. Finally, they indicated that discovering
services in geospatial web applications based on JavaScript libraries (e.g., OpenLayers) is still one of
the open questions that require further research. This was one motivation behind this study’s effort to
develop a new active discovery approach. Therefore, our contribution lies in the development of a
method to discover WMSs in geospatial web applications through focused crawling by inspecting the
JavaScript code using a rule-matching approach.

2.3. Use of JavaScript Code in Deep Web Resources Discovery

Various resources hidden in JavaScript code comprise part of the deep web. Discovery of these
resources has been the subject of research in the past few years. For example, Bhushan and Kumar [50]
developed a deep web crawler by utilizing some regular expressions (Match/Replace) to extract
clear-text links hidden in JavaScript code. Hou et al. [42] summarized matching rules formalized by
a regular expression to extract the geographical coordinates of built-up areas from JavaScript code.
Some resources dynamically generated by JavaScript code can be extracted using interpreters (i.e., the
JavaScript parsing engine and Webkit). For instance, Hammer et al. [51] developed a WebKit-based
web crawler to extract online user discussions of news. In geospatial web applications, WMSs are
rendered as maps for visualization using geospatial JavaScript libraries; hence, the WMSs are hidden
in JavaScript code. In general, these JavaScript libraries have concrete functions used to invoke WMSs.
Learning from the discovery experiences of other deep web resources, this paper summarizes the
invocation rules to extract candidate WMSs from JavaScript code.

3. Methodology

The previous discussions and analyses conclude that numerous LCWMSs exist in the JavaScript
code of geospatial web applications and must be discovered. Discovering these LCWMSs requires
addressing two challenges: detecting JavaScript code and understanding what that code does. Figure 1
represents the conceptual framework for discovering LCWMSs hidden in JavaScript code and the
surface web. Compared with other focused crawler-based discovery methods, the proposed approach
involves three major tasks. The first task is detecting predefined JavaScript links presented in the
fetched webpages. This task is responsible for judging whether other JavaScript code potentially
employs WMSs by matching the code against predefined judgements, which are composed of some
JavaScript link names. The second task involves understanding the detected JavaScript code. It is the
responsibility of this task to extract and validate candidate WMSs from JavaScript code through rule
matching. Achieving this goal depends largely on JavaScript invocation rules, which are composed of
WMS functions and their URL formats. The third task is to select available LCWMSs from the extracted
candidate WMSs using a land cover keyword-matching approach. In Figure 1, the tasks in the dashed
box are similar to other focused crawler-based discovery methods. More details are specified in the
following subsections.
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3.1. Detection of JavaScript Links Using Judgements

Most geospatial web applications use third-party JavaScript libraries to invoke WMSs for
map visualization. The four best-known JavaScript libraries are OpenLayers [52], ArcGIS API for
JavaScript [53], Leaflet [54] and Mapbox.js [55]. For example, the GlobeLand30 [9,14] and CropScape [6]
geospatial web applications were developed using OpenLayers. It is standard syntax to enclose a
reference to a JavaScript library in a “<script>” tag when it is used to develop a web application with
HTML [56], as shown in Table 1. The “src” property value of the “<script>” tag is a JavaScript link
to specific external JavaScript code or library. Therefore, a webpage that refers to any of the four
WMS-related JavaScript libraries is a reasonable candidate for potentially containing any WMSs. Based
on this finding, this paper summarizes judgements to determine whether the fetched webpages have
predefined JavaScript links that execute JavaScript code known to be related to WMSs.

Table 1. Reference formats of the four WMS-related JavaScript libraries.

WMS-Related JavaScript Libraries Examples of Reference Formats

OpenLayers 2.x <script src= ‘ ../OpenLayers.js’></script>
<script src= ‘ ../OpenLayers.debug.js’></script>

OpenLayers 3.x <script src= ‘ ../ol.js’></script>
<script src= ‘ ../ol-debug.js’></script>

ArcGIS API for JavaScript <script src= ‘ http://js.arcgis.com/3.14></script>
<script src= ‘../arcgis_js_api/library/3.9/arcgis_compact’></script>

Leaflet <script src=”http://cdn.leafletjs.com/leaflet/v0.7.7/leaflet.js”></script>

Mapbox.js <script
src=‘https://api.mapbox.com/mapbox.js/v2.2.3/mapbox.js’></script>

The judgements are composed of some JavaScript link names that are predetermined based on the
reference formats of OpenLayers, ArcGIS API for JavaScript, Leaflet and Mapbox.js as they appear in
webpages, as shown in Table 1. These judgements include “openlayers,” “ol.js,” “ol-debug.js,” “arcgis,”
“leaflet,” and “mapbox.” The judgements are performed by matching names with the JavaScript links
in fetched webpages. When a JavaScript link in fetched webpages contains one of the predefined
names, it indicates that other JavaScript code in the webpages may employ WMSs. Therefore, the other
JavaScript code will be addressed by the JavaScript invocation rules described in this paper.

Moreover, two additional measures are adopted to further avoid traversing all JavaScript links in
a geospatial web application. The first is to include some WMS-related keywords extracted from the
naming schemes of many actual JavaScript links known to launch WMSs. These keywords include
“map,” “initial,” “wms,” “layer,” “conus,” “capabilities,” “demo,” “query,” and “content.” Only when
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the name of a JavaScript link contains at least one of the above WMS-related keywords will the
JavaScript link itself be addressed by two subsequent JavaScript invocation rules. The second adopted
limiting measure is to summarize some keywords not related to WMSs from the naming schemes of
numerous well-known JavaScript libraries, such as JQuery, ExtJS, Proj4js and AngularJS. The keywords
mainly consist of “jquery,” “ext-,” ”proj4js,” ”angularjs,””openlayers,” “ol.js,” “ol-debug.js,” “leaflet,”
“mapbox” and so on. When the name of a JavaScript link contains one of the above WMS-unrelated
keywords, the JavaScript link will be ignored.

3.2. Understanding of JavaScript Code Using Invocation Rules

Only a discovery approach that understands how geospatial web applications invoke WMSs
by JavaScript libraries will be able to discover the WMSs in these applications [57]. Therefore, two
JavaScript invocation rules are summarized based on development knowledge of geospatial web
applications about WMSs to understand what such JavaScript code does.

As shown in Table 2, the first JavaScript invocation rule is derived from the OpenLayers [52],
ArcGIS API for JavaScript [53], Leaflet [54] and Mapbox.js [55], all of which are JavaScript libraries that
provide support for OGC’s web mapping standards [58]. The listed total of seven common functions
are often directly used to invoke WMSs in a large number of geospatial web applications. Therefore, to
make the discovery method understand how geospatial web applications invoke WMSs, the seven
functions collectively compose the first JavaScript invocation rule, which is formalized by the regular
expression shown in Figure 2. The rule obtains JavaScript code fragments containing the URLS of
candidate WMSs using a simple rule-matching approach. For example, the JavaScript code fragment
“OpenLayers.Layer.WMS.Untiled (“Rivers,” “http://129.174.131.7/cgi/wms_conuswater.cgi”, ...)” in
the CropScape geospatial web application [6] can be extracted by simply matching the first rule.
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Table 2. Invocation functions and the formalization of the first rule.

JavaScript Libraries Invocation Functions Parameter Description

OpenLayers 2.x

OpenLayers.Layer.WMS (name, url,
params, options)

Parameter “url” represents a URL for
a WMS

OpenLayers.Layer.WMS.Untiled (name,
url, params, options)

OpenLayers.Layer.WMS.Post (name, url,
params, options)

OpenLayers 3.x
ol.source.ImageWMS ({url:url, . . . }) The value in the key-value

pair“url:url” represents a URL for a
WMSol.source.TileWMS ({url:url, . . . })

ArcGIS API for JavaScript WMSLayer (url, options)
Parameter “url” represents a URL for
a WMS

Leaflet L.tileLayer.wms (url, options)

Mapbox.js L.tileLayer.wms (url, options)

The seven common functions are also deeply encapsulated in other functions that simply
invoke WMSs. For example, in the GeoNetwork site [59], the function “OpenLayers.Layer.WMS”
is encapsulated as the function “createWMSLayer,” which takes only an array parameter as an
argument to specify the base URLs of the WMS. It is impossible to exhaustively list all the encapsulated
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functions, because different geospatial web applications may adopt different encapsulated function
names. Therefore, to make the discovery method understand how encapsulated functions invoke
WMSs, the second JavaScript invocation rule is composed of the base URL formats of the WMSs
and is also formalized by a regular expression, as shown in Figure 3. The regular expressions
for the two rules are compiled by following the rules of the C# language. Through a simple
rule-matching approach, the second rule is used to extract http or https URLs that cannot be
extracted by the first rule from JavaScript code. For example, no URL can be extracted by the
first rule from the GeoNetwork site [59]; however, a URL can be extracted by matching the second
rule from the JavaScript code fragment ”GeoNetwork.WMSList.push (“Demo Cubewerx (WMS)-2,”
“http://demo.cubewerx.com/demo/cubeserv/cubeserv.cgi”)” in the GeoNetwork site [59].
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The two JavaScript invocation rules should be applied in a specific sequence, as shown in Figure 4.
Only when Javascript code referenced by a fetched webpage is identified as the potential source of a
WMS will the first rule be executed. Then, only if the first rule does not yield any URLs containing
candidate WMSs will the second rule be executed. This sequence is necessary because the second rule
is more general than the first rule; therefore, it acts to complement the first rule to capture all the URLs
in the identified JavaScript code.
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Figure 5 presents the pseudocode to illustrate how to use the two JavaScript invocation rules.
Steps 1–45 use the first JavaScript invocation rule to extract the URLs of potential WMSs. Steps 8–15
obtain a string for the URL of a potential WMS by splitting the matched string between the former two
commas because the second argument represents the base URL for a WMS when calling functions in
version 2 of the OpenLayers API (OpenLayers 2.x). Steps 16–21 also obtain a string for the URL of a
potential WMS by splitting the matched string between the string “url:” and the first comma because
the value of the key “url” represents the base URL for a WMS when calling functions in version 3 of
the OpenLayers API (OpenLayers 3.x). Similarly, a string for the URL of a potential WMS is obtained
by splitting the matched string between the first left parentheses and the first commas in Steps 22–27
because the first parameter represents the base URL for a WMS in ArcGIS API for JavaScript functions,
Leaflet, and Mapbox.js. Steps 28–31 indicate that the extracted parameter is the URL of a potential
WMS if it matches a URL format. When the extracted parameter is a JavaScript variable, a new function
that potentially returns the URL of the WMS will be generated and executed by the Jurassic JavaScript
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parsing engine by calling the CallGlobalFunction function [60], as shown in Steps 32–43. In these
steps, the syntax for the new function is composed of the JavaScript variable and a return statement, as
shown in Step 38. Steps 47–53 illustrate how to apply the second JavaScript invocation rule to extract
the URLs of potential WMSs.
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3.3. Discovery of Land Cover Web Map Services (LCWMSs) with a Focused Deep Web Crawler

A focused deep web crawler is proposed to discover LCWMSs from JavaScript code and the
surface web. The focused deep web crawler mainly relies on the summarized judgements, JavaScript
invocation rules and a JavaScript parsing engine for handling the JavaScript code. Moreover, as
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mentioned in Section 2.1, a focused crawler is able to efficiently traverse the web to find WMSs in the
surface web. Therefore, the proposed crawler uses the focused crawler to traverse the web for finding
WMSs in the surface web. In the proposed crawler, the judgements serve as a bridge between the
JavaScript invocation rules and the focused crawler.

Figure 6 illustrates the framework for the focused deep web crawler. The proposed crawler starts
with a series of seed URLs. Next, it begins to fetch the webpages corresponding to the seed URLs
or to crawled URLs. Then, the proposed crawler executes one of two branches according to certain
judgements. When the judgements are fulfilled, the first branch executes. Otherwise, the second branch
executes. The first branch mainly analyses any JavaScript code in the page with the Jurassic JavaScript
parsing engine and the two JavaScript invocation rules, according to the pseudocode detailed above.
It aims to obtain candidate WMS URLs from JavaScript code, while the second branch is intended to
obtain candidate WMS URLs from the surface web. The second branch starts by parsing the HTML
of webpages to extract their titles and contents. Then, a relevance calculation is executed using the
traditional vector space model and the cosine formula. In this step, the vector space model is an
algebraic model that represents webpages and the given topic as two vectors of keywords. The cosine
function is a measure of similarity between each webpage vector and the topical vector by comparing
the deviation of angles between the two vectors. This calculation is responsible for measuring the
degree of similarity between the extracted webpages and the given topical keywords. If the relevance
value is smaller than a given threshold, the webpage is discarded. Otherwise, when the relevance
value is equal to or greater than the given threshold, the URLs in the webpage are extracted and a
priority score for URLs will be assigned based on the texts in URLs, their parent webpages and anchor
texts. Furthermore, to more precisely target candidate WMS URLs, any extracted URLs that end with
common file extensions such as “.pdf,” ”.tif,” ”.js,” “.doc,” “.zip” and so on are discarded.
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After the candidate WMS URLs are obtained from these two branches, they are submitted to the
component that performs WMS validation. The WMS validation component submits a GetCapabilities
request to check whether the potential WMS URL corresponds to an available WMS. When the URL is
not a valid WMS, it is discarded. When the URL is an available WMS, its capability file will be parsed
to obtain metadata, such as the service name, service abstract, service keywords, bounding boxes, layer
names, layer titles, layer abstracts and so on. Then, the available WMSs will be classified to identify
the LCWMSs through matching land cover keywords. When the WMS metadata of service/layer
names, titles, abstracts and keywords contain one of the land cover keywords, the WMS is classified
as a LCWMS and stored in a LCWMS catalogue. Otherwise, the WMS is stored into a separate WMS
catalogue. Finally, URLs in the URL priority queue will continue to be submitted for fetching webpages
until the URL priority queue is empty or other conditions are fulfilled.

A total of 97 land cover keywords in English were collected from nine well-known classification
schemes, as shown in Table 3. The nine well-known classification schemes include GlobeLand30 [9],
International Geosphere-Biosphere programme (IGBP) [61], University of Maryland (UMD) [62],
Global Land Cover 2000 (GLC 2000) [63], GlobCover [64], land-use monitoring using remote sensing
from the Chinese Academy of Sciences [65], National Land Cover Database (NLCD) [66], Earth
Observation for Sustainable Development of Forests (EOSD) [67] and the Dynamic Land Cover Dataset
(DLCD) [68].

Table 3. Land cover keywords.

Representative Keywords Land Cover Keywords Number

Land cover land cover, land use, landcover 3

Cropland
cropland, wheat, corn, rice, greenhouse, pasture, paddy,
cultivated, hay, agricultural land, olive, vineyard,
saccharum, farmland

14

Forest forest, broadleaf, needleleaf, tree, woodland, evergreen 6

Grassland grassland, savannas, sedge, graminoid, hummock, grass,
meadow, herb, tussock 9

Shrubland shrubland, scrub, dwarf, bush, brush 5

Wetland wetland, marsh, bog, moor, intertidal, mangrove,
mudflat, salina, beachland 9

Water water, lake, reservoir, pond, river, ocean, sea, flood 8

Tundra tundra, lichens, moss, cryptogam, bryoids 5

Impervious area impervious area, urban, built-up, artificial surfaces, road,
railway, airport, landfill, port, mining, settlement 11

Barren land

barren land, nudation, salt, alkali, sand, gravel, rock,
biological crust, barren, bare ground, open space,
unconsolidated shore, rubble, bedrock, bare soil, gobi,
desert, bareland

18

Snow snow, ice, glacier, colluvium 4

Vegetation vegetation, herbaceous, plant, chenopod, forb 5

4. LCWMS-SE Implementation

4.1. LCWMS-SE Architecture

A working prototype of the LCWMS-SE was implemented based on the Microsoft NET Framework
3.5. The LCWMS-SE can automatically find LCWMSs from both the surface and deep webs. Moreover,
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it enables users to retrieve their required services among the discovered LCWMSs. The LCWMS-SE is
available, along with documentation, at [69]. The URL is temporary, but users will be able to track the
progress of LCWMS discovery from the GlobeLand30 service system in future.

The LCWMS-SE comprises a focused deep web crawler, an indexing module, a retrieval module
and a user query interface, as shown in Figure 7. The focused deep web crawler and indexing module
are a desktop application based on C# WinForms. The information retrieval module and user query
interface are a web application based on ASP.Net.ISPRS Int. J. Geo-Inf. 2016, 5, 105 12 of 22 
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The focused deep web crawler is responsible for fetching and discovering LCWMSs from the
internet as discussed in Section 3.3. The discovered LCWMSs are stored in an LCWMS catalogue.
The indexing module is responsible for indexing the discovered LCWMSs in spatial and textual forms
to generate an index database. The retrieval module, which allows users to enter a bounding box and
keywords, provides search and rank functionalities. The user query interface allows users to submit
queries, which are addressed through stop word filtering, synonym expansion and so on. Finally,
the user query interface submits these queries to the retrieval module and presents ranked results to
the users.

4.2. Indexing and Retrieving Modules

A bounding box is a mandatory parameter for users, who need to execute GetMap operations
to obtain their required maps [70]. These users usually know the bounding boxes in advance when
searching for their desired LCWMSs. When the bounding box is provided as a query parameter,
the returned LCWMSs will better conform to the users' requirements. Therefore, the working
prototype of the LCWMS-SE takes a user-specified bounding box into account, treating it as as a
major query parameter.

Because one goal of the LCWMS-SE is to retrieve LCWMSs with respect to keywords and the
user-specified bounding box, both textual and spatial information need to be indexed. The textual
information was indexed as an inverted file structure using Lucene.Net 3.0.3 [71]. The indexed
textual information contains the service name, service title, service abstract, service keywords, service
URL, layer names, layer titles and layer abstracts. The spatial information was indexed using the
BboxStrategy in Lucene.Net Contrib Spatial.NTS 3.0.3 [72]. The BboxStrategy is a spatial strategy
for indexing and searching bounding boxes. In the BboxStrategy, the bounding box is stored as four
numeric fields that represent the minimum and maximum X and Y coordinates, respectively. In the
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search engine, only LCWMSs that have at least one bounding box using the EPSG:4326 (European
Petroleum Survey Group) geographic coordinate reference system are spatially indexed.

On the basis of these textual and spatial indexes, this search engine implements three search
modes. The first mode is based on a keyword-matching approach. The mode will search only for
specified keywords in the title, name, abstract, and keywords at both the service level and the map
layer level. The second search mode uses the bounding box-based method. This mode returns only
LCWMS whose spatial extent has the specified spatial relationships with the specified bounding
box. These spatial relationships refer to “contain,” “contained” and “overlap.” The third mode is a
combination of the first two modes. When users select this query mode, the search engine returns
only LCWMSs that contain the specified keywords and whose spatial extent has the given spatial
relationships with the specified bounding box.

4.3. User Query Interface

The user query interface aims to both convey the users’ requirements to the system and display
the system’s responses to the user. In other words, it is a bridge between the users and the system [73].
The user query interface of the search engine is composed of seven parts, including a text input field
for entering query terms, an interactive graphical interface, a bounding box interface, a retrieval mode
interface, a relationships interface, a search button and a textual list as shown in Figure 8.ISPRS Int. J. Geo-Inf. 2016, 5, 105 13 of 22 
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Specifically, a text input for a query term enables users to specify what their desired LCWMSs
should be about in the form of a list of keywords. Meanwhile, the bounding box interface and
interactive graphical interface allow users to specify the area to which their desired LCWMSs should
cover in the form of coordinates or a map. The interactive graphical interface was implemented using
the OpenLayers API [52] and includes some basic map tools, such as pan, zoom, rectangle selection,
etc. Its base map is the GlobeLand30 dataset [14] for the year 2010. The retrieval mode interface allows
users to interact with the search engine in any of the three different modes described in Section 4.2.
The relationships interface enables users to select among three different spatial relationships to restrict
the search results in spatial forms. After entering keywords and/or the bounding box, assigning
the retrieval mode and spatial relationship, the user clicks the search button and relevant matching
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LCWMSs will be displayed in the text list. Every result contains the service title, service abstract,
layer titles, layer number and bounding box. Service requests such as GetCapabilities, GetMap and
AddToLayer are also provided, if the LCWMS has a bounding box that uses the EPSG:4326 geographic
coordinate reference system. The AddToLayer request allows users to integrate the returned LCWMSs
into the interactive graphical interface.

5. Experiments and Analysis

This section compares the performance of the proposed focused deep web crawler to a focused
crawler-based approach, evaluates the enumerations of the LCWMSs that these crawlers could locate
on the web, and demonstrates the LCWMS-SE’s abilities concerning the retrieval and integration of
discovered LCWMSs. The experiments are carried out using an Intel Pentium 4 CPU, running at
3.20 GHZ, with 1 GB of RAM, and 6 M of bandwidth.

5.1. Experiment 1: Discovering WMSs from JavaScript Code

This section presents an experiment carried out on 15 March 2015 that demonstrates the ability
of the proposed focused deep web crawler to discover WMSs hidden in JavaScript code compared
to a focused crawler-based approach. Table 4 lists the eight seed URLs used in the first experiment.
The eight seed URLs correspond to eight online geospatial web applications that invoke a total of
43 unique WMSs. The 43 unique WMSs are all hidden in JavaScript code; of these, only 32 WMSs are
available. In this experiment, the crawling scope, which refers to where the crawler can traverse the
internet and retrieve webpages by hyperlinks, is restricted to only these eight online geospatial web
applications.

Table 4. The eight seed URLs used for the first experiment.

Name URL Number WMSs literature

1 OneGeology Portal http://portal.onegeology.org/ 7 Duffy et al. [74]

2 CropScape http://nassgeodata.gmu.edu/CropScape/ 7 Han et al. [6]

3 GLC30 information
service http://www.globallandcover.com/ 8 Chen et al. [9,14]

4 eHabitat WPS http://ehabitat-wps.jrc.ec.europa.eu/ehabitat/ 9 Dubois et al. [75]

5 GeoNetwork http://www.fao.org/geonetwork/srv/en/main.home 5 Robinson et al. [76]

6 NIWA Ocean Survey http://www.os2020.org.nz/project-map-sam/ 4 Wood [77]

7 Visor xeográfico https://sitegal.xunta.es/sitegal/ev/GeographicalViewer 1 Porta et al. [78]

8 ZOO Project http://www.zoo-project.org/site/ZooWebSite/Demo/
SpatialTools#ZOOspatialtoolsdemo 2 Fenoy et al. [79]

The proposed focused deep web crawler discovered all 32 available WMSs, while the focused
crawler-based approach did not discover any WMSs. This indicates that the proposed focused deep
web crawler has the ability to discover WMSs hidden in JavaScript code. Its success largely depends
on the judgements, the JavaScript invocation rules and the JavaScript parsing engine discussed earlier
in this paper. Using these, the focused deep web crawler knows how geospatial web applications
invoke WMSs. In contrast, the focused crawler-based approach uses only an HTML parsing engine
and, therefore, has no ability to investigate WMSs hidden in JavaScript code; consequently, it cannot
discover the WMSs hidden in these URLs.

Section 2.3 discussed some studies that use rules to extract URLs from JavaScript code concerning
the general domains. In addition, the open source crawler Heritrix has developed an extended module
(ExtractorJS) to extract URLs from JavaScript code. To compare the efficiency between the existing
crawlers with a JavaScript module and our approach, a supplementary experiment was conducted on
25 April 2016. The baseline for comparison is the Heritrix ExtractorJS module. The Seed URLs are the
URLs numbered 2, 3, 5, 6 and 7 in Table 4 (the remaining three URLs are invalid). The crawling scope
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is restricted to only these five online geospatial web applications. Both approaches discovered all the
available WMSs hidden in JavaScript code. However, the approach using ExtractorJS extracted and
validated 3266 URLs to discover those available WMSs, while our approach extracted and validated
only 58 URLs to discover available WMSs, indicating that our approach has a higher efficiency than
the approach with ExtractorJS. This is because the criteria, the two additional measures, and the
first JavaScript invocation rules let our approach understand how those geospatial web applications
invoke WMSs. In contrast, the approach using ExtractorJS utilizes a more general rule than the second
JavaScript invocation rules in our approach to extract URLs from JavaScript code.

5.2. Experiment 2: Enumerating LCWMSs

The second experiment was carried out to enumerate the LCWMSs that the proposed crawler
discovered on the web. In this experiment, there are two sets of seed URLs. The first set uses the same
eight geospatial web URLs as Experiment 1. The second set is obtained by submitting a set of queries
to the Bing Search API. These queries include mandatory keywords, land cover keywords and land
cover product names. The mandatory keywords are associated with three operations of a WMS and
the names of related JavaScript libraries, as shown in Table 5. The land cover keywords are listed in
Table 2 in Section 3.2. A total of 31 land cover product names are reported in Table 6. Each Bing query
is composed of a mandatory keyword and a land cover keyword or product name. Executing these
queries against the Bing Search API resulted in a total of 4834 URLs. Moreover, additional queries are
dynamically generated from the fetched webpages using a maximum-frequency method to perform
daily updates to the list of seed URLs.

Table 5. Mandatory keywords.

Sources Mandatory Keywords

Three operations WMS, getcapabilities, getmap, service, getfeatureinfo
Related JavaScript libraries JavaScript, OpenLayers, Arcgis, Mapbox, Leaflet

Table 6. Land cover product names.

Sources Land Cover Product Names

Global
GLCC 2.0 IGBP, ISLSCP II IGBP, Modis Land cover, UMD, GLC2000,
GLOBCOVER, GLCNMO, GLCSHARE, GEOWIKI, CCI-LC,
GLC250, FROM-GLC, GlobeLand30

Regional
CORINE, LUCAS, GLOBCorine, PELCOM, NALCMS, NALCD,
LBA-ECO, MERISAM2009, SERENA, AFRICOVER, NLCD, LCT,
LCC, LULC, DLCD, NLUD-C, HLCR, RLC

This experiment ran intermittently from 16 June 2015 to 11 November 2015. A total of 17,874
available WMSs with 11,901 LCWMSs were discovered, as shown in Table 7. Table 7 indicates that
the proposed approach discovers a considerably larger number of WMSs than those found by the
previous works of Li et al. [16], Lopez-Pellicer et al. [26], Kliment et al. [27] and two well-known
websites [80,81]. These previous works did not focus on a particular domain and they all searched for
general WMSs. In addition, the discovered WMSs and LCWMSs have a total of 1886 unique WMS
hosts, while Bone et al. [32] reported finding only 823 unique WMS hosts. The superior performance
of the proposed approach is largely because the proposed approach finds extra WMSs in the deep web
based on their JavaScript invocation rules and reduces the influence of topic drift to discover WMSs
quickly and accurately by updating the seed URLs regularly.
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Table 7. Comparison of the number of web map services (WMSs) found by various methods.

Authors Year Total Number of WMSs Number of Available WMSs

Li et al. 2010 1126 1126
Lopez-Pellicer et al. 2012 6263 6263

Kliment et al. 2015 3694 2683
catalog.data.gov 2015 8585 Unknown

data.gov.uk 2015 2222 Unknown

Ours 2015 20478
17,874 (WMS)

11,901 (LCWMS)

However, as time goes on, the number of WMS naturally increases, which affects the credibility of
the comparison. Therefore, the number of services found by Kliment et al. [27] and the two well-known
websites [80,81] was tracked again on 27 April 2016. A total of 4233 WMSs with 2922 available WMSs
were found in the website [82] provided by Kliment et al. [27]. In addition, a total of 8618 and
4029 WMSs were found by the two well-known websites [80,81], respectively. However, the number
of WMSs discovered by our proposed approach is still larger than the number of WMSs found in the
above three methods.

Moreover, seed URLs and crawling scope may also affect the credibility of the comparison.
In Experiment 2, the seed URLs used in Li et al. [16] and the two well-known websites [80,81] are
unknown. Similar to our approach, the seed URLs in Lopez-Pellicer et al. [26] were supplied by
submitting a set of queries to the Bing Search API and the Google Web Search API. This way is similar
to our approach. Kliment et al. [27] used a Google search engine-based method to discover services.
This method has no need of seed URLs, but the Google search engine has more seed URLs than our
approach. Furthermore, none of these approaches imposed any limits on the crawling scope. In this
experiment, the seed URLs had only a small effect on the final results because all the approaches
executed over a long period of time (in fact, some approaches are still running today). Therefore, seed
URLs and crawling scope have minimal effect on the credibility of the comparison in this experiment.

Although our approach has discovered more WMSs and LCWMSs than the compared approaches,
those approaches are still valid and necessary. Because they are complementary to each other and
can be utilized to create a good balance between the costs required for WMS discovery and efficiency.
For example, the Google search engine-based method used in Kliment et al. [27], which has low
development costs, could be combined with our approach to improve discovery efficiency.

Figure 9 represents the spatial distribution and numbers of the discovered LCWMSs in our
approach. The spatial location of a LCWMS can be obtained through its IP (Internet Protocol)
address. The most important locations of LCWMSs (where 5 or more were found) are labelled
in Figure 8. The numerators and denominators of these labels represent the numbers of LCWMSs and
WMSs, respectively.

The LCWMSs discovered above can be subdivided into real LCWMSs and generalized LCWMSs
based on their original data types. Real LCWMSs are published directly from land cover data and
maps, while generalized LCWMSs are released from geographic data and maps related to land
cover. To estimate the number of real LCWMSs in the discovered LCWMSs, a split-and-random
sampling strategy is carried out. First, the number of LCWMSs containing data about each class
except vegetation in Table 3 is calculated through matching the land cover keywords of each class in a
prioritized sequence. For example, a LCWMS is classified as cropland if its metadata contains one of
the cropland keywords in Table 3. Then, ten random LCWMSs for each class are selected as samples to
manually determine whether they are real LCWMSs. This process was carried out five times (only one
time for the shrubland and tundra classes). Table 8 represents the number of LCWMSs containing data
about each class and the average ratio of real LCWMSs.
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Table 8. Number of LCWMSs about each class and the average ratio of real LCWMSs.

Representative Keywords Number of LCWMSs Ratio of Real LCWMSs

Land cover 789 90%
Cropland 354 50%

Forest 484 60%
Grassland 119 80%
Shrubland 16 50%
Wetland 198 60%

Water 3471 40%
Tundra 8 37.5%

Impervious area 1430 50%
Barren land 482 30%

Snow 4074 40%

It can be observed from Table 8 that the ratio of real LCWMSs in the discovered LCWMSs vary
with different classes. Up to 90% of the real LCWMSs contain data about the land cover class. These
real LCWMSs include the US Geological Survey’s NLCD, land cover data of South America for the
year 2010, GlobeLand30 data, and so on. However, only approximately 30% of the real LCWMSs
contain data about the barren land class. This is because many LCWMSs in this class are published
from geological survey data, whose metadata often contains one or more of the barren land keywords
in Table 3.

5.3. Case Study for Retrieval and Integration

Additionally, a case study is presented to demonstrate the retrieval and integration of the
discovered LCWMSs in the LCWMS-SE. Assume that a user wants to search for new land cover
datasets around Brazil to compare them with the GlobeLand30 dataset for the year 2010. Accordingly,
to match the query’s intent, the keywords “land cover 2010” and a bounding box around Brazil should
be submitted to the designed search engine. As shown in Figure 10, a total of 803 LCWMSs were found
among the discovered LCWMSs. The query takes approximately 0.148 s. The bounding boxes of all the
returned LCWMSs contain the specified bounding box. Figure 11 represents the integration between
the land cover data from the GlobeLand30-2010 dataset and that of South America for the year 2010
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with 30 m resolution after a user clicked the “AddToLayer” link (red arrow). This demonstrates that
the designed search engine has the ability to retrieve and integrate LCWMSs.
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6. Conclusions

Automatic discovery and connections to isolated land cover web map services (LCWMSs)
help to potentially share land cover data, which can support the United Nations’s 2030 sustainable
development agenda and conform to the goals of CoGLand. Previous active discovery approaches
have been aimed primarily at finding LCWMSs located in the surface web and behind query interfaces
in the deep web. However, very few efforts have been devoted to discovering LCWMSs from deep
web JavaScript code, due to the challenges involved in web map service (WMS)-related JavaScript
code detection and understanding. In this paper, a focused deep web crawler was proposed to
solve these problems and discover additional LCWMSs. First, some judgements and two JavaScript
invocation rules were created to detect and understand WMS-related JavaScript code for extracting
candidate WMSs. These are composed of some names of predefined JavaScript links and regular
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expressions that match the invocation functions and URL formats of WMSs, respectively. Then,
identified candidates are incorporated into a traditional focused crawling strategy, situated between
the tasks of fetching webpages and parsing webpages. Thirdly, LCWMSs are selected by matching
with land cover keywords. In addition, a LCWMS search engine was implemented based on the
focused deep web crawler to assist users in retrieving and integrating the discovered LCWMSs.

Experiments showed that the proposed focused deep web crawler has the ability to discover
LCWMSs hidden in JavaScript code. By searching the worldwide web, the proposed crawler found a
total of 17,874 available WMSs, of which 11,901 were LCWMS. The results of a case study for retrieving
land cover datasets around Brazil indicate that the designed LCWMS search engine represents
an important step towards realizing land cover information integration for global mapping and
monitoring purposes.

Despite the advantages of the proposed crawler, much work remains to improve the effectiveness
of discovering LCWMSs. First, the proposed crawler considers only one script type (JavaScript).
However, other script types (i.e., ActionScript) can also invoke LCWMSs. In the future, additional rules
will be summarized to help the proposed crawler discover LCWMSs invoked from other scripting
languages. Secondly, some currently available LCWMSs may become unavailable in the future. Future
work will include a monitoring mechanism to monitor and assess the quality of the discovered
LCWMSs. Third, the proposed crawler utilized the cosine function to measure topical relevance and
to assign priorities to URLs. Moreover, it adopted a keyword-matching approach to classify each
WMS. In the future, machine-learning approaches such as support vector machines will be applied to
measure topical relevance, assign URL priorities and classify WMSs.

Acknowledgments: This work has been funded by the National Science Foundation of China (Project #41231172
and #41301412). The authors would like to thank the journal editor and reviewers for their constructive comments,
which helped improve the paper.

Author Contributions: Dongyang Hou conceived the active discovery approach, performed the experiments, and
drafted the manuscript. Jun Chen and Hao Wu made substantial contributions to methodological development
and preparation of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

WMS Web Map Service
LCWMS Land Cover Web Map Service
URL Uniform Resource Locator
CSW Catalogue Service for Web
OGC Open Geospatial Consortium
ISPRS Photogrammetry and Remote Sensing
GEO Group on Earth Observations
CoGland Collaborative Global Land information service platform
LCWMS-SE LCWMSs Search Engine
WFS Web Feature Service
WCS Web Coverage Service
HTML Hypertext Markup Language
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