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Abstract: Road information as a type of basic geographic information is very important for services
such as city planning and traffic navigation, as such there is an urgent need for updating road
information in a timely manner. Scholars have proposed various methods of extracting roads from
remote sensing images, but most of them are not applicable to rural roads with diverse materials,
large curvature changes, and a severe shelter problem. In view of these problems, we propose a road
extraction method based on geometric feature inference. In this method, we make full use of the linear
characteristics of roads, and construct a geometric knowledge base of rural roads using information
on selected sample road segments. Based on the knowledge base, we identify the parallel line pairs in
images, and further conduct grouping and connection instructed by knowledge reasoning, and finally
obtain complete rural roads. The case study in Xiangtan City of China’s Hunan Province validates
the performance of the proposed method.
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1. Introduction

Road information is important basic geographic information that is directly related to services
such as city planning, traffic navigation, and disaster evacuation [1,2]. With the rapid development
of the economy, construction and alteration projects of roads are becoming increasingly frequent,
especially in developing countries, so there is an urgent need for methods for rapid updating of road
information [3]. The emergence of aerial and satellite remote sensing technology promotes the automatic
or semi-automatic extraction of roads from remote sensing images to be a research focus [4,5].

In view of images with different resolutions, different data sources or roads of different grades,
scholars have proposed a variety of road extraction methods or algorithms. They can be divided
into four general categories: (1) methods based on spectral and geometric features. Because the
surface material of roads is characterized by typical spectral reflectance characteristics, researchers can
distinguish roads from non-road regions. For geometric features, a road appears as an image object
with an obvious linear shape or two boundary lines in the remote sensing images. Some scholars extract
road regions in the images according to geometric features of roads (in the form of lines or ribbons) and
spectral features (spectrum of typical surface material) [6–10]; (2) methods based on multi-scale features.
Road regions are identified according to the spectral and geometric characteristics of roads on images
at different scales. Heipke first proposed a multi-resolution approach for automatic road extraction
from aerial images. He used two different resolutions of the same aerial image: extract bright lines
from the coarse-resolution image while extract road edges at high-resolution image [11]. The edges
were grouped into parallel line pairs, and then rules were used to combine results at two resolutions.

ISPRS Int. J. Geo-Inf. 2017, 6, 314; doi:10.3390/ijgi6100314 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi6100314
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2017, 6, 314 2 of 23

Mayer et al. [12], Mayer and Steger [13] supplemented the multi-resolution method using the concept
of scale abstraction, and discussed the influence of the analysis scale on the image characteristics
of roads. Since then, Hinz et al. [14], Huang and Zhang [15] have extended the multi-resolution
extraction methods; (3) the methods based on context. The context in the process of road extraction
refers to the background characteristics associated with road objects, which provides information
on the relationship between roads and other objects [16,17], and compensates for information that
cannot be extracted from roads. For example, Baumgartner [18] extracted road objects based on context
related to roads (i.e., roads and houses, roads and vehicles). Wang et al. [19] established a semantic
representation model of roads from the perspective of algebraic linguistics, and extracted urban road
networks using topologic and spatial relations. In view of disaster assessment, Ma et al. [20] proposed
a method to extract intact road regions from post-disaster remote sensing images under the guidance
of prior road vectors; (4) the integration of the above two or more methods. Due to the complexity of
imaging process, relying solely on road features or contextual features is unable to achieve satisfactory
results in some cases. Therefore, it is sometimes necessary to take full advantage of geometrical
features, spectral features, elevation feature, various contextual information as well as multi-scale
image features to implement road extraction, such as the research conducted by [21–23].

Although the above studies have accumulated a lot of road extraction methods based on remote
sensing images, most of them have been designed for high-grade or urban roads, while few are applicable
to rural roads. According to statistics from the Ministry of Transport of China, the total mileage of roads in
China is about 4.7 million kilometers by the end of 2016, and in total, the rural road mileage is 3.96 million
kilometers, accounting for about 84% [24]. Therefore, obtaining the accurate distribution and changes of
rural roads is useful for government agencies to set up policies related to roads. The following problems
occur when the above methods are applied to rural roads: First, the pavement of rural roads is made
of various kinds of materials: asphalt, cement, gravel, stone, etc., so rural roads have different spectral
reflection characteristics. Especially on high-resolution images without abundant spectral information,
methods based mainly on spectral features do not perform well. Secondly, rural roads are usually not
wide, and some road segments can be completely sheltered by buildings and trees along roads, so the
shelter problem in rural areas is more severe than in urban areas. Third, rural roads have larger curvature
than urban roads. It is difficult for existing methods to extract complete roads.

In order to solve the abovementioned challenges, this paper proposes a rural road extraction
method based on geometric feature inference. In this method, a geometric knowledge base for
rural roads is constructed from sample road segments, and parallel line pairs conforming to the
characteristics of road edges are further identified. Then the grouping and linking are implemented on
parallel line pairs by knowledge reasoning to extract complete rural roads.

The next section presents the workflow of the methodology and detailed algorithms. Section 3
introduces the experimental dataset and demonstrates extraction results in different steps. Section 4
discusses the merits and demerits of the proposed method compared with other approaches, and points
out some limitations. Section 5 summarizes the work.

2. Methodology

In high-resolution remote sensing images, rural roads have typical image characteristics of roads
as other types of roads such as urban roads and highways, but also have unique characteristics
including material diversity, large curvature, and a severe shelter problem. Therefore, for automatically
identifying rural roads from high spatial resolution images, the geometric features especially linear
features should be major consideration factors while the spectral features are secondary factors. Based
on this idea, this paper constructs a geometric feature knowledge base of rural roads, and uses it to
guide the process of road extraction. The overall workflow of road extraction is shown in Figure 1,
mainly divided into six steps: (1) knowledge base construction of geometric features of rural roads.
In the area to be processed, the sample road segments are selected. The typical geometric features are
calculated by related algorithms, and on the basis of them, a knowledge base is constructed; (2) image
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feature enhancement. The Gaussian filter is used to smooth the original image to remove random
noises and enhance road-related features; (3) edge detection. The edge detection algorithm is used to
detect high-gradient regions in the image, and the edge image is generated; (4) candidate road segment
identification. The Hough Transform is used to detect all the lines existing in the edge image, and the
parallel lines that conform to the geometric features of rural roads are identified as candidate segments;
(5) adjacent segment linking. Based on geometric knowledge base, the candidate road segments that
are adjacent are linked together; (6) missing road segment inference. For the missing road segments
caused by image quality, occlusion or other reasons, the Ribbon Snake method is adopted for inferring
the missing parts, and ultimately the complete road vectors are extracted.
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2.1. Geometric Knowledge Base Construction of Rural Roads

In order to obtain typical geometric features of rural roads as a guide of extracting roads from
images, we first select representative sample road segments. The samples are visually interpreted based
on remote sensing images and stored as vector format. It is better to select samples in the regions with
different landforms, which would increase the generalizability of samples. For each type of material
such as gravel, cement, asphalt and other materials, a certain number of samples should be chosen.
The indicators that can reflect the geometric and spectral features of road segments are calculated
including index values, value range and distribution. According to the extent of a sample road,
the average gray values of each band within road regions are calculated, and the gradient value range at
the edge of roads is also obtained. In addition, this paper takes the normal distribution as the theoretical
distribution of the width of rural roads. In other words, the width of rural roads is expected to be
around a value, and the width of most roads is close to the mean value. The distribution is represented
by the function pro(w) = dis(w). Based on the sample road segments, the maximum likelihood
estimation method is used to calculate the two parameters (standard deviation σ and mathematical
expectation µ) of road width distribution. After the distribution is obtained, the Kolmogorov–Smirnov
test is used to verify if the observed width values accord with the fitted distribution model. If the K-S
statistic Dn is smaller than test statistic Dα (α = 0.10), we think the quality of samples are satisfactory,
otherwise, more samples are needed.
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2.2. Image Feature Enhancement

In order to improve the detection of road edges, an interactive histogram stretching tool [25]
can be used to enhance the gradient between roads and surrounding objects before edge detection.
This is not a necessary step, but it is useful for an experienced practitioner. In addition, the Gaussian
filter [26] is used for smoothing original image to remove random noises and enhance road features.
The variance and neighborhood size of the Gaussian filter function can be set in advance, and then the
Gaussian filter and the original image are convoluted to obtain a smoothed image. The Gaussian filter
is calculated as follows:

G(x, y) =
1

2πσ2 e−(x2+y2/2σ2), (1)

where σ is filter coefficient, and the larger it is, the stronger the ability of filtering noise is. While the
Gaussian filter is removing noise, it would also blur the edges of roads, so it is necessary to select
appropriate filter coefficients.

2.3. Edge Detection

Road is a typical striped geographic entity, and shows a strong edge feature on remote sensing
images. As such, it is common to use edge information to identify possible road locations, and the
detection of edges in images is a prerequisite for other analysis. We choose the edge detection method
with embedded confidence [27] to generate edge images.

2.4. Candidate Road Segment Identification

2.4.1. Line Detection

The Hough Transform is a commonly used straight line detection method for images [28,29].
The main idea is to use mathematical transformation to convert a straight line in the image space
into a point in the parameter space, and obtain the linear equation by detecting the position of points.
As shown in Figure 2a, in the image space XOY, the straight line equations passing through the
points (xi, yi) and (xj, yj) are expressed as yi = axi + b and yj = axj + b respectively, where a is
the slope, and b is the intercept. The parameters a and b are treated as variables, to construct the
parameter space AOB, and then the above-mentioned line equations are converted to b = −axi + yi
and b = −axj + yj, that is the two lines passing through (a, b) in the parameter space, as shown in
Figure 2b. The Hough Transform detects lines based on the global features in images, so it is robust in
detecting the discontinuous boundaries of regions caused by noise disturbance.
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2.4.2. Parallel Line Identification

According to the geometric features of rural roads, the two edges of roads usually have the following
characteristics [7,30]: two edges are approximately parallel; the distance between two parallel lines is the
width of the road; the edges consist of straight lines and curves, but straight lines account for a major
proportion. Based on the above rules, we calculate the index that any two straight lines conform to the
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characteristics of road edges, and then select the parallel line pair with a maximum grouping index as a
candidate road segment. We use pro(∆θ), pro(w), pro(len) to represent parallel index, width index and
extension index, respectively. The grouping index for two straight lines can be expressed as:

pro = pro(∆θ)× pro(w)× pro(len). (2)

After Hough Transform, the three parameters of a straight line can be obtained: radius ρ, polar
angle θ and cumulative edge point number A(ρ, θ), and the index values are calculated by constructing
the following models.

(1) Parallel index

The closer to zero the direction difference ∆θ is, the closer to be parallel the two lines are, and
the higher the parallel index is. According to this criterion, the parallel index of two straight lines is
defined as:

pro(∆θ) = − 2
π
|∆θ|+ 1; (3)

when ∆θ = 0, the index goes up to the highest value of 1, indicating that the two lines are accurately
parallel; when ∆θ = ±π/2, the index is 0, indicating that the two lines are perpendicular to each other.
The distribution of parallel probability is shown in Figure 3.
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(2) Width index

For two straight lines, the distance has a stable value only when they are approximately parallel,
otherwise the distance is quite different at different positions. Therefore, we define the distance
formula as follows:

w =

{
|ρ1 − ρ2| ∆θ ≤ θm

0 ∆θ > θm
, (4)

where ρ1 and ρ2 are the radius of two straight lines respectively, θm is the maximum angle difference
for calculating the distance between lines. After the width of road is obtained, the index distribution
function of the width value pro(w) = dis(w) in the geometric knowledge base is used to calculate the
width index.

(3) Extension probability

The straight lines detected by the Hough Transform only reflect global characteristics of the edges,
but cannot reflect the actual number of edge points on the straight line, or the reliability of the straight
line. We take the average number of edge points of sample road segments (lengthre f ) as the reference
threshold, and calculate the extension index:

pro(len) =

{
len/lengthre f len < lengthre f
1 len ≥ lengthre f

. (5)
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The distribution of the extension index is shown in Figure 4.
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The joint extension index of two lines is calculated as follows:

pro(len) = (pro(l1) + pro(l2))/2 (6)

For a set of straight lines detected by the Hough Transform, the index of any two parallel lines
is obtained according to the grouping index formula, and the parallel line pair whose index is larger
than a predefined threshold prolimit is selected as a candidate road segment. prolimit is recommended
to set to 0.3–0.4. The larger prolimit is, the higher the extraction accuracy is, but the lower the recall
rate is. Figure 5 shows the detection process of a candidate road segment. Multiple straight lines are
detected in different regions in Figure 5a, and candidate road segments are identified. The result is
shown in Figure 5b.
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2.5. Adjacent Segment Linking

Candidate road segments (parallel line pair) include left boundary line LB and right boundary line
RB, as shown in Figure 6. Their polar angles and radius are θL, ρL and θR, ρR respectively, and then there
exists a theoretical center line, whose direction and width are θC = (θR + θL)/2 and width = |ρL − ρR|.
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Considering that roads show as smoothing ribbons on high-resolution images, connecting adjacent
candidate segments mainly takes into account the following indicators:

(1) Width similarity index pro(w): represents the similarity between the width values of two
candidate segments, is calculated as:

pro(w) = e−0.5·|width1−width2|, (7)

where width1 and width2 are the width of two candidate road segments.
(2) Direction consistence index pro(θ): represents the degree of consistence of directions of two

candidate segments, is calculated as:

pro(Dir) = 1− 1
π
× |θ1 − θ2|, (8)

where θ1 and θ2 are the directions of center lines of two candidate segments.
(3) Adjacency index pro(Dis): represents the degree of adjacency of the endpoints of two candidate

segments. The distance is calculated as the average distance between the left and right endpoints,
that is Dis(seg1, seg2) = (Dis(LB1, LB2) + Dis(RB1, RB2))/2. On the basis of it, the adjacency
index is calculated as: pro(Dis) = e−0.1·Dis(Seg1,Seg2).

Each index metric is given a weight according to their impact on connection, and the linking
index of the two road segments can be calculated by the following formula:

P =
3

∑
i=0

proi·Ri, (9)

where proi are three indexes, Ri are their respective weights. The road segments would be linked when
their linking index is larger than the predefined threshold Plimit. Considering that roads in rural areas
have large curvature changes, we assign a relatively low weight to the direction consistence indicator,
so the weights of the width similarity index, direction consistence index, and adjacency index are
recommended to be set to 0.4, 0.2, and 0.4, respectively. Plimit is recommended to be set to around 0.55
based on a series of experiments on rural roads in China.

2.6. Missing Segment Inference

Some road segments might appear discontinuous on images due to the quality of image acquisition
or the shelter of buildings and trees, which means candidate road segments cannot be detected in
these areas. Thus, after candidate road segment extraction, a series of discontinuous parallel lines
is generated. How to infer the missing parts and connect those discontinuous segments to form
a complete road is a key procedure. Based on the spatial location and geometric characteristics
of rural roads, a geometry inference model is established using the Ribbon Snake algorithm [30],
which evaluates the connection index between two road segments and determines whether candidate
segments should be connected.
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The Ribbon Snake algorithm is an extension of the traditional Snake algorithm, which adds the
width variable into the traditional Snake algorithm. It is widely used in the research of road extraction.
The mathematical formula of a ribbon snake is:

→
v (s, t) = (x(s, t), y(s, t), w(s, t)), (0 < s < 1), (10)

where s is the ratio length that is proportional to the length of the ribbon, t is the current time,
x(s), y(s) are point coordinates of the center line of the ribbon, and w(s) is the width of ribbon
at the point x(s), y(s). For each center point, there exist two points vL(s) = (x(s), y(s), w(s)) and
vR(s) = (x(s), y(s), w(s)) on the left and right boundary line. Taking the endpoints of the identified
candidate road segments as initialized control points, we use the Ribbon Snake algorithm to infer the
missing segments. In order to make sure the identified candidate road segments and inferred segments
together form complete and smoothed roads, the following constraint conditions are defined.

2.6.1. Continuity Constraint of Road Edge

In order to avoid the problem that the traditional Snake model may cause the accumulation of
control points during the convergence process, an energy part is defined to ensure the control points
evenly distribute along road edges:

Eelastic = d− |vi − vi−1|, (11)

where vi and vi−1 are two adjacent control points, d is the average distance among control points on
road edges, which is calculated as:

d =
1

2N
(

N−1

∑
i=0
|vi − vi−1|+

N−1

∑
i=0

∣∣v′ i − v′ i−1
∣∣), (12)

where vi and vi−1 are two adjacent control points, N is the number of control points. The continuity
energy of a road with two boundary lines is expressed by the average energy of the two edges, that is
Eelastic = (Eelastic

L + Eelastic
R)/2.

2.6.2. Curvature Constraint of Road Edge

We adjust the curvature of curves through bending the energy. For a single curve, the discrete
bending energy is calculated by the second derivative: Ebending(vi) = |vi+1 − 2vi + vi−1|2. The result of
minimizing the energy function is to straighten the curve. As shown in Figure 7, when the control point
Vn(i, j) is iterated to a minimum value, and the iteration extent is assumed to be a 3 × 3 neighborhood,
the point Vn(i, j) would move to (i + 1, j), and the polyline would become a straight line. For a Ribbon
road, the total bending energy at the current position is defined as the average energy of two lines, that is:

Ebending = (Ebending
L + Ebending

R)/2. (13)
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2.6.3. Width Constraint of Road Edge

The width of a road is assumed to be the same at most positions, and the direction of the road
usually changes in a continuous way. Thus, the two edges of a road should be parallel at a local scale.
The distance between the control point pairs on two edges should be within a certain range. According
to this rule, the width constraint energy of Snake is defined as:

Ewc =
∣∣∣w− (vL

i − vR
i )
∣∣∣2, (14)

where vL
i and vR

i are the left and right control points on the two edge lines along the clockwise direction,
w is the expected road width, and i is the subscript of control point.

2.6.4. Image Feature Constraint

A road usually corresponds to the long edge feature in the image, and Snake draws the curve to a
significant image feature through the external energy. We define the length energy Elength(v(si)) that
reflects the continuity of the edge, and meanwhile, enlarge its impact according to distance to form the
distance potential Ed(v(si)), and finally composes them to form the image feature constraint Eext(v(si))

for each Snake point:
Eext(v(si)) = η1Elength(v(si)) + η2Ed(v(si)), (15)

where η1 and η2 are weights of length energy and distance energy for edges, Elength(si) is the negative
image of length energy of edges, Ed(si) is the distance potential function, which can be calculated by:

Ed(x, y) = e−d(x,y)2
. (16)

In summary, the total energy function is as follows:

Esnake = αEelastic + βEbending + γEwc + λ1(Elength
L + Elength

R) + λ2(Ed
L + Ed

R), (17)

where α, β, γ, λ1, λ2 are the weight coefficients for each type of energy.
Based on the equations of the four constraints, the smaller the total energy is, the more complete

and smoothed the inferred roads are. Therefore, the task of inferring missing segments transforms to
the task of minimizing the total energy function. In other words, the ultimate goal is to find a control
point sequence vi(i = 0, 1, · · · , n− 1) in the image space that can minimize the total energy of the
Snake curve:

min
n−1

∑
i=0

Esnake(vi). (18)

There are mainly three convergence algorithms for Snake model: the variational method [31], the
dynamic programming [32] and the greedy algorithm [33]. Considering that the greedy algorithm
owns all advantages of dynamic programming, is faster in solving process than the variational
method, and requires smaller storage space, we use the greedy algorithm for optimization. The greedy
algorithm [33] follows the problem solving heuristic of making the locally optimal choice at each stage;
based on the identified candidate road segments, it can approximate a global optimal solution in a
reasonable time. It is called greedy because it provides an immediate output, but does not consider the
problem as a whole.
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3. Results

3.1. Experiment Data

We choose a rural area in Xiangtan City, Hunan Province, China as the study area, with a
geographical range of 27◦48′28′′–27◦50′7′′ N, 112◦22′28′′–112◦24′35′′ E. This area is a hilly area with a
large number of distributed villages, connected by roads of various grades. A high-resolution aerial
remote sensing image in this area with a spatial resolution of 0.5 m is used as the study dataset, and
the image size is 7000× 6000 with three bands: a red band, a green band, and a blue band. An image is
shown in Figure 8. In order to verify the detection accuracy of the proposed method, we also produce
road vectors of the study area through artificial interpretation, and take them as the ground truth data.
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Figure 8. High-resolution aerial image of the study area.

Twenty-four sample road segments are selected to construct a geometric knowledge base of rural
roads, as shown in Figure 9a. Sample roads are manually interpreted from the high-resolution image
including all levels of roads, and the road edges are stored in the form of a vector. The length of sample
road segments is between 50 and 200 m. Figure 9b–d show the superimposed display effect of sample
road segments and the high-resolution remote sensing image in three local regions.
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3.2. Road Extraction Results 

The entire experiment is implemented on a machine with dual 3.2 GHz CPU, 8 GB RAM, and  
64-bit operating system. The whole process, except building a geometric knowledge base (since it 
relies on manual interpretation of road segments), takes 72 s. The remote sensing image is processed 
by the enhancement method described in Section 2.2 and the edge detection with embedded 
confidence in Section 2.3. The edge detection result of the entire study area is shown by Figure 10a. 
Figure 10b–e show the results in four small areas in detail. The left side shows the original remote 
sensing image, while the right side shows the edge detection result. It can be seen that the algorithm 
accurately detects all obvious gradient changes in the image. The two edges of roads are accurately 
identified whenever the curvature is small or large, or there are sudden turns. Especially in Figure 
10e, where there are two types of roads, a cement road and a gravel road, the edge detection results 
for both are good. 

 
(a) 

Figure 9. Sample road segments of the study area. (a) spatial distribution of all sample roads, (b) Sample
road 1, (c) Sample road 2, (d) Sample road 3.

3.2. Road Extraction Results

The entire experiment is implemented on a machine with dual 3.2 GHz CPU, 8 GB RAM, and
64-bit operating system. The whole process, except building a geometric knowledge base (since it relies
on manual interpretation of road segments), takes 72 s. The remote sensing image is processed by the
enhancement method described in Section 2.2 and the edge detection with embedded confidence in
Section 2.3. The edge detection result of the entire study area is shown by Figure 10a. Figure 10b–e
show the results in four small areas in detail. The left side shows the original remote sensing image,
while the right side shows the edge detection result. It can be seen that the algorithm accurately detects
all obvious gradient changes in the image. The two edges of roads are accurately identified whenever
the curvature is small or large, or there are sudden turns. Especially in Figure 10e, where there are two
types of roads, a cement road and a gravel road, the edge detection results for both are good.
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For parallel line identification, the maximum angle difference θm is set to 30◦, and the grouping
probability threshold prolimit is set to 0.35. For road segment linking, the weights of width similarity
probability, direction consistence probability and adjacency probability are set to 0.4, 0.2 and 0.4
respectively, and the linking probability threshold Plimit is set to 0.55. Figure 11a–e show the entire road
extraction process based on geometric feature inference. Figure 11a presents the edge detection result,
Figure 11b shows the result of candidate road segment identification, Figure 11c is the linking result of
the candidate segments, Figure 11d is the inference result of missing road segments, and Figure 11e is
the overlay of remote sensing images and extracted roads. It can be found by comparing automatic
extraction results with images that the results are overall good. Both cement roads and gravel roads are
extracted, and even road segments with a large curvature have been accurately extracted. However,
there are still a small number of wrong extractions. A regular striped farmland next to the road in the
left part of image has been misinterpreted as roads because it has multiple parallel edges. In addition,
the house adjacent to the road in the lower right corner is mistaken for a road, and this is probably
because the shape of the house is similar to a road.
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Figure 12 demonstrates the road extraction result in the entire study area. In this paper, we use
two widely used accuracy assessment indicators for evaluation:

Recall =
TP

TP + FN
(19)

Accuracy =
TP

TP + FP
(20)

where TP is true positives, denoting the total length of correctly extracted roads; FN is false negatives,
denoting the total length of undetected roads; FP is false positives, denoting the total length of
incorrectly extracted roads. For the road extraction result, TP, FN, and FP are 74.86 km, 9.82 km,
and 15.77 km, respectively. Therefore, the recall rate and accuracy rate are 88.4% and 82.6%,
respectively [34].

A reason why the accuracy rate is comparably lower than recall rate is that most roads can be
extracted by their geometric features, but some entities with geometric features similar to roads are
mistaken for roads. The incorrectly extracted roads are mainly those roads with a large portion of
shelter by dense trees or buildings, which leads to inaccurate inferences or linking of road segments.
In addition, the extraction of high-grade roads with obvious image features is more accurate than
low-grade roads with vague features. In general, this method can perform well in extracting rural
roads with diverse materials and large curvature changes.
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Figure 12. Road extraction result in the study area.

In order to show the performance of the proposed method in more details, we select a flat area
(Region A) and a hilly area (Region B), and compare the road extraction results and the corresponding
ground truth in these two regions as shown in Figure 12. The two regions correspond to Figure 13a,b
respectively. The figures on the left show the superposition of the aerial remote sensing image and the
ground truth data (yellow line) that are derived from artificial interpretation, while the figures on the
right show the extraction results. Region A is mainly flat farmland, mixed with some small hills and
woods. It can be seen that the extraction results and the ground truth are basically the same. Any small
differences are mainly due to the farmland having wide ridges or building edges. In addition, the roads
in the top middle corner of the image are not detected because of a long row of dense trees by the
roadside. Region B is covered by small hills and woods, and the extraction results are fairly good. There
are also a certain number of discrepancies. For example, a few roads in the middle of the image are not
detected because they are dirt roads without obvious boundaries and regular shape. Another problem
appears mainly at the end of village roads, where roads connect to a housing community. The shape of
the roads in these areas is relatively irregular and complicated, resulting in a small amount of wrong
extractions or omissions, but it has little impact on the overall length and distribution of roads.
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4. Discussion

Many scholars such as Simler [35] and Wang et al. [36] proposed to extract roads from images based
on object-oriented methods. However, the object-oriented methods do not perform well for rural roads due
to the low classification accuracy caused by material diversity. We adopt the strategy of extracting roads
through identifying parallel elements on images, which avoids the problem of object-oriented methods.
Some researchers [37–39] also proposed extracting roads based on geometric features or mathematical
morphology features that are not much influenced by material diversity. However, their methods cannot
work well on a road with many shadows and occlusions in rural areas. Our method is able to infer the
missing road segments by geometric feature inference, which is designed for serious occlusion problems.

The quality of edge detection result directly influences the accuracy of road detection since the
proposed method is based mainly on geometric features. There are various kinds of edge detection
methods such as Sobel, LOG, and Canny, and they are applied to process a test area shown in Figure 14a.
The detection results of both Sobel and LOG operator are wide edges with low location accuracy, as shown
in Figure 14b,c, so they are not suitable for road detection. The Canny operator is able to detect thin edges
from images with high accuracy; however, it would generate significant background noise while detecting
weak edges, as shown in Figure 14d. In order to solve this problem, Meer and Georgescu proposed a edge
detection operator with embedded confidence by defining a confidence measure and integrating it into all
steps in a gradient-based edge detection procedure [27]. Therefore, considering the ability of their method
in detecting weak road edges while eliminating background noises, we choose it for edge detection.
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method is used to train a maximum likelihood classifier, and Figure 16 shows the extraction results. 

Figure 14. Comparison of edge detection operators: (a) original image, (b) Sobel operator, (c) LOG
operator, (d) Canny operator, (e) edge detection with embedded confidence.

In order to compare the difference between the proposed method that is based on geometric
features and other approaches in a quantitative way, we implemented the object-oriented classification
method (OOC) [40] using eCognition and the pixel-based classification (PBC) method using Envi
on the same remote sensing image of the study area. In the OOC method, the multi-resolution
segmentation method [41] is first used to partition the entire image into image objects based on the
common characteristics of pixels, with the scale parameter, color factor, and smoothness set to 25,
0.5, and 0.3, respectively. Then we selected 38 road samples and 95 non-road samples to train a
classification model for extracting roads. Figure 15 shows the extraction results in which the red color
regions are road segments. Generally, the OOC method also obtains the overall spatial distribution of
roads in the study area. In the PBC method, the same training dataset as the OOC method is used to
train a maximum likelihood classifier, and Figure 16 shows the extraction results.



ISPRS Int. J. Geo-Inf. 2017, 6, 314 18 of 23

ISPRS Int. J. Geo-Inf. 2017, 6, 314  18 of 23 

 

 
Figure 15. Road extraction result of the object-oriented classification method. 

 
Figure 16. Road extraction result of the pixel-based classification method. 

It can be seen that the PBC result is so fragmented that few extracted roads are complete. This is 
probably because the limited spectral information on a single pixel cannot reflect the characteristics 
of rural roads. Nevertheless, the OOC result is much better. Figure 17 shows the overlap of the 
extraction result of the proposed method based on geometric feature inference (GFI) and the result 
of the OOC method. The total length of the roads extracted by both methods is 51.26 km, the length 
of roads that have been detected by GFI but missed by OOC is 39.37 km, and the length of roads that 
have been detected by OOC but missed by GFI is 5.48 km. 

Figure 15. Road extraction result of the object-oriented classification method.

ISPRS Int. J. Geo-Inf. 2017, 6, 314  18 of 23 

 

 
Figure 15. Road extraction result of the object-oriented classification method. 

 
Figure 16. Road extraction result of the pixel-based classification method. 

It can be seen that the PBC result is so fragmented that few extracted roads are complete. This is 
probably because the limited spectral information on a single pixel cannot reflect the characteristics 
of rural roads. Nevertheless, the OOC result is much better. Figure 17 shows the overlap of the 
extraction result of the proposed method based on geometric feature inference (GFI) and the result 
of the OOC method. The total length of the roads extracted by both methods is 51.26 km, the length 
of roads that have been detected by GFI but missed by OOC is 39.37 km, and the length of roads that 
have been detected by OOC but missed by GFI is 5.48 km. 

Figure 16. Road extraction result of the pixel-based classification method.

It can be seen that the PBC result is so fragmented that few extracted roads are complete. This is
probably because the limited spectral information on a single pixel cannot reflect the characteristics of
rural roads. Nevertheless, the OOC result is much better. Figure 17 shows the overlap of the extraction
result of the proposed method based on geometric feature inference (GFI) and the result of the OOC
method. The total length of the roads extracted by both methods is 51.26 km, the length of roads that
have been detected by GFI but missed by OOC is 39.37 km, and the length of roads that have been
detected by OOC but missed by GFI is 5.48 km.
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The merits and demerits of the GFI method are analyzed by comparing the result of the OOC
method. We can learn the following aspects:

(1) For the four major roads in the study area, both methods obtain results of relatively good quality,
and they correlate well with each other. This is attributed to the clear spectral and shape features
of roads: the four major roads show apparent boundary lines on the image, and their pavement
materials are consistent in different segments. Therefore, the ability of the two methods in
handling high-grade roads is similar.

(2) The extraction result of GFI is generally more complete and accurate than that of OOC in terms
of connectivity. In rural areas, buildings and trees along the road often cause discontinuities
of road segments on remote sensing images. The OOC method extracts road regions based on
the spectral and texture features of image objects, and therefore cannot identify those segments
sheltered by buildings or trees. By contrast, the GFI method first identifies road segments with
clear boundaries and then connects nearby segments by knowledge inference, so it overcomes
the discontinuity problem. Figure 18 demonstrates the extraction results of both methods on a
road with a large portion of shelter by trees.

(3) By comparison, we can easily find that the result of OOC missed quite a few roads. It is probably
because the pavement of rural roads is made of various kinds of materials: asphalt, cement,
gravel, stone, etc. The material heterogeneity makes it hard to select appropriate samples and
establish classification rules in the OOC method. On the other hand, the GFI method is good at
handling roads of heterogeneous material since it is based mainly on geometric features.

(4) Because the GFI method extracts road segments by identifying parallel segments that conform
to road characteristics, it is sensitive to parallel elements in the remote sensing image and can
lead to wrong extractions. Figure 19 shows the extraction results in a village. It can be seen from
Figure 19b that a large farmland ridge is wrongly identified as a road by GFI because it has two
obvious boundary lines, and its width is similar to a road’s. However, the OOC method obtains
the correct result since the farmland ridge has different spectral and texture features from a road.
Spectral and texture information would be taken into account in our method in future to increase
the extraction accuracy, especially for high-resolution images with more spectral bands.
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(5) Another aspect of the GFI method we need to pay attention to is that its extraction result is not
very accurate when processing road segments with an irregular shape. The extraction result of
GFI is formed by combinations of parallel lines, so it cannot express a complicated intersection
well. For example, the road width gradually changes at the crossroad in the upper left corner of
Figure 18, but the extraction result of GFI is only a parallel line. In future research, we would
recognize the shape of intersection regions by image segmentation algorithms, and combine them
with the GFI results to extract accurate road intersections.
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Note that the image we used has not been orthorectified, and the acquisition angle and topography
can produce some errors of location and shape of road detection. However, this does not affect the
procedure of rural road extraction and detection accuracy. Future research is needed to investigate
the influence of unorthorectified images on the detection results. In addition, the proposed method is
designed to detect double edge lines of roads; therefore, it is only applicable to relatively wide roads
that appear as ribbons rather than lines on images. Finally, a prerequisite of our method is that the
width of a road is approximately constant. A slight change in road width would not influence the
detection result too much since our method uses the Ribbon snake algorithm to link road segments.
However, the extraction result would be not very accurate when processing road segments with an
irregular shape (variable width).

5. Conclusions

The current road extraction methods based on remote sensing image have been widely studied,
and scholars have made great progress for different types of regions, image data sources, and data
types; however, little research has focused on rural road extraction. In view of the fact that rural roads
have diverse materials, large curvature changes, and a severe shelter problem, we propose a road
extraction method based on geometric feature inference. The method makes full use of the geometric
characteristics of roads, and constructs a geometric knowledge base of rural roads using the information
of selected sample road segments. Based on the knowledge base, it identifies the parallel line pairs
conforming to the characteristics of road edges, conducts grouping and connection on parallel lines
instructed by knowledge reasoning, and finally extracts rural road vectors. We applied our method to
a rural area in Xiangtan City, Hunan Province, China. By comparing our extraction result with the
ground truth dataset, both the recall and accuracy rates were over 80%. The comparison between our
method and the object-oriented and pixel-based classification method proves the advantages of the
proposed method in handling roads in rural areas even if there are a few deficiencies. The proposed
method is useful for providing a technical basis for large-scale rural road statistics and survey, and can
inform national traffic construction and management.
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