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Abstract: Much of the taxi route-planning literature has focused on driver strategies for finding
passengers and determining the hot spot pick-up locations using historical global positioning system
(GPS) trajectories of taxis based on driver experience, distance from the passenger drop-off location
to the next passenger pick-up location and the waiting times at recommended locations for the
next passenger. The present work, however, considers the average taxi travel speed mined from
historical taxi GPS trajectory data and the allocation of cruising routes to more than one taxi driver in
a small-scale region to neighboring pick-up locations. A spatio-temporal trajectory model with load
balancing allocations is presented to not only explore pick-up/drop-off information but also provide
taxi drivers with cruising routes to the recommended pick-up locations. In simulation experiments,
our study shows that taxi drivers using cruising routes recommended by our spatio-temporal
trajectory model can significantly reduce the average waiting time and travel less distance to
quickly find their next passengers, and the load balancing strategy significantly alleviates road
loads. These objective measures can help us better understand spatio-temporal traffic patterns and
guide taxi navigation.

Keywords: trajectory data mining; taxi planning; spatio-temporal trajectory model; load balance

1. Introduction

With the development of urbanization, people place increasing demands on urban traffic and
transportation. Taxis, with respect to their flexibility and convenience, have become one of the most
popular modes of urban transportation [1]. Taxis are an indispensable component of the urban
transportation system and meet the travel demands of a great number of people. In many cities,
however, people expecting to take a taxi are used to stopping a vacant taxi via “roadside beckoning”.
Therefore, the locations of taxi drivers picking up their passengers are highly random [2]. Both the
people seeking to take a taxi and taxi drivers have insufficient location information on the best location
for a pick-up, which causes the phenomenon that a taxi driver has difficulty finding passengers while
people find it difficult to locate a vacant taxi. Vacant taxis in urban road networks not only generate
superfluous energy (i.e., oil and gas) consumption but also occupy road space, causing traffic flow
congestion and air pollution problems [3,4].
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In recent years, taxis have been widely equipped with global positioning system (GPS) sensors,
which are mobile devices that can monitor taxi locations and statuses at regular intervals. Therefore,
a large number of GPS trajectories with spatio-temporal information have been collected. Such a large
amount of tracking data provides an unprecedented opportunity to discover the implicit information and
understand taxi drivers’ driving behaviors, human mobility, and the dynamics of street networks [5,6].
The mining of taxi GPS trajectories has received increasing attention from the data mining, intelligent
transportation, movement patterns and ubiquitous computing communities [2,7,8]. Several studies
have considered the historical GPS trajectories of taxis, such as understanding human mobility [9–12],
estimating traffic emissions [13–16], planning routes [17–20], and formulating taxi/passenger search
strategies [3,6,21–23].

Unlike other transportation modes such buses and the subway, which only operate along fixed
lines, taxis are more flexible because drivers are able to plan their pick-up destinations and cruising
routes. Historical pick-up/drop-off information can be useful for drivers to find their next passengers.
Several studies have considered taxi route-planning with different approaches toward the historical
GPS trajectories of taxis [1–3,6,8,21–28].

On the one hand, many studies focus on drivers’ strategies for finding passengers [8,21,23,24,27,28].
Obviously, it is helpful to increase cruising efficiency and reduce unnecessary cruising time by examining
the cruising patterns of experienced drivers. Zhang et al. described both the efficient and inefficient
taxi service strategies based on a large-scale GPS historical database [8]. Hu et al. discussed the
characteristics of urban taxi drivers’ activity distributions at different temporal and spatial levels to
identify taxi drivers’ operation patterns and searching-behavior patterns to help taxi drivers reduce
searching time [23]. Liu et al. presented a framework including a series of models to study how a taxi
driver gathers and learns information in an uncertain environment; they found that drivers not only
learn from their own experiences but also communicate with other drivers [28].

On the other hand, many studies tend to concentrate on determining the hot spots of pick-up
locations [1,2,6,29]. Hot spots of pick-up locations exist on road networks at different times in a single
day [3,22]. Experienced drivers usually know where they are more likely to quickly pick up their
next passengers after dropping passengers off instead of remaining vacant on the road network.
Moreira et al. presented a novel application using time-series forecasting techniques to predict
the taxi-passenger demand at taxi stands at 30-minute intervals to improve taxi-driver mobility
intelligence [2]. Liu et al. discussed the crowdedness of moving objects and explored hot spots
from the crowdedness using historical GPS trajectories [9]. Hwang et al. proposed a grid-based
clustering approach considering four factors, including waiting time, distance, average revenue and
the probability of finding passengers when clustering, to recommend the next pick-up locations to taxi
drivers [30].

In this paper, we consider the clustering of pick-up locations to explore the hot spots of
recommended locations. In addition, we consider computing the probability of picking up the
next passengers (along the routes or at pick-up locations) and how to allocate the cruising routes to
more than one taxi driver in a small-scale region of neighboring pick-up locations. We integrate the
abovementioned factors into a spatio-temporal trajectory (STT) model. The framework of this paper is
illustrated in Figure 1.
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2. Materials and Methods

2.1. Data Sources

All the available GPS point data and road network data are obtained from the database of
Beijing City government data resources [31], which provide access to trajectory information in Beijing.
Our experimental dataset contains trajectories recorded by over 12,000 taxis in the 30 day period of
November 2011 in Beijing, China. A trajectory of a taxi consists of a set of GPS points, each of which
contains pick-up or drop-off information. A GPS data point consists of 7 properties: taxi ID, timestamp,
latitude, longitude, speed, driving direction (i.e., the degree of deviation from north) and taxi-occupied
tag (the value of this variable is binomial, 0 or 1, and indicates whether a taxi is vacant or occupied,
respectively). Data columns are shown in Table 1. A GPS data point is collected every 1 min; thus,
there are more than 1000 million entries collected in our dataset.

Table 1. Data columns of a global positioning system (GPS) point data.

TaxiID Timestamp Longitude (◦) Latitude (◦) Speed (km/h) Directions (◦) Occupied Tag

001140 20121101001504 117.109 40.153 75 136 1

In our work, a taxi trajectory is a series of GPS points logged for a working taxi (Figure 2).
Specifically, a taxi driver wanders the road network to search for passengers (vacant status). Then,
the driver picks up passengers and drives them to their intended locations (occupied status).
After passengers get out of the taxi, the driver again searches for new passengers (vacant status). In this
process, the locations where passengers get into the taxi are defined as the pick-up locations, while the
locations where passengers get out of the taxi are defined as the drop-off locations. In our experiments,
we can obtain the complex taxi trajectories from the large-scale GPS point dataset. Furthermore, we are
capable of capturing spatio-temporal traffic patterns by analyzing the pick-up and drop-off information
and taxis’ status change patterns.
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Figure 2. The Continuous Trajectory of a Taxi in one Day in 3D Space. In this figure, the vertical axis
represents the temporal progression of the taxi’s daily movement, while the horizontal plane represents
the road network in Beijing.

2.2. Data Preprocessing

The initial track data were disordered and not suitable for further analysis; thus, data
preprocessing was conducted. This work consists of two steps: GPS data cleaning and GPS point
matching. As GPS devices are difficult to make completely precise, repetitive or deflected entries
might exist in our dataset. To avoid potential confounding impacts, the adverse GPS points, such as
out-of-study-range points, time-repeated points and overspeed points (speed higher than 90 km/h in
Beijing is considered as overspeed) were removed. In addition, due to GPS measurement errors and
road geometric errors in digital maps, the GPS locations of taxis might not appear on road network
links. Map-matching is a critical procedure to precisely match GPS points to network links [32].
Chen et al. [7] proposed an efficient and high-performance multi-criteria dynamic programming
map-matching (MDP-MM) algorithm with a multi-criteria dynamic programming technique, wherein
the objective is to map large-scale low-frequency floating car data. In our paper, considering the
limitations of the traditional map-matching algorithm [33–36] for the large scale of taxi GPS data in
our experiment, the same MDP-MM algorithm is employed.

3. Spatio-Temporal Trajectory Model

In this study, a spatio-temporal trajectory model is proposed to recommend to taxi drivers
locations where they can quickly pick up passengers and suitable routes to these locations. Three
factors have been considered in the STT model: the pick-up locations cluster, average taxi travel speed
and cruising routes.

3.1. Cluster of Pick-Up Locations

When the passengers get out of the taxi or a taxi wanders on the road network, the taxi is in vacant
status and a taxi driver must find the next passengers. Experienced drivers tend to go to locations
around where they are more likely to pick up passengers. Especially during the off-peak periods,
experienced drivers usually wait at locations such as shopping centers or bus and train stations.

Pick-up locations usually represent the hot spots where there are high taxi travel demands [2,21,28,32].
Thus, we can unite the historical pick-up information to explore high-demand areas and analyze the
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distribution patterns of pick-up hot spots. Clustering is a feasible and meaningful approach to identify
hot spots of moving vehicles in an urban area [9]. In particular, using a density-based clustering method,
we can discover clusters with arbitrary shapes and avoid the adverse impacts of noise and unusual points.
Moreover, density-based clustering has a strong ability to address geographical characteristics [37]. In this
work, pick-up locations were explored by using the density-based spatial clustering of applications with
noise (DBSCAN) algorithm [38], which is one of the most common clustering algorithms cited in the
scientific literature [39–42]. Given a set of pick-up points in a study area, it groups together points that
are closely packed together, marking points that lie alone in low-density regions as outliers. DBSCAN
requires two parameters: epsilon (Eps) and minimum points (MinPts). In addition, weekdays have
different patterns from weekends [8]. In our experiment, the parameters were different for weekdays and
weekends (Table 2).

Table 2. Cluster parameters of weekdays and weekends.

Eps (m) MinPts

Weekdays 130 20
Weekends 140 25

3.2. Average Taxi Travel Speed and Travel Time

Taxis operate throughout the day and cover most road segments in the road network; therefore,
we can derive the average taxi travel speed and travel time from taxi trajectory data [5]. The average
travel speed was computed by averaging the travel speeds of all taxis passing through a road segment
r within each specific time period t, as shown in Equation (1) [20].

Vr(t) =
m

∑
i=1

nk

∑
j=1

V(i,j)/Nr(t), (1)

where m is the total number of taxis, nk records the total number of points of a taxi k on road segment
r within time period t, V(i,j) denotes the jth instantaneous travel speed, and nr(t) denotes the total

number of points of all taxis and is equal to
m
∑

i=1
ni. Then, the average travel time on road segment r

during time period t can be computed as follows:

Tr(t) = Lr/Vr(t), (2)

where Lr is the length of road segment r.

3.3. Cruising Routes

Based on the clustered pick-up locations and average taxi travel speed, we are then able to explore
the cruising routes to pick-up locations. We can obtain multiplex (at least one) routes from the current
point to any pick-up location within the road network. In the literature, most studies have considered
the best route choice from start to pick-up locations with different approaches. In this paper, we consider
how to allocate the cruising routes to more than one taxi driver in a small-scale region to the neighboring
pick-up locations. For example, using our method, taxi driver A determined one route from the current
location La to pick-up location P, while taxi driver B, not as far from A, might recommend the same
route to La. If all taxi drivers in a small-scale region follow the same drive route, the road network may
become overloaded, which would increase congestion. In the STT model, we first consider exploring
multiple optimal routes using the k shortest path routing algorithm. Then, the pick-up probability of
each selected route is considered. Finally, based on the cruising routes and their pick-up probabilities,
we utilize load balancing technology to allocate the cruising routes to taxi drivers. The details of these
steps are described in the following sections.
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The k shortest path routing algorithm is an extension algorithm of the shortest path routing
algorithm [43], where more than one route between two locations will be obtained in the road network.
The algorithm not only finds the shortest path but also finds the k− 1 of other paths in increasing
order of cost [44,45]. Parameter k denotes the number of shortest paths to find.

Our STT model is designed to provide the pick-up locations service for taxi drivers and the cruising
routes to these locations. However, determining how to define a “good” cruising route is an important
issue. In this work, we computed the probability of picking up the next passengers using the method
proposed by Yuan et al. [3]. The reason for using this method is that it considers how to support a high
probability (during the routes or at the recommended location) of picking up passengers, a short waiting
time, a short queue length at the pick-up location and a long distance of the next trip.

A cruising route is dependent on a certain pick-up location P and a route R (route R would be
divided into a number of connected road segments, i.e., R = {r1, r2, r3, . . . , rn}, where n denotes the
total number of road segments) to P. Taxi drivers may pick up passengers on R or at P; however,
the worst situation is when the taxi driver fails to pick up passengers after waiting at P for a time tp

(tp would be divided into a sequence of time segments with interval r, i.e., tp = mτ, where m denotes
the total number of time segments). Let E be the event that the driver succeeds in picking up a passenger
if he/she selects route R. Then,

Pr(E) = 1−
n

∏
i=1

(1− p(ri))×
m

∏
j=1

(1− p(pj)), (3)

where Pr(E) is the probability of E, p(ri) denotes the probability of picking up passengers on road
segment ri, and p

(
pj
)

denotes the probability of picking up passengers at P after waiting for jτ time.
In addition, the conditional expectations of the duration (denoted by T) and expected distance

(denoted by D) from current time t0 to the beginning of the next trip are computed for the purpose of
making comparisons between the recommended routes and historical routes. Based on Bayes rules,

E(T|E) =

n
∑

i=1
ti+1Pr(Ei) + tn+1 × (1−

m
∏
j=1

(1− p(pj))) +
m
∑

j=1
jτPr(Ej+n)

Pr(E)
, (4)

where E(T|E) is the conditional expectations of the duration, and ti denotes the driving time to arrive
at road segment ti. Pr(Ei) denotes the probability of the event that a driver succeeds in picking up

a passenger at ri, and Pr(Ei) =


p(r1), i = 1

p(ri)×
i−1
∏

k=1
(1− p(rk)), i = 2, 3, . . . , n

.

The conditional expectations of expected distance are as follows:

E(D|E) =

n
∑

i=1
di+1Pr(Ei) + dn+1 × (1−

m
∏
j=1

(1− p(pj)))

Pr(E)
, (5)

where di denotes the driving distance to arrive at the road segment ri.
Load balancing is a critical method to improve the distribution of workloads across multiple

computing resources in computing fields [46]. This method aims to optimize resource use, maximize
throughput, and avoid the overloading of any single resource. One of the most commonly used
applications of load balancing is to provide a single Internet service from multiple servers [47]. In the
present study, the load balancing method was utilized to allocate the cruising routes to more than one
taxi driver in a small-scale region to the neighboring pick-up locations. To be specific, the weighted
round-robin scheduling algorithm [48], one of the most commonly used load balancing algorithms [49],
was adopted. In this method, the servers and connections are two fundamental elements. Each
server should be assigned a weight representing its processing capacity. Servers with higher weights
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receive new connections before those with smaller weights. In this work, we defined vacant taxis as
connections, cruising routes as servers and the probability of picking up the next passengers as the
processing capacity of the servers. The pseudocode is provided in Algorithm 1.

Algorithm 1: The Weighted Round-Robin Scheduling Algorithm

Inputs: Candidate cruising routes set as R = {R0, R1, . . . , Rn−1}; W(Ri) indicates the probability of picking
up a new passenger at Ri; i indicates the route selected last time, and i is initialized with −1; cw is the current
weight in scheduling and is initialized with 0; max(R) is the maximum weight of all the routes in R; gcd(R) is
the greatest common divisor of all route weights in R.
Output: The distributed server Si
1: while true do
2: i← (i + 1) mod n;
3: If i == 0 then
4: cw←cw − gcd(R);
5: If cw ≤ 0 then
6: cw← max(R);
7: if cw == 0 then
8: return NULL;
9: end if
10: end if
11: end if
13: if W(Ri) ≥ cw then
14: return Ri;
15: end if
16: end

An example of this method is given in Figure 3. Assuming that there are three recommended
pick-up locations (P1, P2, and P3) and 4 recommended cruising routes R1

1, R1
2, R1

3 and R2
3 with the

weights 60%, 50%, 40% and 30%, respectively, then 10 taxis (Ci, i ∈ [1, 10]) are considered to be allocated.
Based on our methods, R1

1 will be assigned to C1, C2, C4 and C7; R1
2 will be assigned to C3, C5 and C8;

R1
3 will be assigned to C6 and C9; and R2

3 will be assigned to C10.
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4. Results

Pick-up time statistics are presented in Figures 4 and 5. Note that all the time periods or hours in
this study refer to Beijing time. The pick-up patterns look similar from Monday to Friday, the patterns
on weekend days are similar. No matter on weekdays or weekends, the lowest demanding time is
between 4 a.m. and 5 a.m. In addition, the pick-up times on weekends are always lower than those on
weekdays. With respect to peak times, there are four peak times in one day during weekdays (9 a.m.
to 10 a.m., 2 p.m. to 3 p.m., 5 p.m. to 6 p.m. and 8 p.m. to 9 p.m.), while three peak times occur on
weekends (10 a.m. to 12 p.m., 2 p.m. to 3 p.m., and 9 p.m. to 10 p.m. on Saturday and 5 p.m. to 6 p.m.
on Sunday). Moreover, people seem to go out later on weekends than weekdays, but the duration of
time that people are away is usually longer.
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The average duration and average distance from the current time to the beginning of the next
trip vary at different parts of the day (Figure 6). There are rarely passengers before dawn regardless
of the day of the week, and thus, drivers must spend substantial time and drive a long way to
find passengers; drivers spend less time searching for passengers during high-demand periods.
Compared with weekdays, drivers spend less time searching for passengers on weekends before
drawn. In addition, people spent more time away from home on weekends. Furthermore, drivers
spend less time searching for passengers in the weekdays before 10 a.m.
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Figure 6. Plot of the Average Duration and Average Distance from the Current Time to the Beginning
of the Next Trip. (a) shows the average duration in weekdays and weekends; and (b) shows the
average distance.

The cluster counts of pick-up locations showed variable changes at different times in one day
(Table 3). We observed that in the early morning, whether on weekdays or weekends, the number of
clusters was the lowest. During this time, few people went out, and there was a low demand for taxis.
As the number of people going out increased, increasing taxi demand was generated, and the number
of clusters began to increase. There was little difference in the number of clusters on weekends or
weekdays in the morning. In the afternoon, however, the number of clusters on weekdays was more
than double that on the weekend, which might be because people spend more time away from home
on weekends than on weekdays. During the evening, the demand for taxis gradually reduced, while
the number of hot spot demand areas began to decrease.

Table 3. Counts of clusters at different times in one day.

Weekdays Count Workdays Count

0 a.m.–5 a.m. 12 0 a.m.–5 a.m. 20
5 a.m.–8 a.m. 8 5 a.m.–9 a.m. 8

8 a.m.–10 a.m. 33 9 a.m.–1 p.m. 90
10 a.m.–1 p.m. 75 1 p.m.–4 p.m. 56
1 p.m.–4 p.m. 127 4 p.m.–8 p.m. 91
4 p.m.–7 p.m. 101 8 p.m.–0 a.m. 55
7 p.m.–10 p.m. 95
10 p.m.–0 a.m. 17
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The regional distribution of the cluster counts of pick-up locations at different times in one day
are presented in Figure 7 (weekdays) and Figure 8 (weekends). Note that the legend time represents
the average time spent picking up a passenger. We found the following:

1. In the early morning, high-demand areas were mainly in the Dongcheng District and Chaoyang
District on weekdays (Figure 7a) and especially on weekends (Figure 8a). Eastern Beijing has both
foreign affairs areas and business districts, and as many business centers are there, taxi demand
occurred in the early morning. Moreover, as people go out for longer on weekends, there was
also greater demand on weekends.

2. At 8 a.m. or 9 a.m., demand was centered around public transportation stations, such as the
Beijing Station and Beijing West Station (Figures 7b and 8b).
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3. Later in the day, the number of high-demand areas began to increase. Chaoyang is the
largest district in terms of population, followed by the Haidian District and Fengtai District.
Approximately 45.6% of Beijing’s population lives in these districts. Figures 7 and 8 show
that high-demand areas were concentrated in these areas. There are many good colleges
and high schools in the Haidian District. Manufacturing and scientific research groups are
concentrated between West Second Ring Road and West Third Ring Road. Moreover, most of
the population is employed in the Haidian District and Fengtai District. Therefore, during the
day, the number of high-demand areas in the Haidian District and Fengtai District were greater
than that in the Chaoyang District; this difference was particularly pronounced on the weekends
(Figures 7c–e and 8c,d).

4. During the evening, the number of high-demand areas in the Chaoyang District changed more
slowly than in the Haidian District and Fengtai District, particularly on the weekends. The major
reason might be because there are several catering and entertainment businesses in the Chaoyang
District (Figures 7f–h and 8e,f).

Traffic resistance was detected using average taxi travel speed and travel time on weekdays and
weekends (Figures 9 and 10).
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Figure 9. Traffic Resistance on Weekdays. (a–h) correspond to the 8 time periods of one day
on weekdays.

5. According to the Evaluation Index System of Urban Road Traffic Management provided by the
Ministry of Public Security, a travel speed of >30 km/h indicates no congestion, a travel speed of
between 20 km/h and 30 km/h indicates mild congestion, a travel speed of between 10 km/h
and 20 km/h indicates congestion, and a travel speed of <10 km/h indicates strong congestion.
We observed that before 5 a.m., traffic transportation showed the best conditions no matter which
day of the week. Almost all the roads were clear (Figure 9a,b and Figure 10a,b), because during
this period, there were fewer people and cars going out. Moreover, on weekdays, roads became
increasingly congested from 6 a.m. onwards. During the peak morning hours, the average speed
was approximately 25 km/h (Figure 9c). However, the traffic conditions were slightly better in
the early afternoon (Figure 9d,e). In the period of the evening peak (5 p.m. to 7 p.m.), roads
again became congested, and the congestion worsened (Figure 9f); the average speed was only
approximately 22.9 km/h. After the evening peak, the traffic began to clear, and at midnight,
there were no jammed roads (Figure 9g,h). On the weekends, traffic transportation showed better
conditions than that on weekdays. There was no morning peak or evening peak (Figure 10c,f),
but the traffic conditions were still congested during the day (Figure 10d,e). After the evening
peak, the traffic began to clear. This pattern shows that people’s activities have impacts on traffic
transportation conditions.
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In simulation experiment, separate statistical comparisons were conducted for time and distance
aimed to verify the effect of the recommended cruising routes using an STT model in our work.
Specifically, we divided one day (24 h) into 24 time periods. Next, we extracted a random 1000 historical
taxi routes in each time period. Then, the historical time spent and driving distance and expected
time spent and driving distance from drop-off location to the pick-up location of the next passenger
in one route were estimated. Statistical comparisons are shown in Figure 11. We observed that the
historical times spent were mostly greater than the expected times; that is, taxi drivers using our
recommended route to find the next passengers can significantly reduce the time spent, while with the
historical route, the taxi drivers traveled greater distances than those with our recommended route.
In conclusion, taxi drivers using cruising routes recommended by our STT model can significantly
reduce the waiting time (about average 2.98 min on weekdays and 3.81 min on weekends) and travel
less distance (about average 2.92 km on weekdays and 2.86 min on weekends) to quickly find their
next passengers.



ISPRS Int. J. Geo-Inf. 2017, 6, 373 14 of 20

ISPRS Int. J. Geo-Inf. 2017, 6, 373  14 of 20 

 

Specifically, we divided one day (24 h) into 24 time periods. Next, we extracted a random 1000 

historical taxi routes in each time period. Then, the historical time spent and driving distance and 

expected time spent and driving distance from drop-off location to the pick-up location of the next 

passenger in one route were estimated. Statistical comparisons are shown in Figure 11. We observed 

that the historical times spent were mostly greater than the expected times; that is, taxi drivers using 

our recommended route to find the next passengers can significantly reduce the time spent, while 

with the historical route, the taxi drivers traveled greater distances than those with our recommended 

route. In conclusion, taxi drivers using cruising routes recommended by our STT model can 

significantly reduce the waiting time (about average 2.98 min on weekdays and 3.81 min on 

weekends) and travel less distance (about average 2.92 km on weekdays and 2.86 min on weekends) 

to quickly find their next passengers.  

 

Figure 11. Statistical Comparisons between Historical Routes and Recommended Routes in Time and 

Distance. (a) shows the comparison plot of time for weekdays; (b) shows the comparison plot of time 

for weekends; (c) shows the comparison plot of distance for weekdays; and (d) shows the comparison 

plot of distance for weekends. 

In the STT model, the 𝑘 shortest path routing algorithm was presented, and 𝑘 cruising routes 

were obtained. Then, the load balancing method was presented to allocate these 𝑘 cruising routes to 

more than one taxi driver in a small-scale region to the neighboring pick-up locations. However, if 

Figure 11. Statistical Comparisons between Historical Routes and Recommended Routes in Time and
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plot of distance for weekends.

In the STT model, the k shortest path routing algorithm was presented, and k cruising routes
were obtained. Then, the load balancing method was presented to allocate these k cruising routes
to more than one taxi driver in a small-scale region to the neighboring pick-up locations. However,
if directly offering these k cruising routes and their pick-up probabilities to taxi drivers and letting
them choose by themselves, the cruising route with the highest probability would be chosen by most
taxi drivers. This condition would cause a large number of taxi drivers to select the same road to
find their next passengers and would reduce the accuracy of the probability computed in our model.
Considering this, we conducted a comparison of whether or not the load balancing method is utilized
(Figure 12). We observed that the load balancing strategy significantly alleviates road loads. When the
load balancing method was not utilized in the STT model, the maximum percentage would be close
to 50% at the off-peak period (approximately 5 a.m. to 7 a.m.). However, the maximum percentage
would reduce to just 30% when the load balancing method was utilized in our STT model.
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5. Discussion

In this work, we present an STT model based on the historical GPS trajectories of taxis to explore
spatio-temporal traffic patterns and guide taxi navigation. Furthermore, the STT model can provide
useful information for taxi drivers to quickly pick up their next passengers, further saving time and
gas and increasing profits. In addition, the taxi fleet management method in our model could help
ease urban traffic problems.

Numerous previous studies have explored the optimizing cruising routes and recommendations
to taxi drivers in various methods. One such study used time series forecasting techniques to predict
the spatio-temporal distribution in real-time and developed an online recommendation system for the
taxi stand choice in the city of Porto, Portugal [50]. The fleet equipped with their recommendation
system can significantly reduce 5% of average waiting time, but they actually ignore the comparisons
between weekends and weekdays. Another study propose a Time-Location-Relationship combined
taxi service recommendation model, utilizing Gaussian Process Regression and statistical approaches
to improve taxi drivers’ profits. They compared their model with ARIMA, SVM et.al models and
found their taxi service recommendation can predict more accurately than others by using the taxi
GPS data in Beijing [51]. Moreover, Wong et al. emphasized that taxi drivers’ cruising decisions are
significantly affected by the probability of successfully picking up passengers along this cruising
route [4]. Yuan et al. focused on extracting passenger waiting areas for taxi drivers and computing the
probability of picking up their next passengers based on the time spent, road segment information and
accessibility to waiting areas [3,22]. Qian proposed a method that transformed the taxi-routing issue
into a Markov decision process of pick-up locations [52].

However, these taxi route-planning studies have a limited quantitative focus on the association
of cruising routes with traffic resistance and have paid less attention to taxi fleet management.
The present article fills this gap by estimating the average taxi travel speed using the historical
GPS trajectories of taxis and utilizing a load balancing method, which is widely used in computing
fields. Three factors, including the pick-up locations cluster, average taxi travel speed and cruising
routes, have been considered in the STT model. The SST model is multi-integrated and mainly designed
for macroscopically taxi fleet management but a simple instance, cruising routes recommendation
for taxi drivers were depicted based on this global taxi fleet management. As a result, our study
shows that taxi drivers using cruising routes recommended by our STT model can significantly reduce
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the average waiting time and travel less distance to quickly find their next passengers, and the load
balancing strategy significantly alleviates road loads. Our results support a growing body of recent
literature underlining the superiority of combination and integration of statistical methodologies and
load balancing algorithm in transportation patterns mining.

Given to clustering of pick-up locations, the Manhattan distance, rather than Euclidean distance,
is used to measure the similarity between two clusters. Based on the different pick-up patterns in
different periods, we divided a day (24 h) into 8 time periods on weekdays and 6 time periods on
weekends (Table 3). Then, pick-up cluster analysis in the different time periods was conducted.
With respect to parameters in the DBSCAN algorithm, MinPts and Eps were determined through
an interactive process by examining the sorted K-dist graph [53]. Generally, we determined the value
in the y-axis (distance) corresponding to the turning point as Eps [37]. The K-dist graph is shown in
Figure 13. We observed that the distances corresponding to the turning point were approximately
130 m on weekdays and 140 m on weekends.
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Then, average taxi travel speed and travel time were estimated to explore traffic flow patterns.
Moreover, these speeds were considered a critical factor when computing the pick-up probability of
recommended routes.

The K shortest path routing algorithm was presented to explore multiple optimal routes. In the
STT model, parameter k was dynamically determined by estimating the travel time of finding the
next passengers. Specifically, cruising routes were reserved if the travel time in this route was less
than β times that of the shortest path routing. β was defined as the cruising routes threshold in our
model. Considering that most people located all over the study areas are able to take taxis, the cruising
routes are suggested to cover most roads. Therefore, we discussed the relationship between β and road
coverage in different time periods (Figure 14). We observed that at any time, whether on weekends or
on weekdays, if only one path is planned, it cannot cover all the main roads, especially in the early
morning. When β is 1.5, almost all of the time intervals have a coverage of more than 99%. When
β is 1.6, almost all of the time intervals have a coverage of more than 99.5%. Thus, when β changes
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from 1.5 to 1.6, the coverage is not significantly improved, but the number of calculations will increase
greatly. Therefore, β was defined as 1.5.
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However, much improvement should be conducted in future studies. Firstly, DBSCAN clustering
algorithm was utilized to explore high-demand areas from the historical pick-up information.
Specifically speaking, we can discover pick-up clusters with arbitrary shapes and avoid the adverse
impacts of noise and unusual points, and address geographical characteristics with DBSCAN. But the
deterministic lack and adaptability of the setting of parameters isn’t considered and will be examined in
future studies. Secondly, due to the limitations of access to the taxi GPS trajectory data, only one-month
data is collected and utilized in our experiment, the sample size used in the analysis was small. Despite
this, we recognize that this analysis is only a preliminary analysis of transportations patterns mining
and it has its limitations. The results of our study highlight the need for researchers to recognize
the usefulness of our model as an exploratory data analysis tools for trajectories mining. Moreover,
as another shortage of our this study, we does not consider certain variables, such as emergent traffic
situation handling and the quantitative incidence of energy consumption because of the lack of these
data. It will be very interesting to extend the approach further to consider these variables. Finally,
while the data being used in this study is a little outdated in temporal granularities (i.e., 2012) and not
a real-time data feed, it is possible to extend the method to enable real-time recommendations based
on immediate past or historical records.

6. Conclusions

This work develops an STT model to explore spatio-temporal traffic patterns and guide taxi
navigation. Our STT model takes advantage of a large volume of historical taxi GPS trajectories for
spatial and temporal analysis, and the pick-up location clusters, average taxi travel speed and cruising
routes are considered in the STT model. Specifically, average taxi travel speeds are estimated as traffic
resistance, and the load balancing method is utilized for cruising route allocation. Our experimental
results indicate that taxi drivers using cruising routes recommended by the STT model can significantly
reduce the time spent and travel less distance to quickly find their next passengers. In addition,
the load balancing utilized in our STT model could significantly alleviate road congestion.
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