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Abstract: Time series land cover maps play a key role in monitoring the dynamic change of land use.
To obtain classification maps with better spatial-temporal consistency and classification accuracy,
this study used an algorithm that incorporated information from spatial and temporal neighboring
observations in a hidden Markov model (HMM) to improve the time series land cover maps
initially produced by a support vector machine (SVM). To investigate the effects of different initial
distributions and transition probability matrices on the classification of the HMM, we designed
different experimental schemes with different input elements to verify this algorithm with Landsat
and HJ satellite images. In addition, we introduced spatial weights into the HMM to make effective
use of spatial information. The experimental results showed that the HMM considered that spatial
weights could eliminate the vast majority of illogical land cover transition that may occur in previous
pixel-wise classification, and that this model had obvious advantages in spatial-temporal consistency
and classification accuracy over some existing classification models.

Keywords: time series land cover maps; spatial-temporal consistency; hidden Markov model;
spatial weight

1. Introduction

The mapping of regional land cover is of great help to local construction and plan [1,2].
In particular, time series land cover maps make great contributions to monitoring the dynamic change
of land use and acquiring the long-term land cover information [3,4]. Increasing demand for dynamic
land cover information (i.e., annual dynamic land cover changes) has raised the demand for the quality
of time series land cover products. However, there is great inconsistency in existing land cover products,
which has brought many difficulties in practical applications [5–7]. Inconsistent spatial-temporal land
cover change is a common problem in the production of land cover maps, and the spatial-temporal
consistency index is one of the commonly-used evaluation indices of time series land cover products [8].
To develop a new classification strategy, the time dimension and spatial relationship of the derived land
cover type should be taken into account in the production strategy or incorporates to the classification
model. How to adapt a new classification strategy that incorporates the spatial-temporal consistency
to the production of time series land cover products is very difficult at present.

The existing time series land cover products have many inconsistent pixels in different periods,
which lead to a large number of illogical land cover transitions. Issues with image quality difference,
classification algorithm, and category definition can contribute to this inconsistency [9]. Time series
land cover maps are usually produced independently at each time point. In fact, the classification
methods that consider time series information are superior to the classification methods based on
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a single time point [10,11]. However, studies on land cover mapping that consider spatial-temporal
land cover change consistency are still limited. In some studies, experiments have been carried out
by adding the change information or the rule of land cover change to the classification model or the
post-processing model—in which, however, the land cover products were still produced independently
for each period [12,13]. Cai & Wang et al., considered “illogical land cover transition” into Maximum
A Posterior-Markov Random Field (MAP-MRF) model which was proposed by Kasetkasem et al. [14],
and improved the MODIS Collection 5 product with the spatial-temporal context information [15,16].
Based on their research, Wehmann & Liu proposed a Spatial-Temporal Markov Kernel Method to be
used in time series images classification [17]. However, the above method cannot optimize the entire
time series simultaneously, but only process the classification of each time point sequentially, and then
get the final result after multiple iterations. Multiple parameters estimate that this greatly reduces the
efficiency. In addition, none of the existing methods have quantified the transformation relationship
between the land cover types according to the characteristics of the study area, or distinguished the
transformation rate of different land cover types.

To consider the spatial-temporal consistency in the time series land cover mapping, in this
study, we proposed a method to incorporate temporal and spatial information from neighboring
observations into a hidden Markov model (HMM) to produce land cover maps from time series
satellite images simultaneously. The temporal consistency, spatial continuity, and initial classification
accuracy of each period were taken into account in the model. Section 2 briefly introduces the
basic principles of HMM followed by the step-by-step HMM-based classification approach in
Section 3. In Section 4, we designed different experimental schemes to compare and analyze the
experimental results. In addition, we introduced spatial weight into HMM to make effective use of
spatial information. Finally, we concluded that the HMM that considered spatial weight had obvious
advantages in spatial-temporal consistency and classification accuracy.

2. Background

2.1. Hidden Makov Models (HMMs)

HMMs are statistical learning models that can be used in a sequence labeling problem. It describes
the process of randomly generating an unobservable state sequences from a hidden Markov chain and
generating an observation from each state to produce an observable sequence [18]. In the classification
problem of time series remote sensing images, the state sequences represent the labels assigned to each
pixel in the land cover map. The observation sequence represents the multispectral and multi-temporal
reflectance associated with those pixels [19].

Unlike the conventional remote sensing classifiers, HMMs further consider the temporal
information of each pixel, obtain the most possible sequence of pixels, and thus improve the temporal
consistency and accuracy of the classification result. Formally, we identify the set of possible labels
(e.g., water, cropland, forest, etc.) as Ω = {ω1, ω2, , ωK} (where K is the number of classes), and later
the land cover label assigned to a pixel in each year as Y = {y1, y2, . . . , yn}, (where n is the number of
years in the time series), and X = {x1, x2, . . . , xn} are the spectral measurements of pixel in each year,
where xt is the vector of measurements associated with year t. Thus, the state sequence Y constitutes a
hidden Markov chain, and the observed sequence X is only related to the corresponding state sequence,
assuming that the land cover label of the pixel is only related to the last year’s label. The dependence
between Y and X constitutes a hidden Markov model.

Figure 1 provides a schematic of the HMM used in this paper. yt represents the land cover label
of a single pixel in year t, and meets yt ∈ Ω. xt represents the remote sensing spectral measurements
related to yt. The goal of HMMs is to infer the most likely state for each yt by giving the observed
variables X. The hidden variable Y constitutes a first-order Markov chain in which the state of yt may
transform into a different state of yt+1 with a probability defined by a transition matrix, where the
probability that a pixel in state i will transform into state j is defined as P(ωj

∣∣ωi) . The probability



ISPRS Int. J. Geo-Inf. 2017, 6, 292 3 of 14

of observing the measurement vector xt, after determining the true land cover label ωt, is given by
P(xt|ωt) . There are K possibilities of the land cover labels for each pixel, so P(xt|ωt) is a K element
vector of probabilities, where K is the number of land cover labels.
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Figure 1. Schematic of a hidden Markov model (HMM).

In this paper, the initial probability distribution of the pixels π = P(ω1|ω0) can be derived
from the initial classification results of the SVM classifier [20,21]. The observation probability of
the pixels can be calculated from the probability output of the SVM classifier through the Bayesian
theorem. The transition probability matrix is determined by the actual situation of the study area.
After determining the three elements of HMMs: the initial probability distribution, the observation
probability, and the transition probability matrix, we can estimate the joint probability of spectral
measurement sequence of individual pixel by Equation (1):

P(x1, x2, . . . , xn|Ω)P(Ω) =
n

∏
t=1

P(ωt|ωt−1)P(xt|ωt) (1)

Salberg and Trier considered the utility of HMM algorithms in the context of forest classification
and concluded by finding that the mostly likely state sequence (Viterbi algorithm) is the most
appropriate for change detection and producing forest maps for specific times [22]. Following this
guidance, we used the Viterbi algorithm for this paper to determine the most likely state sequence
Y = {y1, y2, . . . , yn} for each pixel in the study area, which was the most likely land cover labels for
the n years of the pixel.

2.2. Data and Study Area

To map land cover of study area from 2007 to 2015, Landsat image data were mainly
used, and Huan Jing Charge-coupled Device (HJ-CCD) image data were utilized as a supplement.
Considering the image quality and acquisition time, we selected Landsat 5 image data from 2007 to 2011
and Landsat 8 image data from 2013 to 2015, the paths and rows of which range from 120 to 123,
and 39 to 41, respectively. Due to the lack of enough Landsat data in 2012, we selected Huan Jing
Charge-coupled Device (HJ-CCD) data in 2012 as a supplement. The coverage of a HJ-CCD image is larger
than a Landsat image, and 33 images which cover the study area were chosen. In addition, the cloud
cover of these images is not more than 3%.

Because the cloud cover in some Landsat images was high, we used a minimum synthesis method
to obtain the cloud free time series. This means that if any pixel within the scope of the study area was
covered by more than an image, we should choose the smallest band value of these for the pixel.

The study area is Poyang Lake Ecological Economic Region, located between 27 degrees and
31 degrees North and between 114 degrees and 118 degrees East. It is located in the middle and lower
reaches of the Yangtze River south bank, north of Jiangxi Province, China, including 38 counties
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(cities, districts) and the whole of Poyang Lake. Its area is 5.12 million square kilometers. More details
are presented in Figure 2. The study area was mainly covered by water, cropland, forest, artificial cover,
and bare land [23], so we choose the 5 labels as the set of possible labels in our study.ISPRS Int. J. Geo-Inf. 2017, 6, 292  4 of 14 
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The reference data were mainly collected by artificial visual interpretation from the images in
Google Earth and field survey in 2016. Eventually, we selected 7,308 locations and recorded their
ground information in term of class label, longitude, and latitude. The number of locations which
were covered by water, cropland, forest, artificial cover, and bare land are (in order): 2972, 951, 1939,
1085 and 361. The locations of the samples are basically the same from 2007 to 2015. In addition,
we culled a few locations where the land cover labels changed. In this paper, we used 5-fold
cross validation for accuracy evaluation [24]. The sample dataset D was randomly split into
5 mutually exclusive subsets D1, D2, D3, D4, D5 of approximately equal size. The entire experiment
including training, classification, and testing would be carried out 5 times. Each time we selected
D r Dt, t ∈ {1, 2, 3, 4, 5} as training samples and Dt as testing samples.

3. Methods

After obtaining the original remote sensing image of the study area, we used minimum value
compositing for the same coverage area of the images in the same year, and then proceeded as follows:

1. In the first step, we used an SVM classifier (type: C-SVM, kernel function: radial basis function,
penalty parameter C: 100, Gamma in kernel function: 0.01) to process the time series remote
sensing images from 2007 to 2015 independently, and obtained the initial classification products
containing classification result and probability vectors, which represented the estimated prior
probability for each class in each year.

2. We could get the probability distribution of each class in each year by analyzing classification
result of the SVM classifier, and calculated the observation probability vector for each pixel in
each year by combining the probability vectors from the SVM classification.

3. Initial probability distribution of each class could be estimated by the above statistical results,
and the transition probability matrix was determined according to the actual situation of the
study area and the existing study results.

4. After determining the three elements of HMM, the joint probability distribution of the spectral
measurement vector of each pixel was calculated by the Viterbi algorithm. Finally, we chose the
state sequence which made the joint probability to the maximum as the land cover labels for the
n years of the pixel.
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5. Considering the spatial continuity of each pixel in the classification results and giving each class
a spatial weight value W by the spatial weight model, step 4 would be repeated to obtain the
final classification products.

Figure 3 shows the process details of this methodology in this paper.ISPRS Int. J. Geo-Inf. 2017, 6, 292  5 of 14 
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3.1. Initial Distribution and Observation Probability

Based on the initial classification results produced by the SVM, we selected 3 initial distributions:
the average class probability distribution from 2007 to 2015 marked as Ini_1, uniform distribution
marked as Ini_2, and the class probability distribution in 2007 marked as Ini_3. More details are shown
in Table 1.

Table 1. Initial probability distribution of 5 land cover classes.

Class Water Cropland Forest Artificial Cover Bare Land

Ini_1 0.1052 0.3898 0.3399 0.1006 0.0645
Ini_2 0.2 0.2 0.2 0.2 0.2
Ini_3 0.0889 0.4129 0.3312 0.0634 0.1036

The observation probability is obtained from the Bayesian formula like Equation (2):

P(x|ωt) =
P(ωt|x)P(x)

P(ωt)
(2)

Among them, P(ωt|x) is the probability vector from the SVM classification, P(ωt) is the
proportion of each class in year t, and P(x) is a constant value for the pixel. Thus, we use P(ωt |x)

P(ωt)
to

approximate the observation probability P(x|ωt) in general.
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3.2. Transition Probability Matrix

The transition probability matrix determines the probability that a pixel transfers from a class
to another class between two years, which mainly related to the objective conditions such as the
geographical location of the study area, the development plan, and the climate environment [25,26].
For example, the Poyang Lake Ecological Economic Zone has a large number of rivers changes easily
between water bodies to bare land. Due to the expansion of the city, the change from bare land to
artificial cover is relatively reasonable between two years. Changes from forest to water and from
artificial cover to cropland are unlikely to happen between two years.

Generally, the transition probability matrix can vary from pixel to pixel and over time.
Therefore, it is particularly difficult to obtain the true transition probability matrix for each year
of the study area. In this paper, we restricted our transition matrix to a simplified form: a constant
transition probability applied to all pixels from 2007 to 2015. Based on the existing study results [27,28],
we focused on the complexity of transition between any two classes, and divided the probability of
transition into 6 levels: 99%, 90%, 6%, 3%, <1%, and 0.01%. Then, we gave the probability values of
different sizes for each case. For reference, Mingxia Zhu’s research results indicate that 3.28% of water,
2.28% of cropland, 0.70% of forest, 1.73% of artificial cover, 7.52% of sand, and 11.11% of beach in
Poyang Lake Ecological Economic Region changed between 2008 and 2013 [29]. Another simplified
approach to the transition probability matrix is to define the transition probability for each class to itself
as 90%, like the study of Abercrombie S P & Friedl M A [30], and to other K-1 classes as 10%/(K-1).
More details are shown in Table 2.

Table 2. Transition probability matrix. (a) defined by actual situation, marked as TRANS_1;
(b) a simplified process, marked as TRANS_2.

Class (%) Water Cropland Forest Artificial Cover Bare Land

(a)

Water 90 6 0.01 0.99 3
Cropland 6 90 0.01 0.99 3

Forest 0.01 0.01 99 0.01 0.97
Artificial Cover 0.01 0.01 0.01 99 0.97

Bare Land 3 0.99 0.01 6 90

(b)

Water 90 2.5 2.5 2.5 2,5
Cropland 2.5 90 2.5 2.5 2.5

Forest 2.5 2.5 90 2.5 2.5
Artificial Cover 2.5 2.5 2.5 90 2.5

Bare Land 2.5 2.5 2.5 2.5 90

Because the joint probability in the HMM is the product form, the transition probability
cannot be 0, or it will seriously interfere with the result and affect the accuracy of classification.
A transition probability less than 1% in Table 2 was defined as an illogical transition between two years,
which may include: water forest, water→artificial cover, cropland→forest, cropland→artificial cover,
forest→water, forest→cropland, forest→artificial cover, forest→bare land, artificial cover→water,
artificial cover→cropland, artificial cover→forest, artificial cover→bare land, bare land→cropland,
bare land→forest. The proportion of illogic transition was used as one of the important indicators to
evaluate the classification results.

3.3. Spatial Weight

3.3.1. Spatial Weight Analysis

Besides the time information of the remote sensing image that was taken into account in the
HMM, we further considered the spatial distribution of land cover of each pixel. According to local
binary pattern (LBP) theory [31,32], we added a corresponding spatial weight w to each pixel in
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each year, which could reduce illogical phenomena in the classification process to improve the
classification accuracy.

The spatial weight W is related to the number of pixels that are consistent with the object class
around the target pixel and whether it is adjacent to the surrounding pixels. In this paper, we adopted
8-neighbourhood, as shown in Figure 4: A1–A8 are 8 pixels around the target pixel A. The number of
pixels that are consistent in the class of target pixel A is defined as NA. The number of land cover label
change in the chain A1→A2→A3→ . . . →A7→A8→A1 is defined as VA, which depends on whether the
land cover classes of the surrounding pixels are distributed continuously. Therefore, the spatial weight
W should satisfy the following relationship: W ∝ NA

VA
. The corresponding spatial weight model is:

W = α·NA
VA

+ β (3)

where α, β are model parameters and α > 0. In this paper, we assumed that the spatial weight model
in each year keep independent in the parameters.
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The model parameters for each year were obtained through the training data. Then, we calculated
the value of spatial weight w of each pixel and used it to update the joint probability of each Markov
chain. Finally, the HMM was applied again to get the final classification products. In this paper,
the spatial distribution with a NA

VA
≤ 1

2 was defined as an unreasonable distribution. The proportion
of unreasonable distribution was considered as one of the important indicators to evaluate the
classification results.

3.3.2. Method for Spatial Weight Parameter Estimation

In order to make effective use of spatial information to optimize classification accuracy,
we proposed a simple and fast method for estimation the model parameters automatically: a search
method of variant step length. Let us consider for a set of M training samples S_i(i = 1, 2, . . . , M) from
2007 to 2015.

The first step of the method consisted in determining the iterative initial value of
α and β, and the corresponding initial step length Hα and Hβ. Then, we found the
nine sets of optional parameter combinations

{(
α− Hα, β− Hβ

)
, (α− Hα, β),

(
α− Hα, β + Hβ

)
,(

α, β− Hβ

)
, (α, β),

(
α, β + Hβ

)
,
(
α + Hα, β− Hβ

)
, (α + Hα, β),

(
α + Hα, β + Hβ

)}
.

In the second step, the nine sets of optional parameter combinations were substituted into
the spatial weight model to compute the spatial weight W of each training sample Si in each year.
After that, we brought the spatial weight W into the HMM to obtain the classification results of each
parameter combination.

The third step was to compute the classification accuracy of nine sets of optional parameter
combinations by means of the training sample set. Then, we chose the parameter combination with
the highest classification accuracy as the new iterative initial value and the new step length, Hα and
Hβ were reduced by half.
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The fourth step was to judge whether the iteration was over. If the step length was less than
the predetermined value Hθ , the parameter combination at this point was the optimal parameter
combination, otherwise return to the first step.

4. Results

4.1. Experimental Schemes

HMM has three elements: initial distribution, transition probability matrix, and observation
probability. To compare and analyze the influence of different elements of the HMM on the classification
results, we designed different experimental plans, as shown in Table 3. There are 3 initial distributions
in Table 1, and 2 transition probability matrices in Table 2. The combinations between these two
elements form Plan 2–Plan 7. Plan 1 was used as a reference without any post-processing. In Plan 8,
we considered the spatial relationship of each pixel for each year based on the classification results
of Plan 2. The spatial weight model parameters α and β in each year were obtained by 54 iterations,
and the optimal parameters were: α = (0.20, 0.17, 0.22, 0.16, 0.19, 0.19, 0.20, 0.20, 0.17)T ,
β = (1.88, 1.93, 1.86, 1.89, 1.87, 1.91, 1.85, 1.88, 1.90)T .

Table 3. Experimental plans.

Experimental Plan Initial Products Transition Probability Matrix Initial Distribution Spatial Weight Result Label

Plan 1 By SVM classifier NPP
Plan 2 By SVM classifier TRANS_1 Ini_1 HMM1-1
Plan 3 By SVM classifier TRANS_1 Ini_2 HMM1-2
Plan 4 By SVM classifier TRANS_1 Ini_3 HMM1-3
Plan 5 By SVM classifier TRANS_2 Ini_1 HMM2-1
Plan 6 By SVM classifier TRANS_2 Ini_2 HMM2-2
Plan 7 By SVM classifier TRANS_2 Ini_3 HMM2-3
Plan 8 HMM1-1 TRANS_1 Ini_1 Included HMM1-1_spat

4.2. Evaluation of Land Cover Maps

Figure 5 shows the classification results of the SVM classifier and post-processing with the HMM
for the time series remote sensing images from 2007 to 2015. Due to limited space, only the results of
Plan 1 and Plan 8 are shown here. We can see that many pixels of the study area changed in their land
cover labels within one year, which is not likely to happen in reality. Especially in the southwest of
the study area, where geographical environment is complex and a large area of illogical transitions is
more common. It is proved that the classification results of SVM classifier cannot ensure the temporal
consistency of the land cover label with many pixels with illogical transitions, resulting in the relatively
low overall accuracy of classification results. In comparison, the classification results of Figure 5b
post-processed with the HMM significantly reduced the illogical transitions. We can see that most
of land cover labels showed good temporal consistency and the classification accuracy improved.
In addition, the HMM in Plan 8 considered spatial weight, so the classification results also have a good
performance in spatial continuity.
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Figure 5. Classification maps of Poyang Lake Ecological Economic Region from 2007 to 2015.
(a) Plan 1: NPP; (b) Plan 8: HMM1-1_spat.

Figure 6 shows the number of year-to-year changes in land cover labels at each pixel from 2007 to
2015 from 8 plans in a 100% stacked bar chart. In the maps produced by SVM classifier, only 18.91% of
pixels can remain the same land cover label from 2007 to 2015, and 23.36% of pixels changed more
than 5 times from 2007 to 2015—these pixels change their labels almost every year. The results confirm
that the SVM classifier cannot guarantee the temporal consistency of the land cover label. The maps of
Plan 2–8 show a low level of change from 2007 to 2015, which have been processed by using the HMM.
The percent of pixels that remained unchanged in land cover label rose to 73% (Plan 2, Plan 3, Plan 4,
and Plan 8), and 55% (Plan 5, Plan 6, and Plan 7). Most importantly, the percent of pixels that change
more than 5 times sharply reduced to about 0.03% (Plan 2, Plan 3, Plan 4, and Plan 8), and 0.16%
(Plan 5, Plan 6, and Plan 7). The results indicate that, when the HMM is used, most of the pixels change
no more than once, which appeared to be close to the actual land cover change in the study area.
We can also find that the performance of applying the transition probability matrix TRANS_1 (Plan 2,
Plan 3, Plan 4, and Plan 8) is better than TRANS_2 (Plan 5, Plan 6, and Plan 7), and the difference of
the initial distribution has little effect on the classification result. The classification result of adding
the spatial information (Plan 8) is slightly better than that without any spatial constraint in terms of
temporal consistency.
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4.3. Illogical Transition

The proportion of the illogical transitions can be used to evaluate the classification results as an
important indicator. Figure 7 shows the distribution of illogical transition of Plan1, Plan 2, and Plan 8,
in which the gray value represents the frequency of illogical transition at each pixel in 8 years. Figure 8
shows the proportion of illogical transition from 2007 to 2015 in a 100% stacked bar chart. We can see
that the frequency of illogical transition in Plan 1 is significantly higher than those in Plan 2 and Plan 8.
The results post-processed with HMM can greatly reduce the illogical transition, compared to the
results produced by SVM classifier. As can be seen from Figure 8, the proportion of illogical transition
from 2007 to 2015 in Plan 1 is 29.44%, which reduce to about 7.7% in Plan 5, Plan 6, and Plan 7 and
reduce to about 2.6% in Plan 2, Plan 3, and Plan 4, and 2.4% in Plan 8. These results suggest that the
HMM can remove some of the pixels with illogical transitions, thereby reducing illogical transitions of
land cover label in the time series, and it can greatly improve the accuracy of the classification results.
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4.4. Spatial Continuity and Accuracy Evaluation

The spatial continuity of the pixels can be used to evaluate the classification results. The HMM
generally only considers the temporal information of each pixel in the time series remote sensing
images, without considering the spatial relationship between the pixel and surrounding pixels.
Therefore, HMM can only improve the spatial continuity by correcting the false land cover labels of the
pixels. When we used the HMM that considered the spatial weight to post-process the classification
results, the spatial continuity can be improved. Figure 9 shows the proportion of unreasonable spatial
distribution in all plans from 2007 to 2015 as a histogram.

As can be seen from Figure 9, the proportion of unreasonable spatial distribution in Plan 1–7
is about 4.5%, which drops to 2.92% in Plan 8. This confirms the above conclusion—the HMM that
considered spatial weight has a good performance in improving the spatial continuity of pixels.
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Finally, Table 4 shows the average classification accuracy of Plan 1–8. Because these data were
manually collected and subjective, the accuracies are all high (>90%). However, the classification
results post-processed with HMM (Plan 2–Plan 8) are higher than those produced by SVM classifier
(Plan 1). The transition probability matrix defined by actual situation has a better performance than
a common simplified process (Plan 2, Plan 3, Plan 4, and Plan 8 are all higher than Plan 5, Plan 6,
and Plan 7), which is consistent with our previous conclusions. In short, HMM can use the temporal
information of time series images to greatly reduce the illogical transitions in the classification process
and improve the temporal consistency of the classification results. When we bring in the spatial weight,
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HMM can also improve the spatial continuity of the pixels to get a better classification result, with a
higher than average classification accuracy of 97.3%.

Table 4. Average classification accuracy of all plans by 5-fold cross validation.

Year (%) NPP HMM1-1 HMM1-2 HMM1-3 HMM2-1 HMM2-2 HMM2-3 HMM1-1_Spat

2007 90.5 96.3 97.6 96.0 92.5 94.5 93.8 96.9
2008 91.2 96.2 96.3 96.7 94.1 93.4 92.7 98.0
2009 90.1 96.2 94.9 96.3 92.9 94.2 94.7 97.3
2010 89.6 96.2 95.8 95.4 93.4 92.0 94.1 97.0
2011 89.6 96.4 97.3 97.0 94.2 93.3 93.6 98.2
2012 90.9 96.4 95.6 96.4 94.6 92.9 93.8 97.3
2013 90.5 97.1 97.1 96.3 92.7 92.3 93.6 97.0
2014 90.5 97.6 96.5 96.6 94.8 94.0 92.4 97.2
2015 91.6 96.8 97.4 96.4 94.3 93.8 93.6 96.9

Avg. 90.5 96.6 96.5 96.3 93.7 93.4 93.6 97.3

5. Conclusions

In this study, we considered the time series remote sensing images of Poyang Lake Ecological
Economic Region from 2007 to 2015 as study subjects. By investigating the geographical environment
of the study area and analyzing the common illogical transitions in the images, we obtained the
transition probability matrix with expert knowledge. To improve the quality of the classification
results produced by common remote sensing classifiers (SVM), we applied HMM that considered
temporal and spatial information to timing annotation. After comparing the experimental results,
we found that the methods significantly reduced the frequency of illogical transitions and effectively
improved the spatial continuity of the time series land cover maps. The improved results of the HMM
with spatial weight showed its ability in enhancing the quality of the time series regional land cover
maps. In the past, most land cover maps based on remote sensing images had focused on single
dates. With the emergence of more time series images, the time series land cover products and land
cover change products should take advantage of temporal information from satellite data [33–35].
The methodology we described in this paper can provide a simple and effective approach for time
series land cover classification.

The HMM was employed as the main method of analysis in this study, which contributes to the
understanding of land cover change in the study area and thus provides information for city planners.
Furthermore, our application also demonstrates the great potential of the directed graph model in time
series land cover classification [15,36]. In order to meet the needs of higher temporal resolution, it is
worthwhile to consider seasonal factors in our future studies. In addition, more statistical models for
timing annotation problems are worthy of further study.
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