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Abstract: This paper introduces an innovative road network extraction algorithm using synthetic
aperture radar (SAR) imagery for improving the accuracy of road extraction. The state-of-the-art
approaches, such as fraction extraction and road network optimization, failed to obtain continuous
road segments in separate successions, since the optimization could not change the parts ignored
by the fraction extraction. In this paper, the proposed algorithm integrates the fraction extraction
and optimization procedure simultaneously to extract the road network: (1) the Bayesian framework
is utilized to transfer the road network extraction to joint reasoning of the likelihood of fraction
extraction and the priority of network optimization; (2) the multi-scale linear feature detector (MLFD)
and the network optimization beamlet are introduced; (3) the conditional random field (CRF) is
used to reason jointly. The result is the global optimum since the fraction extraction and network
optimization are exploited at the same time. The proposed algorithm solves the problem that
the fractions are bound to reduce in the process of network optimization and has demonstrated
effectiveness in real SAR images applications.

Keywords: synthetic aperture radar; road network; conditional random field; Bayesian; multi-scale
linear feature detector

1. Introduction

1.1. SAR and Road Network Extraction

Synthetic aperture radar (SAR) imagery has considerable real-world applications, such as
mapping, remote sensing, urban planning, agriculture and disaster prevention [1]. Among these
applications, road extraction is of substantial research interest because linear targets (including roads,
bridges, ridge lines and coast lines) appear with considerable darkness in SAR images due to the odd
scattering [2].

The two general steps of road extraction from SAR images are local road candidate segment
detection and global road network optimization. Different detection operators, such as conventional
edge detectors [3] and morphological operators [4], can be designed to obtain candidate segments
from local pixels or sites. The ratio detection algorithm based on statistical properties developed
by Touzi et al. [5] highly reduces the influence of speckle. For road network optimization, prior
information provides constraints for global selection techniques [6,7]. Tupin et al. [8] proposed a
two-step technique with Detector 1 (D1) and D2 operators to extract the main candidates; then, a
Markov random field (MRF) based on the graph composed of local segments was built to optimize road
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construction. The MRF model assessed the binary random variables irrespective of whether segments
were actual roads, and it evaluated the probability that two local candidates should be connected. The
optimization process was implemented by minimizing an energy function using simulated annealing.

Most traditional operator-based line detection methods obtain segments based on the local
features of SAR images. Because of the speckle noise in SAR images, a global optimization is needed
to acquire the local results. The global selection of road candidate segments is essentially a category
labeling process that uses contextual information, i.e., each road candidate is labeled as road or noise.
In [7,8], MRF models were constructed to identify actual road networks. The state-of-the-art MRF
is an approach that uses contextual information to minimize the global cost function, which has
a positive effect on the classification result. However, MRF estimates the joint distribution of labels and
data, and it involves a distribution of data that is always difficult to achieve. Additionally, likelihood
in one site is obtained only from the single site, but not all sites, and the prior term only compares
adjacent sites [9,10]. In contrast, the global contextual information is taken into account in CRF to
model the posterior probability of labels [11,12]. CRF is based on the maximum entropy, having
the advantage of achieving precise and robust labeled results. Wegner et al. [13] developed a novel
CRF formulation for road labeling, where the prior was represented by higher-order cliques aimed at
describing the junctions and crossings in the structure of roads.

1.2. Problems and Motivation

The traditional two-step methods do not supplement each other, and road fractions are generally
reduced in the optimization procedure. In our previous studies, multi-scale geometric analysis was
used for segment detection [14] and network optimization [15]. These two studies overcame the main
traditional challenges of road extraction from SAR images, namely: (1) geometrical features, such as
the widths and curvatures of different roads, are variable on the same image; (2) the variety of the
contextual knowledge of the segment; and (3) the presence of the multiplicative signal-dependent noise
known as speckle. In [14], a multi-scale linear feature detector (MLFD) was presented, which extended
the ratio correlation operator [7] and wedgelet analysis [16], and it could directly detect a linear target
and adaptively adjust the size of the mask. The optimization algorithm presented in [15], which was
based on a multi-scale image analysis framework, provides a representation of curve characteristics
in space. Further research on these two methods has involved the independent implementation of
segment extraction and the optimization process in these algorithms. Noise reduction in optimization
requires prior constraints, whereas prior knowledge reflects spatial interactions and is related to the
likelihood information of road candidates. Association optimization uses the best features of both;
thus, it may lead to better results in labeling actual roads and noise.

The global selection of road candidate segments is essentially a category labeling process.
Applying contextual restrictions to the detected candidates can greatly improve the effectiveness
of local analysis. In [7,8], MRF models were constructed to identify actual road networks.
However, MRF cannot fully utilize the global contextual information during the labeling process.
Additionally, the joint distribution involved in MRF is always difficult to achieve. Thus, we use CRF
to implement joint reasoning in this paper. CRF has the advantages of achieving precise and robust
labeled results and providing a final classification with an assignment of probabilities.

In this paper, we construct a Bayesian framework for road extraction to accomplish interaction
and the mutual learning of prior and likelihood information. In this work: (1) a Bayesian framework is
utilized to transfer the road network extraction to joint reasoning of the likelihood of fraction extraction
and the priority of network optimization; (2) the multi-scale linear feature detector (MLFD) and the
network optimization beamlet are introduced; and (3) a conditional random field (CRF) is used for
joint reasoning. Fraction extraction and network optimization are implemented in one procedure,
thus obtaining a global optimum.
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1.3. Contribution and Structure

The main contribution of this paper is the introduction of a uniform multi-scale analysis under
the Bayesian framework, which associates two separate geometric detection methods, as well as the
extension of the learning and inference algorithm in CRF:

(1) A multi-scale analysis is introduced to construct image pyramids on the data of each look,
in which each image is partitioned into a sequence of dyadic squares at each level.

(2) Based on our previous work, multi-scale operators are used to obtain the likelihood and prior
constraints in CRF: for the unary potential, a detector called the multi-scale linear feature detector
(MLFD) computes the maximum responses of road segments in dyadic squares at different scales.

(3) For the pairwise potential in the CRF, five constrained relationships, including distances and
crossing angles between adjacent segments, are obtained under a beamlet framework, and several
truncated linear functions are elaborately designed to avoid over-smoothing.

The remainder of this paper is structured as follows. The details of the Bayesian framework are
presented in Section 2. Section 3 describes the unary potential in the CRF model, and Section 4 details
the pairwise potential in the CRF model. Section 5 provides a summary, including the flowchart of the
Bayesian framework. Finally, Section 6 presents an experiment based on airborne and spaceborne SAR
data, and Section 7 presents the conclusion of this paper.

2. Bayesian Framework

Road extraction can be considered to be a binary labeling problem, and many prior assumptions
about roads may be encoded into models. In this paper, a Bayesian framework is utilized to transfer
the road network extraction to joint reasoning of the likelihood of fraction extraction and the priority
of network optimization. We construct a CRF model with elaborately-designed prior terms for
road extraction from SAR images: (1) a multi-scale linear feature detector (MLFD) [14] provides the
likelihood for road segments to acquire the sparse representation of road structures on multi-look data;
(2) local priors are described with several constraints from the beamlet. The beamlet analysis [15,17]
is a multi-scale framework for the detection of geometric objects, which employs a range of scale,
localization and orientation line segments for image representation. Here, we provide the flowchart to
present our framework in Figure 1. First, the MLFD framework is exploited to extract the likelihood
of road segments using the multi-scale pyramid. Then, beamlet analysis and the prior distance
constraints are incorporated to form the unary and pairwise terms in the CRF model. Finally, the
Bayesian approach based on maximum a posteriori (MAP) [18] optimization is performed to obtain
the road extraction results.

Figure 1. Flowchart for the multi-scale Bayesian framework. (a) Input image; (b) multi-scale pyramid;
(c) multi-scale linear feature detector (MLFD) framework; (d) likelihood in unary potential; (e) beamlet
analysis; (f) prior constraints in the pairwise potential; (g) conditional random field (CRF) model; and
(h) road extraction.
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2.1. CRF Model

As a graph model, CRF can provide accurate decisions on classification results and compute
the probability distribution of the labeled domain from the input samples. Compared with MRF,
which models the joint probability distribution to optimize global information, CRF directly constructs
the posterior probability distribution of the label field to deliver the association optimization of prior
and likelihood information.

Let x denote the observed data and y be the label set (binary,−1 or one in this paper); the posterior
probability can be represented in exponential form as:

P(y|x) ∝ exp

{
∑
i∈S

Ai(yi, x) + ∑
i∈S

∑
j∈Ni

Iij
(
yi, yj, x

)}
(1)

I = {x1, x2, . . . , xM}means that image I is composed of M pixels or superpixels xi (a collection
of some pixels), where i represents a segment in S = {1, 2, . . . , M} of all the image segments and j is
a segment in the neighboring set Ni of segment i. In Formula (1), Ai and Iij are the unary and pairwise
potentials, respectively. Ai measures the probability of segment i taking label yi, while Iij describes the
interaction between segments i and j.

2.2. CRF Reasoning for Road Extraction

In addition to directly modeling the conditional distribution of labels, another key aspect of CRF
in our view is that the observed samples, i.e, the road segments, in each dyadic segment do not have
to be conditionally independent. Multi-scale approaches for CRF are widely applied in linear target
detection [14,15,19], in which the features at each scale are different. By extracting features for every
probable linear target scale and learning the parameters jointly across scales, we render the model
scale invariant.

For road extraction applications, we flexibly configure two forms of feature functions in CRF: the
state feature function φi (x) of the label at segment i in the unary term and the transition feature function
µ
(
φi (x) , φj (x)

)
of labels at segment i and an adjacent segment j in the pairwise term. The unary

potential and the pairwise potential are designed with their respective classifiers. The state feature
is intended to interpret road properties sparsely, where the maximum responses of the multi-scale
dyadic segments in MLFD act as feature elements. The transition feature represents local geometric
relationships between neighboring segments, such as the angular and endpoint distances. Therefore,
the conditional probability P (y|φ (x)) can be given by:

P (y|φ (x)) =
1

Z (φ (x))
exp

{
∑
i∈S

Ai (yi, φi (x)) + ∑
i∈S

∑
j∈Ni

Iij
(
yi, yj, µ

(
φi (x) , φj (x)

))}
(2)

where Z (φ (x)) is the partition function and is defined by:

Z (φ (x)) = ∑
y

exp

{
∑
i∈S

Ai (yi, φi (x)) + ∑
i∈S

∑
j∈Ni

Iij
(
yi, yj, µ

(
φi (x) , φj (x)

))}
(3)

In the CRF graph structure conditioned on observation segment xn (i) (see Figure 2), xn (i) is the
candidate segment in segment i at scale k, xn (j) is a segment interacting with xn (i) and φn (xi) is the
likelihood feature generated by a specified partition degree at scale n. We take the random variable xe

to be a vertex in the CRF graph; its label ye will be one when it actually lies on road lines.
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Figure 2. Multi-scale CRF structure conditioned on observation xn (i). (a) Multi-scale likelihood
in the unary potential; (b) multi-scale interaction in the pairwise potential; and (c) multi-scale CRF
graph structure.

3. Unary Potential in Our CRF Model

The multi-scale linear feature detector (MLFD) captures the unary potential, in which the
maximum responses of multi-scale dyadic segments act as feature elements.

The unary potential function Ai (yi, φi (x)) describes the information in a single segment and
measures the probability that the label of segment i is yi for the observed data x. Different CRFs may
take various classifiers as unary potentials, such as boosting potential [17] and kernel CRF [15]. In this
CRF, our unary potential is defined by the general logistic classifier [20], and the likelihood features
are given by the MLFD.

3.1. Likelihood Information from the MLFD

In [8], the multi-scale linear feature detector designs a mask filter that divides an image into
several different regions to detect local region segments. The mask size range is selected using the
multi-resolution method. The operator can adaptively adjust the mask size and change the width and
direction of the central region. Additionally, the statistical and geometrical properties of local region
are taken into account.

Figure 3. Segmentation procedures. (a) A multi-scale pyramid; (b) a mask for MLFD; and (c) masks
applied for each level.

MLFD is derived from the fusion of the ratio line detector (D1) and the cross-correlation line
detector (D2) [7]. During the MLFD procedure, an input image is iteratively partitioned into two by
two squares, and then, a quadtree for the image pyramid is constructed, as shown in Figure 3a. At
each level, the MLFD computes the responses of all previously-partitioned segments. The responses
are regarded as features, and the association of features at different levels is considered to be the
feature vector in the likelihood term of the CRF framework. In detail, the mask partitions a local
segment into three adjacent regions (see Figure 3b); then, the local segment response can be expressed
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as r (v1, v2, w, µ1, µ2, µ3), where v1, v2 are the endpoints of the central line in the central area, w is the
width of the central area and µ1, µ2, µ3 are the mean values of the three regions in the mask, which are
calculated using the following equation:

µi = (1/ni)∑
s∈i

As (4)

where s is a pixel with amplitude As and ni counts the number of pixels in the single segment i.
With l denoting the length of the central area and α expressing the uniformity coefficient,

the MLFD response can be defined as:

T (m) =
lαrρ

1− r− ρ− 2rρ
, r, ρ ∈ [0, 1] (5)

where m is the mask central line in the area to be detected and r and ρ are the responses of the D1 and
D2 operators, respectively, as given in Equation (6). α evaluates the continuity of the central region
that is related to r.

r = min (r12, r13)

rij = 1−min
(
µi/µj, µj/µi

)
α = (1− r12)× (1− r23)

,


ρ = min (ρ12, ρ13)

ρ2
ij = 1/

(
1 +

(
ni + nj

) niγ
2
i c2

ij+njγ
2
j

ninj(cij−1)
2

)
(6)

where rij denotes the ratio response of regions i and j, cij = µi/µj and γi is the variance of the
amplitudes in region i.

In this paper, with SAR data, we can obtain three different MLFD responses TK(m) about different
looks, i.e., K ∈ {hh, hv, vv}. TK(m) is a concatenated vector consisting of responses on three scattering
elements, where Ahh

s is the amplitude of scattering element Shh. The responses TK(m) will be designed
into the state feature function and the transition feature function in CRF.

3.2. Unary Potential Term

In this paper, we take a general logistic classifier to describe the unary potential in CRF, i.e.,{
Ai (yi, φi (x)) = log

(
1 + e−yiω

T hi(x)
)

hi (x) = [T1 (mi) , T2 (mi) , . . . , Tn (mi) , 1]T
(7)

where hi (x) is the multi-scale feature matrix of dyadic segment i, which consists of the MLFD responses.
Tn (mi) denotes the maximum MLFD response in segment i at scale n. The model parameter vector
ω = [ω1, ω2, . . . , ωK, α1]

T contains a weight for each item in the matrix hi (x) and is learned during
the training process, and α1 is a trade-off parameter.

4. Pairwise Potential in Our CRF Model

The pairwise potential function Iij
(
yi, yj, µ

(
φi (x) , φj (x)

))
reflects the spatial interaction between

two segments i and j regarding the entirety of the observed data x. The difference with clique potentials
in MRFs is that segment j does not necessarily have to be in the neighborhood of segment i, but may
be an arbitrary segment from all of the data. In the road extraction framework, the prior information in
the pairwise potential is exploited under beamlet analysis. We fully utilize the design flexibility of the
feature matrix in the pairwise potential and introduce several constraints between local neighboring
segments. The pairwise potential function is designed with prior constraints, including segment length,
curvature and intersection distance.
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4.1. Prior Constraints under Beamlet Analysis

Beamlet analysis [21] is a multi-resolution image understanding framework, which was developed
by Donoho and Hou in 2000. It localizes scale, location and orientation based on dyadically-organized
line segments. In this framework, a beamlet transform is performed based on the beamlet dictionary,
which consists of all types of line segments at a range of scales, locations and orientations;
then, the beamlet pyramid and graph can be constructed for the beamlet algorithm.

Beamlet transform is accomplished through a multi-scale decomposition similar to MLFD that
iteratively divides an image into a series of dyadic segments. In each segment, a connection of two
arbitrary vertices will form a beamlet segment. The summation of the grey-level values of pixels on
a beamlet is defined as a beamlet transform, and the discrete beamlet transform response in this paper
is given by:

T (b) = ∑
p∈b

g (p)/l(b)1/2
(8)

where g (p) is the gray-level value of pixel p and the length l (b) counts the number of pixels in
segment b.

Furthermore, during beamlet analysis, a multi-scale partition is used to acquire a sequence of
dyadic segments P at different levels. Each square is represented by a beamlet, and the beamlet
decomposition to depict the best partition is:

popt = arg max
p∈P

{
∑
s∈p

max
b∼s

T (b)− λ#p

}
(9)

where b∼s is the beamlet mask b on dyadic segment s and #p counts the number of units in set p at
a certain level. Parameter λ is the complexity-penalized coefficient that measures the decomposition
degree. A smaller λ will obtain many more segments and show more image detail, whereas a large λ

may determine global outlines in the image with fewer noise segments.
To obtain the optimal solution for Equation (9), a bottom-up pruning process is employed for the

constructed quadtree. For one segment at different scales, only the segments of maximum responses at
one level are retained:

4

∑
i=1

T (bi)− 4λ > T
(
bp
)
− λ (10)

where the segments of four sub-squares will be saved and the response of their parent will be updated
into the sum of four sub-responses; otherwise, the sub-squares are discarded, and their parent will
no longer be subdivided. In Equation (10), T (bi) is the beamlet response of the i-th sub-square, and
T
(
bp
)

is their corresponding parent square. In this pruning phase, the final road results of the beamlet
are offered.

Perceptual organization, which is known to assess the structural relationships of various primitive
elements, has been widely used in computer vision [22,23]. In this study, the contextual relationships
between road segments, such as the intersection angles, curvatures, endpoint distances and proximities,
provide global optimization with effective prior constraints for road extraction from SAR images.
We use several relational constraints to group and label segments, as shown in Figure 4.
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Figure 4. Relational constraints. (a) Angular distance; (b) lateral distance; (c) endpoint distance;
(d) proximity; and (e) continuity.

Angular distance: This item measures the crossing angle of two lines (see Figure 4a) and is
defined as:

Da = min (θ, π − θ) (11)

where θ1 and θ2 are the tangent angles of two segments with the value range (−π/2, π/2] .
Lateral distance: The lateral distance of segments in a local region should be small, and it is

computed as the perpendicular distance from the midpoint of the shorter line to that of the longer one.
As shown in Figure 4b, if L denotes the length of the longer segment and D is the vertical distance of
these two lines, then the lateral distance is given by:

Dt = D/L (12)

Endpoint distance: This is similar to the lateral distance, with d representing the minimum
intersection distance of four endpoints in the two lines and L denoting the length of the longer
segment, as shown in Figure 4c. The endpoint distance can be written as:

De = d/L (13)

Proximity: The proximity of two segments measures how likely it is that adjacent segments are
close to each other, and it reflects their perceptual significance, as shown in Figure 4d. The proximity is
calculated by:

P = L2/2πR2 (14)

where L is the length of the shorter line and R is the minimum intersection distance similar to d in
Equation (13).

Continuity: Continuity [23] describes the structural relationship among segments and determines
the weight by which road segments should be connected, as shown in Figure 4e. Continuity is
defined as:

C =
1

(α2 + β2) (w1 + w2R)
(15)

where α and β are the intersection angles of lines with horizontal lines at joined endpoints and w1

and w2 determinate the weight of the smoothness at the joined endpoint and the distance between
connecting endpoints. Similar to MLFD responses TK(m) on SAR data, the above five constraints
are computed on SAR dataset K and combined into five vectors with three elements. The vectors are
written as Da

K, Dt
K, De

K, PK and CK. In the final pairwise potential, the first three vectors constitute the
smoothness prior, and the last two form the contrast-dependent prior.

4.2. Pairwise Potential Term

Our pairwise potential consist of a smoothness prior and contrast-dependent prior. Considering
the extension and smoothness of roads, Da, Dt and De between segments in the local region are
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extremely small, which means that a smaller value of this smoothness prior will enforce a higher
energy and that we should strongly penalize a larger distance of Da, Dt and De. We introduce a
sigmoid function for the smoothness prior as follows:

ψs
ij =


1

1+exp
(

ϑ�
(

µs
ij(x)−κ

))vsij, i f yi = yj

0, otherwise
(16)

where µs
ij(x) = [Da

K, Dt
K, De

K] is the associated feature vector of segments i and j on SAR dataset
K; ϑ and κ are the curve inflexion vectors for Da, Dt and De; � denotes the Hadamard product;
vsij measures the influence of each distance on the smoothness prior.

Along rather continuous roads, adjacent segments have similar angular and endpoint distances,
and these parameters of actual road segments will be close to the mean vector of the local candidates’
set. We obtain a local set that contains at least ten segments in the neighboring region of segment
xi, and then, we compute the mean feature vector µ̄i and standard deviation σi. With the Euclidean
distance, dij = µij − µ̄i measures the deviation of vector µij from µ̄i, and the weight vsij is defined as:

vsij =


vsij, i f dij ≤ σi
vsij
(
1− dij/(4σi)

)
, i f σi < dij ≤ 4σi

0, i f dij > 4σi

(17)

The truncated linear function [13] ensures a full weight to pairwise segments within σi, a
linearly decreasing weight to segments between σi and 4σi (an empirical threshold) and removes
the pairwise segments above four standard deviations. The weighting function significantly helps to
avoid over-smoothing.

Then, the contrast-dependent prior within the Ising model [24] takes the following form:

ψ
p
ij = yiyjµ

p
ij(x)vT

pij (18)

where µ
p
ij(x) = [ fij(x), Pij, Cij] is the associated feature vector, fij = [hi(x), hj(x)] is a concatenation

feature of single segments i and j; Pij and Cij represent the proximity and continuity priors, respectively;
and vT

pij denotes the weights for µ
p
ij(x), which are tuned during the CRF training process.

Finally, the pairwise potential in this CRF model is defined as:

Iij(yi, yj, x) = εψs
ij + ηψ

p
ij (19)

where ε and η trade-off the strengths of pairwise terms against the unary term in the model and will
be set via finding the optimal value on the training set. The optimization process of Equation (2) is
employed with an improved version of the quasi-Newton method based on the version provided by
Gould et al. [25].

5. Post Processing

5.1. The Complete Posterior Distribution of CRF

Using the concrete definitions of the unary potential in Equation (7) and pairwise potential in
Equation (19), the posterior probability p (y|φ (x)) in Equation (1) can be rewritten as:

p (y|φ (x) , Θ) ∝ ∏
i∈S

(
1 + exp

(
−yiω

Thi (x)
))
×∏

i∈S
∏
j∈Ni

(
yiyjvTµij (x)

)
(20)

where Θ = {ω, v} is the set of parameters in the model.
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5.2. Normalization Methods

In the above sections, we have defined various features and prior constraints. These can be
used to interpret different properties and provide a uniform description of the characteristics of roads.
To avoid numerical instability in the CRF training period, normalization methods should be introduced
into the handling of the feature matrices.

Binarization: A binarization method is used for the angular distance Da, the lateral distance Dt

and the endpoint distance De in this study. The binarization is performed by comparing the segment
feature values with its four-connection neighborhood. Taking the angular distance Da

ij of segments in
segments i and j as an example, Da

ij is calculated using Equation (11), and the average angular distance
D̄a

i between segment i and its neighborhood is defined by:

D̄a
i = ∑

k∈Ni

Da
ik/num (Ni) (21)

where Ni is the neighborhood collection of segment i, Da
ik is the angular distance of segments in

segments i and k and num (Ni) counts the quantity of set Ni.
Considering the extension and smoothness of roads, Da, Dt and De between segments in local

regions should have small values; thus, we set threshold Ta using several sets of experimental results.
In particular, the angular distance Da

ij will be retained if the absolute difference from the local average
D̄a

i is smaller than threshold Ta; otherwise, it will be discarded. Therefor, the binarization is written as:

Da(b)
ij =

{
1, i f |Da

ij − D̄a
i | ≤ Ta

0, i f |Da
ij − D̄a

i | > Ta
(22)

Similar to Equation (22), the binarizations for the lateral distance Dt
ij and the endpoint distance

De
ij can be obtained by substituting the absolute difference with the ratio between the feature value

and the local average. For the thresholds, we define these two binarizations as:

Dt(b)
ij =

{
1, i f Dt

ij/D̄t
i ≤ Tt

0, i f Dt
ij/D̄t

i > Tt
; De(b)

ij =

{
1, i f De

ij/D̄e
i ≤ Te

0, i f De
ij/D̄e

i > Te
(23)

For the proximity Pij and the continuity Cij, the post-processing is normalized as the ratio of the
current value and the local average, but not the binarizations, and can be expressed as:P(b)

ij = Pij/P̄ij

C(b)
ij = Cij/C̄ij

(24)

where the local averages P̄ij and C̄ij are calculated using the same method as for D̄a
i in Equation (21).

Finally, the association feature matrix µij (x) in the pairwise potential can be determined using
the five binary prior constraints given above and the features of segments i and j. Then, the definite
form is as follows:

µij (x) =
[

f1ij, f2ij, · · · , fnij, Da(b)
ij , Dt(b)

ij , De(b)
ij , P(b)

ij , C(b)
ij

]
(25)

where fnij =
[
hni (x) , hnj (x)

]
is a simple concatenation of the features of single segments i and j at

a particular scale n.
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6. Experiments and Results

6.1. Experimental Data and Settings

To evaluate the proposed road extraction method, both spaceborne and airborne SAR images
are used to test the method. The first two data are real spaceborne TerraSAR data acquired
in Germany (see Figure 5a) and Wuhan, China (see Figure 6a). The size of the first image is
1000 × 1000 pixels, and its spatial resolution is 3.0 m×2.2 m. The second image is a wide scene
with a size of 1152 × 644 pixels. The corresponding ground truths are two-dimensional images
labeled manually (Figures 5b and 6b). We also used airborne SAR data, acquired using equipment
developed by China and derived from airborne X-band SAR provided by the 38th Institute of China,
Electronics Technology Company, to assess the proposed method. The test area is near Lingshui
County, Hainan Province, China. The span images are presented in Figures 7a and 8a, and their
sizes are both 1000× 1000 pixels. The parameters for each experiment, learned during the training
process, are listed as follows: in Figure 5, the decomposition degree λ of the beamlet is set as 4.4,
and the curve inflexion vectors are ϑ = [1, 5, 7] and κ = [30, 0.8, 0.5], whereas in Figure 6, λ is 2.3,
ϑ = [1, 6, 5] and κ = [20, 0.8, 0.7]. For the airborne SAR scenes in Figures 7a and 8a, the comparative
methods MLFD and beamlet are implemented on the span images, and the decomposition degrees λ

are 4.6 and 5.3, respectively. The CRF parameters, curve inflexion vectors ϑ and κ are concatenated
by parameters from the original SAR dataset. In Figure 7, ϑ = [1.2, 4, 6, 1.8, 4.5, 6.3, 1.5, 4.2, 6.5] and
κ = [22, 0.7, 0.75, 26, 0.74, 0.8, 24, 0.71, 0.78], whereas in Figure 8, ϑ = [1.5, 5.1, 7.5, 2.1, 5.8, 8, 1.7, 5.3, 7.7]
and κ = [32, 1, 1.2, 36, 1.4, 1.7, 33, 1.2, 1.4].

(a) (b) (c)

(d) (e) (f)

Figure 5. The experimental results on the TerraSAR image from Trudering, Germany. (a) The original
image; (b) ground truth; (c) results of MLFD; (d) results of beamlet; (e) results of Markov random field
(MRF) [8]; (f) fusion results of CRF.
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Several metrics have been proposed to qualitatively evaluate the performance of road extraction.
In general, there are three such metrics for evaluation [23], which are defined as:

completeness = Lr/Lgt

correctness = Lr/LN
quality = Lr/(LN + Lugt)

(26)

where the completeness means the proportion of the ground truth length (Lgt) that is extracted exactly,
Lr is the matching length between the extracted roads and the ground truth and the correctness (Lr/LN)
represents the fraction of total extracted road length (LN) that matches the actual roads. The quality
is given by Lr/(LN + Lugt), with Lugt being the length of actual roads that are not matched by the
extracted roads. If the midpoint distance between the extracted roads and the reference roads is less
than a given tolerance, then we consider that the extracted roads match actual roads. The tolerances in
these four images are set as 13, 8, 11 and 13 pixels.

(a) (b)

(c) (d)

(e) (f)

Figure 6. The experimental results on the TerraSAR image from Wuhan, China. (a) The original image;
(b) ground truth; (c) results of MLFD; (d) results of beamlet; (e) results of MRF [8]; (f) fusion results
of CRF.
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(a) (b) (c)

(d) (e) (f)

Figure 7. The experimental results on the first airborne SAR image from Hainan, China. (a) The span
image; (b) ground truth; (c) results of MLFD; (d) results of beamlet; (e) results of MRF [8]; (f) fusion
results of CRF.

(a) (b) (c)

(d) (e) (f)

Figure 8. The experimental results on the second airborne SAR image from Hainan, China. (a) The span
image; (b) ground truth; (c) roads of MLFD; (d) roads of beamlet; (e) results of MRF [8]; (f) fusion
results of CRF.
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6.2. Experimental Results

Experiments of the proposed methodology and several comparative experiments are conducted
using real spaceborne SAR and airborne SAR images. For Terra-SAR spaceborne data, Figures 5c and 6c
show the detected road segments using MLFD. This method primarily finds the overall road outlines
with relatively little noise generation, but MLFD cannot handle the complex road intersections very
well, as is obvious in the first image. Figures 5d and 6d are the results of beamlet decomposition,
which contain more road details and sophisticated segments even in complex areas and intersections;
however, this produces many more non-road segments in local neighboring areas. Figures 5e and 6e
are the road networks after global optimization by MRF of Tupin [8], which connects adjacent long
segments into lines when neglecting short ones by setting a certain length. However, it fails to extract
such lines in dense urban areas where roads are of a short length and complex surroundings, and
particularly in the second dataset that contains minor road segments, MRF mistakenly discards some
positive short segments. The results of the CRF model are presented in Figures 5f and 6f, which follow
the entire outline extracted by MLFD and preserve the elaborate details in complex scenes extracted by
beamlet when noise is greatly removed. Compared to MRF, many new segments are created, and the
road lines are very smooth.

For airborne SAR data, comparative results are obtained on the span images. Figures 7c and 8c
present the roads of MLFD, where the segments are discontinuous fragments. However, when less
non-roads are reserved, the MLFD method obtains the effective segments along actual lines.
The beamlet results are shown in Figures 7d and 8d, in which more complete fragments are obtained
as a whole and more refined segments along curves and crossroads than MLFD. The optimized roads
of MRF are given in Figures 7e and 8e, where we can observe that most road lines match real roads
and are connected especially along the crossroad, but some segments are misleading around complex
building areas. The fusion results of the proposed CRF algorithm are presented in Figures 7f and 8f,
where new segments are selected, and then, the adjacent roads are jointed smoothly; moreover, the
extremely small noise is greatly reduced. Both MRF and CRF retain some pseudo-roads, such as roofs
and splitting lines between farmlands.

To evaluate the effect of the unary potential and pairwise potential in the proposed method,
the TerraSAR data are taken as an example for comparison. As shown in Figure 9c, there is an apparent
presence of noise in the results of the unary potential alone. In other words, the labels of neighboring
pixels are not consistent with each other. This is because the spatial relationships, namely the prior
constraints, are not taken into account in this model. By contrast, better results are achieved by the
fusion CRF model, which are shown in Figure 9d, since more contextual information is exploited to
facilitate robust and effective road extraction.

Table 1 presents comparisons of quality evaluations for each method on the test images. As shown
in this table, MLFD has an acceptable correctness, but unsatisfactory completeness and quality,
whereas beamlet possesses a higher completeness and quality because of showing more extracted
details. The three indices of CRF increase markedly in both images. It is also apparent that the quality
indices, which illustrate the overall assessment and the correctness index, are both the highest for
CRF. As belief messages are passed among all of the image sites and several constraints are involved,
the time cost of CRF is more expensive than that of MRF, but it is on the same scale. Because MRF
deletes isolated short segments and concatenates adjacent segments into lines according to several
rules, it has acceptable evaluation indices for all images.



ISPRS Int. J. Geo-Inf. 2017, 6, 26 15 of 17

(a) (b)

(c) (d)

Figure 9. The effect of unary potential and pairwise potential in the proposed method. (a) TerraSAR
image; (b) ground truth; (c) result of unary potential alone; (d) fusion result of CRF.

Table 1. Comparisons of evaluation indices and time cost(s).

Data Methods Correctness Completeness Quality Time Cost

Figure 5

MLFD 0.6341 0.4262 0.3692 5.7
beamlet 0.6791 0.6092 0.4730 6.4

MRF 0.7311 0.7107 0.5635 4.9
CRF 0.7658 0.7495 0.6097 10.2

Figure 6

MLFD 0.6747 0.7271 0.5384 4.1
beamlet 0.5358 0.6821 0.4590 4.6

MRF 0.7288 0.8196 0.6614 3.2
CRF 0.7744 0.8978 0.7117 8.4

Figure 7

MLFD 0.6725 0.5674 0.4446 4.7
beamlet 0.5799 0.6199 0.4278 5.3

MRF 0.7256 0.7982 0.6048 4.1
CRF 0.7534 0.7719 0.7157 12.3

Figure 8

MLFD 0.5823 0.6824 0.4581 5.1
beamlet 0.6452 0.7440 0.5280 5.6

MRF 0.7697 0.7856 0.6397 4.7
CRF 0.7952 0.8056 0.7279 13.4

7. Conclusions

In this paper, a Bayesian framework that combines multi-scale geometric detection operators and
its application to road extraction from SAR images are presented. (1) The main contribution of this
paper is the introduction of two road detection methods for multi-scale analysis and fusing them using
a Bayesian framework to fully utilize the strengths of multi-scale analysis. The association optimization
of CRF leads to a better road network compared with the separate detection methods. The grouped
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road network from CRF incorporates the best features of each method. In particular, MLFD guides
the overall road outline and generates relatively little noise, whereas beamlet provides sophisticated
segments even in complex areas and intersections. (2) In the CRF model, MLFD provides the multi-scale
likelihood features for each dyadic segment, and the prior constraints are obtained under beamlet
analysis. The learning and inference algorithm in a uniform pyramid structure guarantees finding
joint global optimal results. (3) The experimental results show that the proposed fusion method for
road extraction in SAR images markedly improved in correctness and quality compared with each
independent operator and the optimization approach based on MRF, which verifies the effectiveness
of our fusion methodology using CRF.
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