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Abstract: Rapid urbanization has caused numerous problems, and the urban spatial structure has
been a hot topic in sustainable development management. Urban spatial structure is affected by a
series of factors. Thus, the research model should synthetically consider the spatial and non-spatial
relationship of every element. Here, we propose an extended Voronoi diagram for exploring the
urban land spatial pattern. In essence, we first used a principal component analysis method to
construct attribute evaluation indicators and obtained the attribute distance for each indicator.
Second, we integrated spatial and attribute distances to extend the comparison distance for Voronoi
diagrams, and then, we constructed the Voronoi aggregative homogeneous map of the study area.
Finally, we make a spatial autocorrelation analysis by using GeoDA and SPSS software. Results show
that: (1) the residential land cover aggregation is not significant, but spatial diffusion is obvious;
(2) the commercial land cover aggregation is considerable; and (3) the spatial agglomeration degree
of the industrial land cover is increased and mainly located in urban fringes. According to the
neo-Marxist theory, we briefly analyzed the driving forces for shaping the urban spatial structure.
To summarize, our approach yields important insights into the urban spatial structure characterized
by attribute similarity with geospatial proximity, which contributes to a better understanding of
the urban growth mechanism. In addition, it explicitly identifies ongoing urban transformations,
potentially supporting the planning for sustainable urban land use and protection.

Keywords: geospatial proximity; attribute similarity; generalized Euclidean distance; Voronoi
diagrams; spatial pattern

1. Introduction

Although urban surfaces currently cover only between 3% and 5% of the total land surface
of the Earth, environmental impacts in relation to urban growth have become a major concern
around the world [1]. Rapid urban growth due to large-scale land use/cover change, particularly
in developing countries, has drawn considerable attention since urbanization drives environmental
change at multiple scales [2–7]. Recent decades have witnessed unprecedented urban landscape
changes, rapid land use changes found in urbanization processes, loss of ecosystems and biodiversity
and the exploration of available resources, leading to scarcity [5–11]. These transformations raise a
series of questions: Is our urban spatial structure sustainable development? How can policy most
effectively shape urban morphology and manage urban spatial structure, expansion and decline or
agglomeration and dispersion? What guidelines should we provide for policymakers and regional
planners to note the future development of our urban environment? Addressing such questions
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requires an explicit model to discover the aggregation tendency of spatial entities, the distribution
rules, the development and change tendency and the driving forces for shaping the urban spatial
structure from spatial data [12,13].

Urban spatial structure (also known as urban internal spatial structure or urban space) refers to the
arrangement of land use in urban areas, which concerns the arrangement of public and private space in
cities and the degree of connectivity and accessibility [14]. The characterization and modeling of urban
spatial structure has been highlighted as an important research activity in recent years, especially in
those countries with rapid urbanization and industrialization, such as China [15–17].

In the past, various theories, such as central place theory, core-periphery theory, Losch’s demand
cone theory, spatial diffusion theory, growth pole theory, concentric rings theory, sector theory,
Zipf’s law and multiple nuclei theory were extensively used to study urban structure patterns and
dynamics [1,18–22]. However, urban growth is a complex spatial system, comprised of numerous
acting and interacting elements with feedbacks in between, which inevitably determine the overall
spatial form of the city [23]. Therefore, these conventional urban geography theories are unable to
characterize the spatiotemporal complexity of urban dynamics [1,24,25]. In response, a variety of
techniques, such as catastrophe theory, fractals theory, chaos or chaotic attractors theory, self-organizing
theory, entropy theory, landscape metrics, cellular automata and agent-based modeling, have emerged
since the 1960s to analyze the urban structure and dynamics [1,23,26–31].

The modeling of urban spatial structure has occupied researchers for decades, and an abundant
literature has emerged. The advancements of mathematical theories and computer-based simulations
based on equations to seek a static or equilibrium solution have helped us to better understand
cities [24]. Most common mathematical models are sets of simultaneous joint equations based on
theories of population growth and diffusion and economic theory that specify cumulative urban
spatial structure over time [32–34]. A major drawback of such mathematical models is that a
numerical or analytical solution to the system of equations must be obtained, limiting the level
of complexity that may practically be built into such models [35]. The complex systems science
modeling techniques offer a potentially appropriate toolbox, notably agent-based modeling and
cellular automata, potentially linked to Geographic Information System (GIS) and Remote Sensing (RS)
information on land parcels [1,6,23,36–38]. Techniques, such as Cellular Automata (CA), as rule-based
models construct a ‘bottom-up’ approach, where the structure evolves from a Moran neighborhood
interacting between neighboring cells using different types of transition rules [31,39–41]. Moreover,
the conventional urban CA model assumption that a regular cell represents the basic unit of a land
use entity is not always reasonable [42]. Several studies deal with the development of vector-based or
irregular CA models; however, these new kinds of CA models are still in their infancy [43,44].

The spatial structure of some social and economic variables may be a reflection of spillover effects,
which usually are evident from the form of spatial association. Agglomeration economies, on the other
hand, may produce differential effects over space [45]. In urban studies, this usually means that high
variable values tend to concentrate near other high values, and low values appear in geographical
proximity. In this sense, spatial association is the non-random ordering of data values when they
are arranged by spatial location and can be analyzed by using distance statistics [45–47]. Geospatial
clustering is a series of processes that groups a distinct point set into a number of groups exhibiting
similar characteristics according to the geospatial proximity. Points belonging to the same geospatial
cluster are more similar to each other than points belonging to different clusters [48]. Analysis of
spatial clustering has been a major topic of research in geographical pattern research [49,50]. Spatial
statistics methods were introduced in geology and geography in the 1950s, but have only recently
started to serve the purposes and needs of urban analysis, specifically applied to the analysis of urban
land prices [51–53]. In spatial statistics, spatial data analysis is often categorized into three types,
namely point data analysis, lattice data analysis and geostatistics [54]. Geostatistics concerns the spatial
pattern of an attribute on a regular or irregular spatial lattice, with an additional goal of predicting the
values of the attribute at unsampled locations [54]. Geostatistics uses distance-based functions rather
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than neighborhood structures to represent spatial autocorrelation, and the detection of clusters is based
on local spatial statistics, such as the local Moran’s I statistic. Geostatistical data refer to spatial data
sampled at point locations that are continuous in space [54–56]. Given a set of a finite number of points
in the Euclidean plane, we associate each location in the space with its closest member(s) of the point
set with respect to the Euclidean distance. The result is a tessellation of the plane into a set of regions
associated with individual members of the point set. This tessellation is called the “ordinary planar
Voronoi diagrams”, generated by the sample point set [57]. As one of the spatial data analysis tools,
Voronoi diagrams can be used to implement the spatial subdivision and reveal the scope of spatial
influence generated by urban areas.

The objective of this study is to identify the urban spatial structure in Wuhan of P.R. China by
applying spatial data statistics, Voronoi diagrams, GeoDA and GIS. We consider that our analysis
is useful in the following sense. First, we provide an extended Voronoi diagram method, extending
the traditional spatial comparison distance to generalized Euclidean distances for Voronoi diagrams;
a social, economic and spatial index is built to describe the geospatial proximity distance and attribute
similarity distance, for detecting urban land use clustering hubs, centers and edges using spatial and
attribute characteristics data. Second, we present our methods through an appropriate workflow of the
way these techniques are applied. Third, we propose to measure the spatial autocorrelation of the urban
spatial structure using Local Moran’s I based on GeoDA. Finally, although the conventional urban
science explains urban phenomena partially with factors of technology and population migrations, we
briefly analyze the driving forces for shaping the urban spatial structure according to the neo-Marxist
theory. To summarize, the cluster concentrations of urban areas are one of the key dimensions of
the differences between regions; the spatial statistic defines spatial clusters based on the correlation
between each region and a weighted average of its neighbors. This paper reports that the method
could be beneficial to relevant urban studies and urban land use/cover management projects.

2. Study Area and Data

2.1. Study Area

Wuhan is located centrally in the People’s Republic of China, the biggest inland port city and the
most important city in central China. Wuhan’s urban civilization dates back 3500 years to Panlong
Town, which is the oldest city unearthed to date in the Yangtze River basin. As the capital of Hubei
province, Wuhan serves as the political, economic and cultural center of the province. The Yangtze is
the world’s third longest river, and its largest tributary, Hanjiang, meets it in Wuhan [58,59] (Figure 1a).

Yangtze and Hanjiang divide the city into the three parts of Hankou, Hanyang and Wuchang,
namely the “three towns of Wuhan”. The three towns have different spatial characteristics and different
developmental tendencies for historical reasons. Among them, Wuchang is a center for culture and
education, and the residential land cover is widely distributed. Hankou is a commercial center and
a commercial land cover concentrated distribution. Hanyang is an industrial center, and industrial
land cover is distributed in the urban fringe. As a typical garden city featuring mountains and water,
Wuhan is home to hundreds of hills and nearly 200 lakes of various sizes. With water comprising
25.8% of its area, Wuhan is ranked first among major Chinese cities in water resources [60] (Figure 1b).

As the largest water, land and air transportation hub in inland China, Wuhan is a major
transportation hub, with dozens of railways, roads and expressways passing through the city. The road
traffic networks in Wuhan are greatly affected by the Yangtze and Hanjiang, showing the multi-core
concentrate networks mode. With the political, economic and commercial center as a core, the road
traffic network’s density declines with spatial distance. The road network topological class is a
layer-circle decreasing distribution [58] (Figure 1c).

Geographically, Wuhan is located between latitudes 29˝581N and 31˝221N and longitudes 113˝411E
and 115˝051E. Topographically, Wuhan belongs to the transitional belt from the southeast highlands to
foothills in the south piedmont of Dabie Mountain. The middle part is low and flat, and the south part
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and north part are hills. The landform types belong to an alluvial plain of rivers and lakes, with many
lakes and rivers [4,15] (Figure 1d).
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Figure 1. The spatial patterns of the study area. (a) Spatial location of Wuhan in the whole nation;
(b) spatial distribution of land uses in the study area; (c) road network topology distribution of the
study area; and (d) topography distribution of the study area.

2.2. Data

The original data used in this paper are vector map data, raster map data and interrelated
statistical data. The spatial attribute information of the study area, such as land cover type, road
accessibility, topographic gradient, building density, etc., is interpreted from the vector and raster map
by using ESRI’s ArcGIS 9.3 software (ESRI Corp. Redlands, CA, USA, 2013). The non-spatial data
are also the foundation of spatial pattern analysis, which are processed and calculated by using Excel
and VC++ from the interrelated statistical data, such as the Wuhan statistical yearbook. To reduce
the computational complexity in the construction of the Voronoi diagram and the large-scale spatial
data analysis, we select Hankou as the study area. Hankou has a land area of 139.57 km2, with water
accounting for approximately 4%.

3. Methodology

3.1. Voronoi Diagrams Used to Compare the Distance Extension

Voronoi diagrams and Delaunay triangulation are very important theoretical methods in
computational geometry. The study of Voronoi diagrams can be traced back to the seminal
work by Voronoi [49]. Consider some d-dimensional space in which a number of given points
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(sometimes referred to as seeds, attractors or generators) is located. To each seed, we assign a Voronoi
set that includes all points that are closer to the seed to which it is assigned than to any other seed.
The collection of all Voronoi sets is then a Voronoi diagram [61]. Voronoi diagrams are a very simple
geometrical construct with numerous applications, such as biology, ecology, epidemiology, materials
science, machine learning, geography and geology, because of the adjacency similarity and systematic
theoretical system [62–65]. The Voronoi diagram is an important spatial interpolation method because
of its geometric structure. Indeed, it can be used to determine the value of any unknown point based
on the nearest known point’s value [66–68]. The concept of distance is central to Voronoi diagrams.
While there are many types of distances, such as polyhedral distance, Gauges distance and Euclidean
distance [61,69], we improve the distance by integrating the geospatial proximity distance and attribute
similarity distance.

In this paper, the Voronoi diagrams’ character is used to construct a Voronoi diagram model
for spatial pattern research based on the generalized Euclidean distance (integrating the geospatial
proximity distance and the attribute similarity distance) of sampling point datasets. Then, the urban
land use spatial clustering homogeneous segmentation of the study area is performed based on the
sample data. The extended, weighted Voronoi diagrams can be described as follows:

We define the center point set as P “ tp1, p2, pi, ¨ ¨ ¨ , pnu, where pi is any given center point, pxi, yiq

is pi’s spatial location and A ppiq “ pai1, ai2, ¨ ¨ ¨ , ainq expresses its attribute vector. In the conventional
Voronoi diagram model, the comparison distance is the geometry distance in the Euclidean plane,
and the effect of the attribute similarity distance is not considered. In this paper, the geospatial
proximity distance is calculated by the following equation:

DSpat
`

pi, pj
˘

“ wx
`

xi ´ xj
˘2
`wy

`

yi ´ yj
˘2 (1)

In this paper, DAttr
`

pi, pj
˘

is the attribute similarity distance between points pi and pj and is
calculated by the following equation:

DAttr
`

pi, pj
˘

“

m
ÿ

k“1

wk

´

aik ´ ajk

¯2
(2)

The geospatial proximity distance and attribute similarity distance are integrated to define the
generalized Euclidean distance of the Voronoi diagrams as follows:

Dij “
b

DSpat
`

pi, pj
˘

`DAttr
`

pi, pj
˘

(3)

where wx, wy are the weight coefficients of the spatial coordinates x, y and wk is the weight coefficient
of the k feature in the attribute feature sets.

In this paper, evaluation indices are established by principal component analysis by using SPSS
Statistics 19 (IBM Corp. Armonk, NY, USA, 2010) [70]. The evaluation index system indicators include
the residential floor area ratio (U1), building density (U2), population density (U3), green area (U4),
road accessibility (U5), pipe network status (U6), healthcare (U7), universities and colleges (U8),
stadium completion degree (U9), noise index (U10), land price (U11) and land idle rate (U12). In this
paper, we index the data into point, line and polygon indices according to the respective influences on
the spatial pattern base of the study area’s grid map.

‚ Point index (including the healthcare index, universities and college index and stadiums index):
This index is calculated using the linear model based on the grid center. The basis of the service
radius from the inside to the outside is used to calculate the attribute value according to the
distance linear attenuation model:

Fi “ f0 p1´ riq ri “ Di{D0 0 ď ri ď 1 (4)
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where Fi is the action mark of the index, f0 is the comprehensive scale index of the numerical
standardization involved in Geographic Information System (GIS) buffer analysis, D0 is the
maximum impacted distance of this index and Di is the geometric distance between this index
and another spatial point.

‚ Line index (including road accessibility): This index is calculated using the exponential model
along the linear target. The basis of the service radius from the inside to the outside is used to
calculate the attribute value according to the distance decay exponential model:

Fi “ f0
p1´riq ri “ Di{D0 0 ď ri ď 1 (5)

‚ Polygon index (including the noise index): This index is obtained by calculating the action
mark directly.

Fi “ 100ˆ
Xi ´ Xmin

Xmax ´ Xmin
(6)

where Fi is the action mark of the index, Xi is the evaluation value of the grid index and Xmin and
Xmax are the minimum and maximum values of this index, respectively.

Index weights reflect the importance of each indicator in the index system, and they are often
determined by, for example, the Delphi method or the Analytic Hierarchy Process (AHP) [71–73].
In this paper, we use AHP to obtain the weight for each index (Table 1).

Table 1. Evaluation index weighting coefficient table.

Index Weight Index Weight Index Weight

residential floor
area ratio (U1) 0.1592 building density (U2) 0.1304 population density (U3) 0.1001

green area (U4) 0.1052 road accessibility (U5) 0.0706 pipe network status (U6) 0.0583

health care (U7) 0.0544 universities and
colleges (U8) 0.0476 stadium completion

degree (U9) 0.0424

noise index (U10) 0.0537 land price (U11) 0.0821 land idle rate (U12) 0.0960

3.2. Spatial Aggregation and Separation Index of Voronoi Diagrams

The Aggregation Index (AI) describes the randomness or aggregation degree of landscapes
and was proposed by O’Neill in 1988 under the name ‘Contagion Index’ (CI) [74]. The aggregation
index reflects the spatial configuration of landscape components [75,76]. Consequently, the land use
type Voronoi polygonal neighborhood adjacent relationship is analyzed by calculating the Voronoi
polygonal neighborhood aggregation index. Then, the overall spatial agglomeration and dispersion
degree of land use are investigated.

‚ The Voronoi polygon self-neighborhood aggregation index is calculated with the
following equation:

αik “ pβik¨ xikq {ni iεNk (7)

where xik is one Voronoi polygon; βik is the number of polygons whose land use type is k in the
Voronoi polygon neighborhood; ni is the direct neighborhood polygon number of polygon xik
, which is obtained by recording the Voronoi vertex topology; and Nk is the number of Voronoi
polygons whose land use type is k.

‚ The Voronoi polygon regional aggregation index is calculated as follows:

δk “

¨

˝

Nk
ÿ

i“1

αik¨ xik

˛

‚{Nk (8)
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where δk is the sum of αik and αik is the Voronoi polygon self-neighborhood aggregation index
obtained using Equation (7). δk is used to standardize the treatment: as δk Ñ 0 , the land use
spatial distribution becomes more dispersed, whereas as δk Ñ 1 , the land use spatial distribution
tends to coalesce.

3.3. Technical Research Flowcharts

The technical research flowchart and main technical processes are presented in Figure 2.

‚ Step 1: The study map is divided into 100 m ˆ 100 m grids by using ESRI’s ArcGIS 9.3 software.
‚ Step 2: A Voronoi diagram based on the center point dataset of sample points is constructed. Then,

spatial overlay analysis between the Voronoi diagram and the current land use map is performed
to obtain the land use type area for every Voronoi polygon. The spatial and attribute character
parameters are saved into a spatial and attribute data table (Table 2). In Table 2, the coordinate
is the Voronoi polygon center point, and the triangle ID is the serial number of the Voronoi
polygon Delaunay triangle. The vertex and edge datasets represent the vertex and edge of every
Voronoi polygon. The land use type reflects the status of each land use type, such as 0, 1 and 2.
Aggregation index and clustering level data are obtained in Step 3.

‚ Step 3: The model is used to calculate the neighborhood aggregation index for every Voronoi
polygon using Equations (7) and (8). To obtain the clustering grade data, the model performs a
cluster analysis based on the shortest distance method using SPSS software. Finally, the model
produces the experimental Voronoi diagram map based on the principle of “similar category
incorporation and heterogeneous merging”.
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Table 2. Land use grid spatial and attribute structures.

No. Field Type No. Field Type No. Field Type

1 Voronoi ID Long 4 Vertex Datasets CArray 7 Area Float
2 Coordinate TPoint 5 Edge Datasets CArray 8 Aggregation Index Float
3 Triangle ID CList 6 Land Use Type Int 9 Clustering level Int
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3.4. Voronoi Diagrams’ Building Process

In this paper, the sample datasets are used as the central point of the Voronoi diagrams. This novel
model constructs Voronoi polygons by the Delaunay triangulation method based on the grid growth
algorithm [77,78]. The main algorithm is built with the C# programming language based on the ArcGIS
Engine and Visual Studio 2010 platform. The experimental process is shown in Figure 2b. The novel
model defined the following data types for experimental program development: TPointSetArry as the
center point set array, TPointsetList as the point set list, TriSetList as the edge set list, nTriCount as the
number of Delaunay triangles and TPointSetListD as the Delaunay triangulation point set list.

3.4.1. Calculating the Initial Centre Points and Edges

‚ Step 1: Although any point can be used as the initial point P1, to improve program efficiency,
a point near the center of the study area was chosen as the initial point of the grid. The numbers
of initial center points and edges are stored in TPointSetArry and TPointSetList, respectively.

‚ Step 2: The model comparison distance is defined by Equation (3).
‚ Step 3: The initial value of Dmin is defined as the larger value. In this paper, the diagonal length of

the graphic in the entire study area is defined as the initial value of Dmin.
‚ Step 4: The distance between two points is calculated by using Equation (9) if the grid cell of the

initial point also contains other points. This distance is then compared to Dmin to identify the
nearest point to the initial point P1. Selecting a small value reassigns it to Dmin.

‚ Step 5: The adjacent grid cells are searched until the shortest side of Dmin is found, and the search
pattern moves from left to right and from top to bottom. Then, the shortest side is taken as the
initial Delaunay edge. The number of initial Delaunay edges is stored in TriSetList.

3.4.2. Constructing the Delaunay Triangulation

‚ Step 1: Taking PiPj as the current processing edge, the intersect calculation is then performed
with the bottom line of the grid cells to obtain the value of i1. The intersection grid column gives
the value of j1. Similarly, the intersect calculation is conducted with the right bottom line of the
grid cells to obtain the value of j2. The intersection grid column provides the value of i2. Finally,
the cells pi1, j1q and pi2, j2q are obtained at the right grid.

‚ Step 2: The unit triangle is formed by three vertices: pi1, j1q, pi1, j2q and pi2, j2q. The triangle
circumcircle is then constructed.

‚ Step 3: Repeat Step 1 in the area covered by the circumcircle. The point that creates the largest
angle with the current edge PiPj is selected as the vertex. Then, the triangle is constructed in the
circle formed by the points by repeating the previous steps until all of the grid units covered
by the circumcircle are searched and no other vertex is available. The resulting triangle is a
Delaunay triangle.

‚ Step 4: The center point and Delaunay triangle are numbered. The numbers of the three central
points (vertices) that comprise the Delaunay triangle are recorded. These data are stored in
TPointSetListD, and the numerical value of nTriCount is incremented by 1.

3.4.3. Constructing the Voronoi Homogeneous Diagram Map

‚ Step 1: As reported previously [79,80], all Delaunay triangle numbers adjacent to each center
point are recorded and sorted in the anticlockwise direction.

‚ Step 2: A convex hull boundary with the peripheral boundary connects each center point of the
adjacent triangles in the circumcircle. The entire experimental data area is searched using the
novel model, and then, the Voronoi homogeneous diagram map of the study area is produce.
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3.5. Spatial Clustering and Autocorrelation Analysis Method

The authors perform a clustering analysis of the Voronoi polygonal neighborhood aggregation
index of the study area using SPSS software [70,81]. The clustering analysis applies the shortest
distance method and the correlation coefficient as the cluster sign. The mutation of the correlation
coefficient is the end mark of the cluster, and the absolute distance threshold is defined as 0.09.

Spatial autocorrelation (also known as spatial dependence, spatial interaction or local interaction)
can be loosely defined as a similarity (or dissimilarity) measure between two values of an attribute
that are nearby spatially [54]. Spatial autocorrelation can be measured by various indexes, of which
probably the most well-known is Moran’s I statistic. Statistics like the global Moran’s I are useful for
analyzing datasets in a relatively homogeneous region; it may not be as informative to compute the
Moran’s I value for data across a region that could have several spatial regimes [55,82]. One solution is
to develop a set of Local Indicators of Spatial Association (LISA), such as the local Moran’s I [55,82].
Therefore, we calculate the local Moran’s I data in the study area by using the spatial autocorrelation
analysis (univariate Moran) function of the GeoDA software [83,84]. The generalized form for the local
Moran’s I can be defined as follows [55]:

Ii pdq “ Zi

n
ÿ

j‰i

WijZj (9)

where the observations Zi and Zj are in standardized form (with a mean of zero and a variance of one).
The spatial weight Wij is in row-standardized form. Therefore, Ii is a product of Zi and the average of
the observations in the surrounding locations.

The Moran scatter plot visually illustrates the spatial transformation of a variable (y-axis) on
the original standardized variable (x-axis). The slope of the scatter plot corresponds to the value for
Moran’s I. According to the Moran scatter plot, we can find the extent of linear association between
the values in a given location (x-axis) with the values of the same variable in neighboring locations
(y-axis) [82,85].

4. Results and Discussion

4.1. Spatial Pattern Clustering Results

The clustering analysis results and frequency histogram are shown as Table 3 and Figure 3,
respectively. In Figure 3, the horizontal coordinate is the value of each land aggregation index, and the
vertical coordinate is the ratio of each land use frequency to the group distance.

Table 3. Statistical analysis of the Voronoi polygon aggregation index for each land use type.

Level
Residential Land Commercial Land Industrial Land

Index
Value

Area
(hm2)

Ratio
(%)

Index
Value

Area
(hm2)

Ratio
(%)

Index
Value

Area
(hm2)

Ratio
(%)

1st level ě0.83 16.58 12.52 ě0.89 3.28 13.94 0.00 0.00 0.00
2nd level 0.75~0.82 27.32 20.63 0.77~0.88 6.57 27.92 0.69~0.78 8.49 18.39
3rd level 0.49~0.74 47.60 35.94 0.52~0.76 8.59 36.49 0.42~0.68 24.40 52.86
4th level 0.33~0.48 40.94 30.91 0.38~0.51 5.10 21.65 0.29~0.41 13.27 28.75
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We merge Voronoi polygons according to the cluster level, merge smaller polygons based on the
principle of the longest shared boundary and then obtain the spatial agglomeration pattern Voronoi
homogeneous map of the study area (Figure 4a).
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land use.
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Clustering results of residential land use: The concentrated clustering classification land use
area (first level) accounts for 12.52% of the total area and is mainly located along Jiefang road,
Hangkong road, Baofeng road and Huangpu road, where municipal establishments are complete and
transportation is convenient. The sub-concentrated clustering classification land use area (second level)
accounts for 20.63% of the total area and is primarily found along Fazhan road, where new contiguous
residential areas, building density and building volume rates are higher. The generally concentrated
clustering classification land use area (third level) accounts for 35.94% of the total area, is mainly located
in Changfeng township and mostly consisted of urban peripheries, where the layout is not complete
and the environment is general. The dispersed clustering classification land use area (fourth level)
accounts for 30.91% of the total area and is primarily noted along Houhu road, where the building
density and building floor area ratio is low, the building distribution is dispersive, the municipal
establishments are not complete and the environment is poor.

Clustering results of commercial land use: The concentrated clustering classification land use
area (first level) accounts for 13.94% of the total area and is mainly located in the street business
district on both sides of Zhongshan avenue, where abundant, densely-packed financial, insurance
and high-rise office buildings, luxury hotels and passenger flow are located. The sub-concentrated
clustering classification land use area (second level) accounts for 27.92% of the total area and is typically
located in the peripheral zone of Zhongshan avenue, hosting regional traffic, a high building density
and construction volume and completed municipal facilities, which attract a large passenger flow.
The generally concentrated clustering classification land use area (third level) accounts for 36.49% of
the total area, primarily along Baofeng road, North lake road, Station road and Huangpu road. In these
areas, the facilities are complete, and the layout of the environment is mixed use. The greatest potential
of these regions is for mining because of the rapid economic development and the improvement of
infrastructure. The dispersed clustering classification land use area (fourth level) accounts for 21.65%
of the total area and is mainly comprised of the Hankou railway station and Huangpu Avenue East
theatre. The commercial network density is relatively low, and the passenger flow is not significant,
mainly corresponding to regional business services. These regions have the additional advantages of
comprehensive exploitation and application.

Clustering results of industrial land use: The generally concentrated clustering classification land
use area (third level) and the dispersed clustering classification land use area (fourth level) account
for 81.61% of the total industrial land use area. The industrial lands are mainly located in the city’s
peripheral area, such as Chanfeng road, where the Qiaokou economic and technological development
zone is. Additionally, it is mainly located in north Hankou districts, containing the Panlong economic
and technological development zone and the north Hankou metropolitan industrial park. The average
efficiency of the industrial land is low because the government restricts industrial areas in cities to
improve the urban environment and the economic, social and ecological benefits of urban land use.
The area of industrial land declined under the policy of “industrial factory relocation from the second
ring zone and replacement with green plants”.

Spatial autocorrelation results: The Moran scatter plot in Figure 5 illustrates the relationship
between each spatial clustering patch. In which, the horizontal coordinate is the standard value of each
unit’s intensive degree and the vertical coordinate is the average value of the properties of neighboring
units. In the Moran scatter plot, the slope of the regression line corresponds to Moran’s I; the four
quadrants of the coordinate system correspond to the four types of local space between the regional
unit and its neighbors.
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Figure 5. Moran scatter plot chart denoting the heterogeneity of local space. (a) Moran scatter plot for
residential land cover spatial pattern agglomeration indexes; (b) Moran scatter plot for commercial
land cover spatial pattern agglomeration indexes; (c) Moran scatter plot for industrial land cover spatial
pattern agglomeration indexes.

The slope of the regression line in the Moran scatter plot is 0.0537, which represents the residential
land cover present spatial positive correlation (Figure 5a). The Moran scatter plots are mainly
distributed in the first, second and third quadrant, belong to high-high, low–high and low–low
spatial clustering. For the Moran scatter plot, the first quadrant of the coordinate system represents
the spatial connectivity of the high observed value area unit surrounded by the high observed value
region (high–high); the second quadrant of the coordinate system represents the spatial connectivity of
the low observed value area units surrounded by the high observed value region (low–high); and the
third quadrant of the coordinate system represents the spatial connectivity of the low observed value
area unit surrounded by the low observed value region (low-low) [83]. The high–high clustering units
in the first quadrant are few compared to the low-low and low-high clustering units in the second
and third quadrants. Therefore, the aggregation advantage of residential land use in the study area
has an accumulative effect, but the aggregation advantage is not significant and the spatial difference
between the overall levels of stacking utilization not large. In Figure 4b, the high–high clustering areas
of residential land cover are mainly located in Jiefang road, Hangkong road, Fazhan road, Laodong
road, Yongqing road and Wansong road, which are adjacent to the commercial districts, with perfect
facilities and convenient traffic; the spatial clustering classes are mainly including the first and second
level. The low–high clustering areas are widely distributed in the study area, showing the spatial
dispersion characteristics and the spatial clustering class at the third level. Low–low clustering areas
are mainly located in urban fringes; the spatial clustering class is the fourth level.

The slope of the regression line in the Moran scatter plot is 0.1658, which represents that
the commercial land cover aggregation presents considerable spatial autocorrelation (Figure 5b).
The Moran’s I of commercial land is maximized. The maximum value of the gradient of the intensive
degree value indicates that the spatial agglomeration of commercial land is considerable compared
to those of other land uses and is subject to a spatial agglomeration effect. The Moran scatter plots
are mainly distributed in the first and third quadrant, belong to high–high and low–low spatial
clustering. The high–high clustering units in the first quadrant are large compared to the low–low
clustering units in the third quadrant. Therefore, the commercial land use in the study area has high
utilization efficiency and a high intensive utilization degree. In Figure 4c, the high–high clustering
areas of commercial land cover are mainly located in the street business districts along Zhongshan
Avenue on both sides, with extremely dense commercial networks and extremely high land use
efficiency and intensive degree; the spatial clustering classes mainly include the first, second and
third level. The low–low clustering areas are mainly located in Hankou railway station with low
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density commercial networks; the spatial clustering class is the fourth level. The spatial difference of
commercial network density in other regions is obvious and shows dispersion characteristics.

The slope of the regression line in the Moran scatter plot is 0.1473, which represents that the
industrial land cover presents a spatial positive correlation (Figure 5c). The Moran scatter plots
are mainly distributed in the first and third quadrant, belonging to high–high and low–low spatial
clustering. The high–high clustering units in the first quadrant are few compared to the low–low
clustering units in the third quadrant. Therefore, the industrial land use in the study area has increased
utilization efficiency. The Moran’s I of industrial land is compared to those of other types of land
use. The degree of spatial agglomeration is greater than that of residential land and less than that of
commercial land. Additionally, this value responds to the actual situation of industrial land, which
is mainly distributed in several development zones. In Figure 4d, the high–high clustering areas
of industrial land use are mainly located on Chanfeng road, which is the Qiaokou economic and
technological development zone; the spatial clustering classes mainly include the first and second
level. The low–low clustering areas are mainly locate in the north Hankou districts, which contain the
Panlong economic and technological development zone; the spatial clustering class is the fourth level.

4.2. Discussion

An urban area is not just a single agglomeration of people in space, but rather consists of numerous
large and small clusters of households, firms and infrastructures that exhibit spatial patchiness in
their social and economic structures [86]. The spatial structure and temporal dynamics of urban
areas are complex and controlled by various driving forces, such as the regional economy, population
movements, the policy environment and socio-cultural processes [87].

According to neo-Marxist theory, conventional urban science explains the urban phenomena
partially with the factors of technology and population migrations, which are considered as principal
causes of urban structural change [88]. In a neo-Marxist analysis, however, these are not the underlying
causes, but instead are intermediate factors produced by something more fundamental, such as the
basic requirements and social relations of capitalist production. Neo-Marxists present the structure of
urban structure and land use/cover as the result of capitalism in pursuit of profit [88–90]. “Since the
process of capital accumulation unfolds in a spatially structured environment, urbanism may be
viewed provisionally as the particular geographical form and spatial patterning of relationships taken
by the process of capital accumulation” [54,90].

Through different prices of land rent, land tax theory determines the spatial distribution of land
use. According to the bidding land tax curve model, the land tax of commercial, residential and
industrial land use is negatively related to the distance from the city center. Under the equilibrium
condition of land tax and distance, the commercial land should be arranged in the nearest place
from the city center, then residential land, and the farthest is the industrial land. In a spatial pattern,
the concentric circle layer structure is distributed around the city center [91]. In the study area, the
price of land tax is decreasing from the city center to the periphery. In Figures 4c and 6a, a high density
commercial district is mainly located in the first grade land tax area, which is the oldest and largest
commercial district at present. Residential location patterns are characterized by significant spatial
interrelationships across race, income, neighborhood quality, traffic accessibility and distance from a
functional area (such as shopping malls, schools, hospitals, parks, etc.) [87]. No matter how large the
scale of the functional area is, the spatial diffusion range is limited and close to the functional area to
become the first choice for residential land. In Figures 4b and 6a, most residential land is located in the
second and third grade land tax area, a contiguity commercial district. Industrial land use is located in
the urban fringe, where land resources and labor resources are rich, and it provides convenience for
industrial organization, layout and optimization. In sum, the influence of land tax theory on the urban
spatial structure of the study area is very obvious, and the urban spatial structure is characterized by a
concentric layer structure from the urban center to the urban fringe. The urban spatial structure will
transfer from a single center structure to a multi-center decentralized structure.
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Figure 6. (a) Land price grade distribution map of the study area; (b) changes in the population
growth, economic investment and development of the study area (for clarity, the numerical value of
the population increase ratio is incremented 10 times; source: Wuhan statistical yearbook).

The government’s macro control policies have affected the urban spatial structure. In the study
area, “industry quits from the second ring zone and enters into the third ring zone” is the urban
management policy to adjust the industrial structure. The formation of the Qiaokou economic and
technological development zone, which is located in the urban fringe, stimulated the construction
of the surrounding facilities. With the gradual improvement of living facilities, commercial facilities
and the transportation network, the surrounding real estate industry has been stimulated. The new
center of the city has been developing and growing, which will eventually develop into a sub-center of
the city.

Though land tax is believed to be the primary cause for shaping the urban spatial structure in the
study area, other causes, such as population growth, economic investment and development, need to
be examined. In Figure 6b, the permanent residents increase slowly with an annual average growth
under 1%. The reason is that the study area was an old urban district, and the number of permanent
residents tends to be saturated. However, in China, the difference of the urban and rural economic
structure causes the income difference between urban and rural areas, and a large number of floating
population migrates into cities, as commerce cluster areas can provide them considerable employment
opportunities. In response, the floating population promotes a further agglomeration in this area.

At the same time, with an increase of the income, the level of residents’ consumption and demand
improving gradually, the demand on the living environment, scale and level of commercial facilities
continues to improve. Since the 1990s, China has implemented a series of land system reform policies
including “an auction way to implement the transfer of land-use right” and “abolishing the welfare
housing system”. Along with the housing commercialization carried out in China, more and more
urban residents begin to escape from the “unit community” and purchase marketable housing based on
their own abilities and preferences. The real estate industry has made outstanding contributions to the
urban economy development, and the growing investment in real estate development has driven the
synchronous development of the urban spatial structure agglomeration at the same time. For example,
in 2009, Hankou’s investment in real estate development was 23.05 billion RMB with an increase rate
of 59.44% over 2008, and the annual per capita disposable income of urban residents was 18,663 RMB
with an increase rate of 15.60% over 2008. For the corresponding period, the area of commercialized
housing sold was 2.84 million m2 with an increase rate of 71.83% over 2008. The correlation between
urban structure aggregation and disposable income of urban residents/investment on real estate
development was examined, and it reveals a very strong association (Figure 6b).

5. Conclusions and Future Work

Wuhan is now at a stage of rapid urbanization, and urban studies are needed for a better
understanding of the urban growth mechanism, to support land use planning for sustainable urban
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land use and protection. The spatial pattern of urban land use is affected by a series of factors, including
both spatial factors (spatial relationships) and non-spatial factors (attribute relationships), such as
political and economic factors. This research focuses on how to use modern theory and technology to
describe these factors reasonably, to obtain results that reflect reality and to avoid separating theory
from practice.

In this paper, a spatial agglomeration analysis of urban land use based on spatial adjacency and
similar attribute characteristics is performed. To this end, the spatial and attribute characteristics
are integrated into the generalized Euclidean distance to extend the traditional Voronoi diagram.
This novel model constructs a Voronoi homogeneous map based on sample point datasets and the
spatial attribute generalized Euclidean comparison distance. The spatial neighborhood aggregation
indexes of the Voronoi polygons in the study area are calculated based on landscape ecology theory.
The model generated the spatial Voronoi homogeneous map based on the spatial clustering grade of
the neighborhood clustering indexes using SPSS software. In addition, the spatial autocorrelation of
the urban spatial structure in the study area is analyzed by calculating the local Moran’s I using the
GeoDA software.

Although population growth triggered by rural-urban migration generally was believed to be the
dominant cause for urban spatial structure changes [7], according to the neo-Marxist theory, we briefly
analyze the driving forces for shaping the urban spatial structure, and the analysis indicates that the
different price of land rent, the government’s macro control policies and investment in real estate
development are the major factors for the rapid urban spatial structure changes in the study area.
The present study is expected to have significant implications in rapidly urbanizing cities of this
developing country.

This research is only one example of using extended Voronoi diagrams to study the urban
spatial pattern, and as such, this is a prototype. There is still much potential for developing this
research further. Future research will focus on using the self-organizing theory of neural networks to
cluster the classifications of attribute information, using a gravity model to improve the quantitative
expression of physical space and attribute correlation [92]. The four forks tree method will be
used to study the spatial data structure, and the efficiency of spatial data insertion and queries
for improving the triangular surface construction in Voronoi diagrams will be evaluated. In addition,
the self-organizing maps (SOM) may have a profound and significant role in merging decision makers
based on multi-dimensional spatial data analysis [92,93]. The complexity of human movements has
redefined the usage of urban space and the arrangement of resources; changes in the lifestyles of urban
residents have prominent and visible effects on urban spatial metrics [92]. Most of these changes have
been brought by human impact on the environment and excessive exploitation of resources. In this
sense, the urban spatial patterning research approach should be “intelligent” and yield important
insights into urban phenomena generated by human movements (social, natural and economic) [9].
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