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Abstract: Integrated Environment Modeling (IEM) has become more and more important for
environmental studies and applications. IEM systems have also been extended from scientific
studies to much wider practical application situations. The quality and improved efficiency of
IEM systems have therefore become increasingly critical. Although many advanced and creative
technologies have been adopted to improve the quality of IEM systems, there is scarcely any formal
method for evaluating and improving them. This paper is devoted to proposing a formal method to
improve the quality and the developing efficiency of IEM systems. Two primary contributions are
made. Firstly, a formal framework for IEM is proposed. The framework not only reflects the static
and dynamic features of IEM but also covers different views from variant roles throughout the IEM
lifecycle. Secondly, the formal operational semantics corresponding to the former model of the IEM is
derived in detail; it can be used as the basis for aiding automated integrated modeling and verifying
the integrated model.

Keywords: Integrated Environment Modeling (IEM); formal method; operational semantics; unified
view; Finite State Machine (FSM)

1. Introduction

Over the past 30 years, Integrated Environment Modeling (IEM) has become more and more
important for environmental studies as it provides the ability to supply holistic views and solutions for
environment science coupled with ecology, economy, and social activities [1–4]. Assisted by advanced
computer science and technologies, many IEM systems have been developed to provide technical
support for IEM.

IEM systems have undergone approximately three stages since the emergence of IEM. The earliest
IEM systems, and even many new systems, are strictly integrated following to the classification
proposed by Voinov and Shugart [5]. In such a system, the models, data, and analysis algorithms
are tightly coupled together. Although most of these systems are effective and efficient, they are too
tightly coupled to be reused for similar research, modeling, and analysis, which reduces our ability
to efficiently develop new investigative paradigms. Therefore, the second stage focused on adopting
modular technologies in system development. Modularized software models and analysis algorithms
were developed, allowing for more loosely coupled systems. When new studies or applications are
encountered, these modules can be abstracted from the original systems and integrated together into
a new system with minimal adaptation. Thus, models and algorithms are more reusable and the
development efficiency, as well as the quality, of the new system is promoted.
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In the last 10–15 years, with the pressing need of environmental sustainable development, the IEM
system has become the basis for applied uses as well as research [6]. This requires the IEM system
to be developed more efficiently with much better quality; hence, IEM systems evolved into the
third stage. Advanced technologies for software development have been adopted to support these
requirements during this stage. Models and algorithms are developed as independent, self-contained
software components, which are managed in a model or algorithm library. Each component offers one
or more interfaces, through which different models and algorithms are woven together to simulate
complex phenomena or processes. In this stage, the components of models and algorithms are
developed independently. Achieving high reusability, loose coupling, and expandable structure of
IEM systems is the main objective. At the same time, to make integration easier, more efficient, and
more correct, some support tools have been specially developed. These tools aid IEM by helping build
modular components and may be libraries or frameworks, such as MMS [7], OpenMI [8], OMS3 [9,10],
ESMF [11], IWRMS [12], GMS/WMS/SMS BASINS [13], CSDMS [14], and SEAMLESS [15]. These
tools try their best to relieve integrators from complicated software development techniques, allowing
them to concentrate on the model’s interaction and connection and reflecting the relationships of
corresponding physical objects in the real world.

The IEM system has continually and promptly adopted many of the latest and advanced
computing models, architectures, and techniques. Recently, Multi-Agent System (MAS) [16,17],
grid computing [18,19], Service-Oriented Architecture (SOA) [20,21], and cloud computing [10,22] have
also become involved. These new techniques make the models less dependent on each other. It has
also become possible for many models to be integrated together no matter where they are deployed.

Nevertheless, the growth of the number of models in one system also increases its complexity.
More models lead to more interaction. In addition to the dataflow, there is the control flow, which
functions to smooth the gaps across models’ semantics and implementation. Thus, the integrated
model of IEM system development has a complex and even dynamic structure, which implies that
the models and dataflow may themselves function as variables during the simulation. Consequently,
it becomes difficult to precisely describe the structure of the integrated model.

Yet it is critical to correctly describe the structure of the model in order to reduce ambiguity,
and ensure the model runs smoothly with its dynamic structure. We note that formal methods of
developing computer systems use mathematically based techniques to describe system properties and
can provide frameworks to specify, develop, and verify systems in a systematic manner [23]. Thus,
research into defining formal developmental methods may help IEM as well; we focus on using some
formal methods to enrich the IEM system in this paper.

Although there is little direct research on formal descriptions for developing IEMs, there
have been many studies that enlighten our work. Argent [24] provided an overview of
IEM that covered requirements, modeling, integration, development, frameworks, practice, and
applications. Laniak et al. [6] summarized the landscape of IEM as containing four independent
elements—applications, science, technology, and community—and proposed its roadmaps, which
corresponded to each element. In addition, Argent et al. [25] also supplied an evaluation framework
that includes conceptual ease, ease of development, support for model development, and run time
features, etc. Voinov et al. [6,26] stressed the role of data in IEM and proposed that it is the data
that link different models together and, most importantly, distinguish IEM from pure software
composition. Rizzoli [27] focused on the semantics of the model interface link models together
smoothly, while Schmitz et al. [28] focused in detail on cooperation between models with different
temporal scales. Kragt et al. [29] emphasized the role of modelers and provided a framework
through which environmental modelers can guide more successful integrative research programs.
Lloyd et al. [30] used software engineering methods to illustrate that models with lower framework
invasiveness tended to be smaller, less complex, and have less coupling. Our own practices of
integrated modeling [31,32] also suggested that there should be some technologies to describe
integration more precisely.
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Inspired by these significant studies, this paper aims to construct a formal framework to improve
the development efficiency of integrated model and IEM systems. Although there have been many
formal methods designed to tackle the composition of components, services, and agents [33,34], there
are few formal methods to describe the dynamics of the integrated models’ structure at the level of
application. Thus, this paper proposes actor-oriented-like semantics with which the static and dynamic
attributes of models, rather than those of the software components, services, and agents corresponding
to the model, are defined.

Two main IEM views, different but related, are proposed to satisfy different objectives.
Graph-based semantics are used to supply the visual semantics for integration, from the perspective of
the integrators, and runtime control, from the perspective of the IEM system. The interaction among
the models is represented by an intuitional multidigraph with ports, in which the dataflow itself is
represented with the edge, models with vectors, and variables with ports.

For conceptual ease of reuse, another, unified, view of the model, based on a set of integrated
algebra, is defined. Reuse is one important factor of IEMs: integrated models, as well as related
knowledge, should be easily reused as this is the goal of integration. To simplify reuse of the integrated
model, this paper proposes a hierarchical FSM (HFSM)-based integrated algebra for modeling the
control flow of IEM, such that a unified view of both the simple model and integrated model is
achieved in our semantic framework.

There have been some studies to tackle the hierarchal structure formal analysis, such as analyzing
MAS with a hierarchal Petri-net [35] and model checking of a hierarchical FSM [36]. This implies
that the complexity that arises from the unified view of the model is affordable. Some analogous
studies have been conducted for decades. In the DSP (Digital Signal Processing) area, dataflow (DF)
is combined with HFSM to improve the quality (such as static schedule) of the system [37]. In some
science workflow systems (e.g., Kepler) and simulation frameworks (e.g., Ptolemy, which is Kepler’s
kernel), models and the dataflow among the models are also delegated with composited actors [38].

Distinct from these pre-existing methods, the main contribution of this paper is to emphasize the
dynamics of the model’s structure and the reusability of the integrated model. The former leads to
more scalable model, while the latter leads to the unified representation of the model and decouples
the model from other processes (such as input and output in Ptolemy) as well.

In the following sections, a use case as an example of IEM is given to explain problems encountered
by modelers in IEM practice. The unified view of IEM is proposed and the corresponding operational
semantics of the integration are carefully constructed. The multidigraphic view is then given and its
uniformity with the unified view is also discussed. At the end of the paper, several conclusions of our
research are given.

2. A Use Case as an Example of IEM

In this section, we give a use case as an example of IEM. In the latest research, by using OMS3,
Peña-Haro et al. [31] and Zhang et al. [32] integrated WOFOST, a crop growth and production model,
with HYDRUS-1D, an unsaturated flow model, and MODFLOW, a saturated flow model, to simulate
the interaction between crop growth and unsaturated-saturated flow processes. In the integration, the
MODFLOW domain is divided into several zones according to similarities of crops, soil properties and
groundwater depth. Only one WOFOST/HYDRUS-1D profile is assigned to each one of these zones,
which is illustrated in Figure 1.
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Figure 1. The conceptual model and a 2-D hypothetical simplified scenario with two spatial 
discretizing schemas. 

In this integrated model, the WOFOST provides HYDRUS with the Leaf Area Index (LAI), root 
depth (RD), and crop height (CH), while HYDRUS provides WOFOST with the water stress factor 
(the ratio of actual transpiration (vRoot) and potential transpiration (rRoot)). Meanwhile, the 
HYDRUS provides MODFLOW with recharge fluxes (vBot or recharge) at the water table, while 
MODFLOW provides HYDRUS with the pressure head value (Hb or H) that is used as the bottom 
boundary condition in HYDRUS-1D. Three models’ time steps are all adopted with one day. That is 
to say, three models simulate one day’s evolution of the crop growth, unsaturated flow, and 
groundwater flow, respectively. The relation can be illustrated as shown in Figure 2. 

 
Figure 2. The process of the integrated model’s simulation. 
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Figure 1. The conceptual model and a 2-D hypothetical simplified scenario with two spatial
discretizing schemas.

In this integrated model, the WOFOST provides HYDRUS with the Leaf Area Index (LAI), root
depth (RD), and crop height (CH), while HYDRUS provides WOFOST with the water stress factor (the
ratio of actual transpiration (vRoot) and potential transpiration (rRoot)). Meanwhile, the HYDRUS
provides MODFLOW with recharge fluxes (vBot or recharge) at the water table, while MODFLOW
provides HYDRUS with the pressure head value (Hb or H) that is used as the bottom boundary
condition in HYDRUS-1D. Three models’ time steps are all adopted with one day. That is to say, three
models simulate one day’s evolution of the crop growth, unsaturated flow, and groundwater flow,
respectively. The relation can be illustrated as shown in Figure 2.
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Figure 2. The process of the integrated model’s simulation.

In practice, we encountered several difficulties. The first difficulty is that WOFOST has a different
active period from HYDRUS1-D and MODFLOW. When there is no crop (Before sower and after
maturation in Figure 2), WOFOST is deactivated and the input dataflow of HYDRUS-1D disappears.
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Should we integrate only Hydrus-1D and MODFLOW, or WOFOST, HYDRUS-1D and MODFLOW
together? If we adopt the former, WOFOST has to be integrated in the “after sower” period, which
leads to more effort for the new integration. Moreover, the integrated model in the whole simulation is
not consistent. If we adopt the later, how deal with simulation without a crop? In our earlier study,
we had to add extra codes to exam the state of the crop’s sower and growth and decide whether
WOFOST should be triggered. At the same time, both the structure and the dataflow of the model are
variable during the simulation, which makes the integrated model difficult to reuse.

The second difficulty is that the conceptually integrated model is difficult to be reuse during the
instantiation. For different spatial discretizing schemas (such as Schema 1 with 2 zones and Schema 2
with 5 zones, shown in Figure 1), there are different model instances and different dataflow, so that
many integrating codes have to be repeated for different schemas. Other problems will be encountered
in different contexts, such as how to integrate models with different space dimensions or different
time steps.

3. Unified View of the Model

The IEM support tool and runtime environment should be adaptable to different views from
different users. The unified form of the model is provided to the end user by the platform to make the
model easier to use. Each model’s static features (parameters, input variables, and output variables
involved in whole simulation) are visible to users. However, all sub-models (i.e., the blocks used
to construct the complex model) of the integrated model are managed by the runtime environment,
including data transfer, the models’ schedules, and process control, which is transparent to the end user.
During the simulation, the integrated model’s parameters, input variables, and output variables may
vary in different time steps. For example, in the above WOFOST, HYDRUS and MODFLOW integrated
model, when the model is in the “before sowing” and “after maturation” phases, the parameters,
input variables, and output variables are not needed. Therefore, the dataflow related to the model
changes too. The variations of the model, its dynamic features, should be represented carefully such
that the runtime environment can detect and manage them. Although FSM, Petri-Nets, and other
mechanisms [35–37] can all model the dynamic features, because of the simplicity and efficiency in
dataflow management [37], we chose FSM to represent the dynamic features in our framework.

In the following section, a formal framework to support these mechanisms is discussed in detail.

3.1. Formal Definition of the Model

In our framework, a unified view represents all models, no matter whether they are basic or
integrated. Here the basic model implies that the model is not integrated from other models. The
model is formally and abstractly defined with a 5-tuple, which is based on the concept of the actor, as

M: = < P, I, O, F, A>

In this framework, P, I, and O are three tuples of the parameters, input variables, and output
variables, respectively. They are the interfaces of the model, used to interact with the external
environment. The framework defines them similarly as follows:

P = Ø or P = {p1, p2, . . . }

I = Ø or I = {i1, i2, . . . }

and
O = Ø or O = {o1, o2, . . . }

F is the tuples of the functions of the model, which is defined as

F = {f 1, f 2, . . . }.
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The framework defines the state of the model as

S: = < Pe, Ie, Oe, fe >

where fe∈F, and
fe: Pe × Ie → Oe

or
(oe1, oe2, . . . , oen’) = fe (pe1, pe2, . . . , pel’, ie1, ie2, . . . , iem’)

where Pe∈P, Ie∈I, Oe∈O, en’, el’, em’∈N, and el’, em’ ≥ 0. Pe, Ie, Oe, and fe are the effective parameters
set, effective input variables set, effective output variables set, and effective function under the specific
state, respectively.

When the model is under a specific state (such as before sowing in the example), it will have the
same effective parameters set, effective input variables set, effective output variables set, and effective
function set. When the new inputs are coming and they all satisfy the constraints, the model will be
fired. Once Pe, Ie, Oe, or fe changes (such as from before sowing to after sowing), the model will change
to a new state, which can be represented by the Finite States Machine (FSM).

A is a FSM of the model, which is defined as

A: = <S, s0, T>,

where S is the finite set of states of the model. T: S→ S is the state transition function, which means
that, while the parameter Pe and input variable Ie are valuated, the model will transit to a new state,
coinciding with Pe and Ie, and f e will be fired while Oe is obtained. In the framework, the initial state
s0 = < Ø, Ø, Ø, f Ø > means that the model has been activated, where s0 ∈S and f Ø denotes that there is
nothing to do except await new input.

In the definition, P, I, O, and F are used to represent the static structure properties of the model.
At the same time, the dynamic characteristics of the model are described with the FSM A, which
represents the transition of the structure of the model. We use the block diagram as shown in Figure 3
to represent the model. In the figure, the model m = < P, I, O, F, A >, P = {p1, p2}, I = {i1, i2, i3},
O = {o1, o2}, F = {f 1, f 2}, A = <S, s0, T >, S = { s0, s1, s2}, and T = {(s0, s1), (s0, s2), (s1, s1), (s2, s2),( s1, s2),
(s2, s1)}. In addition, s1 = <Pe1, Ie1, Oe1, f 1>, s2 = <Pe2, Ie2, Oe2, f 2>, Pe1 = Pe2 = {p1, p2}, Ie1 = {i1, i2},
Ie2 = {i1, i3}, Oe1 = {o1}, and Oe2 = {o2}. The transition is illustrated in the figure.
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A basic model is represented in Figure 4, where m = < P, I, O, F, A>, F = { f }, A = <S, s0, T>,
S = {s0, s1}, and T = { (s0, s1), (s1, s1)}. Additionally, s1 = <Pe, Ie, Oe, f >, Pe = P, Ie = I, and Oe = O.
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3.2. Algebra for Integrating Models

To obtain the unified view of the model in integrated modeling, we present algebra like that in
the works of Hamadi and Benatallah [33] to model the control flow of IM, which allows the creation of
new models using the existing ones as building blocks. With this algebra, the new model also satisfies
the unified definition of the model.

We describe below the syntax and informal semantics of the model algebra operators.
The constructs are chosen to allow common and advanced model integration. The set of models
can be defined by the following grammar in BNF-like notation:

M:: = ε | X | M→M | M←M | M ♦ M | M↑M | µM

ε represents an empty model, i.e., a model that performs no operation.
X represents a model constant, used as a basic model in this context.
M1→M2 represents an integrated model that performs the model M1 followed by the model M2,

i.e.,→ is an operator of sequence.
M1←M2 represents an integrated model where the next stage of model M1 must be performed

after the current stage of model M2, i.e.,← is the feedback operator.
M1 ♦ M2 represents an integrated model that behaves as either model M1 or model M2. Once one

of them executes its first operation, the second model is discarded; thus, ♦ is the select operator.
M1 ↑ M2 represents a model in which M1 and M2 can execute simultaneously. There is no

interaction between M1 and M2, i.e., ↑ represents a parallel operator.
µM represents a model that performs the model M a certain number of times, i.e., µ represents an

iterate operator.

4. Formal Operational Semantics of Integrated Modeling

In the framework, the formal operational semantics are presented to represent and implement the
algebra calculators for integration.

4.1. Connector

The models interact with each other through the dataflow among them. However, because the
models may be developed in different scenarios for different purpose by different developers, there
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can be potential gaps between models that impede them from connecting smoothly. The barriers
mainly involve the different dimensions, different scales, and even different semantics between the
variables that will be connected during integration.

The framework defines the connector to ‘glue’ the models together such that it fills in the gap.
The connector is a simple and single functionality computing unit. The data from the output variable
of the model is collected by the connector. A new datum is computed with those input data and sent
to the input variable of another model or to the outputting model itself.

Each connector can be represented as a 5-tuple, similar to the basic model:

C: = <P, I, O, F, A>.

Compared to the basic model’s definition, the only difference is that O = {o}, i.e., the connector
always has only one output variable. To distinguish from the model, we use the box with a triangle to
represent the connector in the block diagram, as seen in Figure 5. The value of the output variable of
the first model can sometimes be transferred to the input variable of the second model directly; the
connector may then be simpler, i.e., P = Ø, I = {i}, and f is o = f (i) = i.
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4.2. Semantics for the Algebraic Operator

4.2.1. Empty Model

For technical and theoretical reasons, a model that performs no operation is defined as an empty
model ε.

ε = < P, I, O, F, A>

where P = Ø, I = Ø, O = Ø, F = Ø, A = <S, s0, T>, S = {s0}, and T = Ø.

4.2.2. Parallel

The parallel operator indicates that two or more models can be parallel in the same cycle. Paralleled
models do not depend on each other’s according to the dataflow. But if one model fails, the integrated
model based on the control will fail too. For example, in schema 1 of Figure 1, HYDRUS 1 and HYDRUS
2 should be integrated with the parallel operator. Given two models: m1 = <P1, I1, O1, F1, A1>, m2= <P2,
I2, O2, F2, A2>, A1 = <S1, s10, T1>, and A2 = <S2, s20, T2>, let m = m1↑m2 and m = <P, I, O, F, A>.

Therefore, P = P1 ∪ P2, I = I1 ∪ I2, and O = O1 ∪ O2, where ∪ implies that all output variables of
the different models are different. The integration of the function can be represented with F = F1
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implies F = {f =( f 1 ↑ f 2)| f 1 ∈F1, f 2∈F2} and f = f 1 ↑ f 2 implies that f executes exactly if both
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f 1 and f 2 execute exactly and simultaneously. In accordance with FSM, the initial state of the model is
s0 = <s10, s20>, where s10 and s20 refer to the initial states of m1 and m2, respectively, which means that
m1 and m2 are in initial states simultaneously. S = {s0} ∪ (S1\{s10} × S2\{s20}), where S\{s} = (S − {s}).
The transition T is also the combination of T1 and T2. We define T = T1×T2 − s10• − s20•, where T1 ×
T2 = {(s1is2l, s1js2m)| (s1i, s1j) ∈T1, (s2l, s2m)∈T2, i, j, l, m ≥ 0}, s10• = {(s10s2l, s1js2m)∈T1 × T2|, j > 0, l, m
≥ 0}, and s20• = {(s1is20, s1js2m)∈T1 × T2|, I > 0, l, m ≥ 0}. If si = (s1j, s2k), Pei = Pe1j ∪ Pe2k, Iei = Ie1j ∪
Ie2k, Oei = Oe1j ∪ Oe2k, i 6= 0, and fe = (fe1↑fe2), which means fe1 and fe2 are performed simultaneously.
The parallel operation is illustrated in Figure 6.

It is obvious that we can obtain m = m1↑m2= m2↑m1 and m = m1↑m2↑m3= (m1↑m2)↑m3 =
m1↑(m2↑m3).
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Figure 6. The diagram definition of the Parallel operator.

4.2.3. Sequence

The sequence operator is the most familiar operation during integration. It indicates that m1 must
have finished its action before m2 can be activated in the same cycle, which is generally caused by the
dataflow. If the data of one or more input variables of m2 are from the output variables of m1, then
there is a sequence m1→m2. Usually, there is one or more connectors between m1 and m2; we denote
this as m1→(c1↑ . . . ↑ck)→m2, where c1, . . . , and ck are parallel.

Suppose there are two models m1 = <P1, I1, O1, F1, A1>, m2 = <P2, I2, O2, F2, A2>, A1 = <S1, s10, T1>,
and A2 = <S2, s20, T2>. If m = <P, I, O, F, A> and m = m1→m2 = m1→(c1↑ . . . ↑ck)→m2, then, according
to parallel operation, we can define cm = c1↑ . . . ↑ck, and cm = <Pc, Ic, Oc, Fc, Ac>, Ac = <Sc, sc0, Tc>,
Sc = {sc0, sc1}, and Tc = {<sc0, sc1>, <sc1, sc1>}.

As a result, we can obtain P = P1 ∪Pc ∪P3, O = O1 ∪Oc∪O3, and I = I1 ∪ Ic∪ I2 − Icˆ1 − I2ˆc, where
Iaˆb = {i ∈ Ia| ∃o ∈ Ob, mb.o = ma.i>} is the set of mb’s inputs that have been occupied by ma’s outputs.

The integration of the function can be represented with F = F1 × Fc × F2, and f = (f 1→fc→f 2)
∈ F, which means that f 1∈F1, fc∈Fc, and f 2∈F2 are performed in sequence. According to FSM, A =
A1×Ac×A2, and the initial state of the model is s0 = <s10, sc0, s20>, which means that m1, c and m2 are
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in initial states simultaneously. In addition, S = {s0} ∪ (S1\{s10} × Sc\{sc0} × S2\{s20}). The transition T
is also the combination of T1, Tc and T2. We define T = T1 × Tc × T2 – s10•− sc0•− s20•. If si = (s1j,
scl, s2k), then Pei = Pe1j ∪ Pecl ∪ Pe2k, Iei = Iej1 ∪ Iecl ∪ Ie2k − Ieclˆe1j − Ie2klˆecl, Oei = Oe1j ∪ Oecl ∪ Oe2k,
i 6= 0, fe = (fe1→fec→fe2). The sequence operation is illustrated in Figure 7.
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We can also obtain m = m1→m2→m3 = (m1→m2)→m3 = m1→(m2→m3). In our example model,
WOFOST to HYDRUS-1D and HYDRUS-1D to MODFLOW are sequence relations, which can be
represented as WOFOST→ HYDRUS-1D and HYDRUS-1D→MODFLOW, respectively. Together
these are equal to WOFOST→ HYDRUS-1D→MODFLOW. The parameters of the integrated model
are the union of three sub-models’ parameters. The input variables should be the union of three
sub-models’ variables except LAI, RD, CH (three HYDRUS-1D’s input variables) and Hb (a WOFOST’s
input variable). The output variables are the union of three models’ output variables. The function of
the integrated model is the combination of three sub-models. In the model, there are only two states:
s0 = (s10, s20, s30) (initial states) and s1 = (s11, s21, s31).

Sometimes, there may be no explicit dataflow between two models. In a cycle, the successor
models can begin to run if and only if the predecessor models have finished. The empty connector cε,
which is similar to the empty model, can be used to imply these sequences.

4.2.4. Feedback

A feedback operation occurs across two cycles of the model. It may act on one model or on two
different models, denoted with m1←m1 or m1←m2. This implies that the data are transferred from an
output variable of the later model in the previous cycle to the input variable of the former at the next
cycle through a connector, c. The second type of feedback operation cannot exist on its own. Generally,
it will be based on a sequence or parallel operation in a single cycle. Additionally, it is obvious that m1

and m2 can be understood as a model m’s different components, such that m1←m2 is equivalent to
m←m. Thus, we need only to discuss the semantics of m1←m1 or (c→m1)←m1.

Suppose m1 = <P1, I1, O1, F1, A1>, A1 = <S1, s10, T1>, c = <Pc, Ic, O1, Fc, Ac>, Ac = <Sc, sc0, Tc>.
Let m = (c→m1)←m1 and m = <P, I, O, F, A>, A = <S, s0, T>.
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We can thus obtain the following conclusions. P = P1 ∪ Pc, I = I1 ∪ Ic, O = O1 ∪ Oc, F = Fc × F1

= {fc} × F1, and A = Ac × A1. Further, s0 = (sc0, s10), S = {s0} ∪ Sc\{sc0}× S1\{s10} and T= {(sc0, s10), (sc0,
s11)} ∪ sc1•. If t∈{(sc0, s10), (sc0, s11)}, then the corresponding target state st = <Pe, Ie, Oe, fe>, Pest = Pec ∪
Pe1, Iest = Iec ∪ Ie1, Oest = Oec ∪ Oe1, fe = fc→f 1. Otherwise, the formulae are the same as before, except
that Iest = Iec ∪ Ie1 - {i'}, where i' is transferred from the last cycle’s output. The feedback operation
is illustrated in Figure 8. For our example model, WOFOST← HYDRUS-1D and HYDRUS-1D←
MODFLOW are the feedback relation. They also can be represented as cascade formation WOFOST←
HYDRUS-1D←MODFLOW. The detail of this feedback is omitted.
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4.2.5. Select

The Select operation makes choosing between different sub-models or sub-model groups possible.
These sub-models or sub-model groups may have similar functions and different implementation
methods, or face different initial or boundary conditions. For example, in the integration of HYDRUS
and WOFOST, before the crop sprouts and after the crop harvests, WOFOST need not work all the time.

Suppose m1 = <P1, I1, O1, F1, A1>, m2 = <P2, I2, O2, F2, A2>, A1 = <S1, s10, T1>, and A2 = <S2, s20,
T2>. If m = <P, I, O, F, A> and m = m1♦m2, this implies that if the guard expression g1 is satisfied, then
m1 is performed, or if g2 is satisfied, then m2 is performed. In Select operation, each guard expression
has a parameter set Pg, input variable set Ig, and output variable set Og. We can define P = P1 ∪ P2

∪ Pg1 ∪ P g2, I = I1 ∪ I2 ∪ Ig1 ∪ Ig2, O = O1 ∪ O2 ∪ Og1 ∪ Og2, and F = {g1, g2} × F1 ∪ {g1, g2} × F2.
For the FSM A, S = {s10} × S2 ∪ S1 × {s20}, s0 = {s10, s20}, and T = ∪k

i=0(T1 × T2i0) ∪ (∪k
i=0 (T1i0 × T2)),

where T1i0 and T2i0 are not existing transitions that imply (s1i, s10) for model m1 and (s2i, s20) for model
m2, and where s1i and s2i stand for arbitrary states of m1 and m2, respectively. Suppose si = <Pe, Ie, Oe,
fe>. If si = (s1j, s20), then Pe = Pe1j ∪ Pg1 ∪ P g2, Ie = Ie1j ∪ Ig1 ∪ I g2, Oe = Oe1j ∪ Og1 ∪ Og2, fe = (fg1,
f g2) & fe1j. If si = (s10, s2j), then Pe = Pe2j ∪ Pg1 ∪ Pg2, Ie = Ie2j ∪ Ig1∪ I g2, Oe = Oe2j ∪ Og1 ∪ O g2, f e =
(g1, g2) & fe2j. The select operation is illustrated in Figure 9.
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Similarly, we can obtain m = m1 ♦ m2 = m2 ♦ m1 and m = m1 ♦ m2 ♦ m3 = (m1 ♦ m2) ♦ m3 = m1 ♦
(m2 ♦ m3). In the example, WOFOST is integrated with select operation WOFOST ♦ ε.
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Figure 9. The diagram definition of the Select operator. (a) S1 = {s10, s11}, S2 = {s20, s21};
(b) S1 = {s10, s11, s12}, S2 = {s20, s21, s22}.

4.2.6. Iterate

In environmental simulations, different time steps must be permitted, such as, for example, from
hourly simulation (e.g., to simulate a fungal infestation) up to several decades for sustainability studies.

Although most models work iteratively, the framework only defines the iterate operation that is
used when the model needs to perform many cycles while other models that will be integrated only
perform one cycle. The typical scenario is when models with different time steps are to be integrated:
the model with the shorter time step should iterate many times while the other model only executes
once. In integrated algebra, we use µm to denote a model’s iteration.

Consider the model m1 = <P1, I1, O1, F1, A1> and A1 = <S1, s10, T1>. If m = <P, I, O, F, A> and
m = µm1, which imply m1 is performed until the guard expression g is not satisfied (g has parameter
set Pg, input variable set Ig, and output variable set Og), then we can obtain P = Pg ∪ P1, I = Ig ∪ I1,
O = Og ∪ O1, and F = {g} × F1 ∪ {g} × {f ε}.

For the FSM A = <S, s0, T>, we define s0 = s10. For convenience when integrating with other
operations, the running state of the model is extended to comprise three types of states: the first
running state sf∈Sf, where sf = {Pef , Ief , Oef , f ef }; the iterative running state Sit; and the state of end
iteration se, such that S = {s0, se}∪Sf∪Sit and the transitions according to these states are Tf, Tit, and Te,
respectively. If (s10, s1i)∈Tf, then (s10, s1i)∈T1. Let s1i = <Pe1i, Ie1i, Oe1i, fe1i >; then Pef = Pe1i ∪ Pg, Ief =
Ie1i ∪ Ig, Oef = Oe1i ∪ Og, and fef = g × fe1i. For each (s1i, s1j)∈T1, I 6= 0, (s1i, s1j) ∈ Tit. Let sit = <Peit, Ieit,
Oeit, feit >; then, Peit = Pe1j ∪ Pg, Ieit = Ie1j ∪ Ig, Oeit = Oe1j ∪ Og, and feit = g × fe1j. For the end iteration
state, let se = < Pee, Iee, Oee, fee >, Pee = Pg, Iee = Ig, Oee = Og, and fee = g. Then, Te = {(si, se)| si ∈Sf ∪ Sit}.
Figure 10 illustrates the iterate operation of the model.
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Figure 10. The diagram definition of the Iterate operator.

4.2.7. Combine Iterate with Other Operators

Because the iterate operation should not be used alone, it is combined with the parallel, sequence,
feedback, and select operations. The framework uses M↑µM, M→µM, µM→M, µM←M, M←µM, and
M♦µM to denote these combinations.

M↑µM represents a model that parallels an iteration of another model. Let m = m1↑µm2, i.e.,
model m1 parallels an iteration of model m2. Obviously, if the iteration is performed n times, then it
can be extended to n cycles in which m1↑m2 is only performed in one cycle, while in any other cycles,
ε↑m2 is performed, such that P = P1 ∪ Pm2, I = I1 ∪ Im2, O = O1 ∪ Om2, and F = F1 ∪ Fm2. For FSM A,
S = {s0, sf, sf’, sit, s’it, se}, s0 = (s10, s20), sf = (s10, s2f ), sf’ = (s11, s2f ), sit = (s10, s2it), s’it = (s11, s2it), snf se =
(s11, s2e). T = T1 × T2 − {((s10, s2f ), (s11, s2f )), ((s10, s2it),(s10, s2e))}. Additionally, from state (s10, s20) to
state (s11, s2e), m1 should execute only once and m2 should execute once at least. The integration is
illustrated in Figure 11.

M→µM and µM→M imply that a model’s iteration performs with another model in sequence.
They can also be extended as what is defined in the combination of parallel and iteration. The former
is extended to a sequence M→M in the first cycle and a series of cycles involving ε→M. Similarly, the
latter is extended to a series of cycles involving ε→M first and then a sequence M→M in the last cycle.
The integration is illustrated in Figure 12.

The combination of feedback with iteration is similar to the sequence. The combination of select
with iteration is simple as well. Thus, these combinations are omitted in this paper.
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5. Complex Integrated Model

5.1. Model Graph

With these basic operators, a complex model can be integrated from simpler models, even basic
models. A result of an Iterate operation or Select operation is taken as a sub-model in the frame. From
the perspective of the integrator, many sub-models can be synthetized together with connectors and
corresponding message transferring channels. These sub-models may involve both basic models and
integrated models, such that the sub-models and channels compose a graph called a model graph. The
model graph can be illustrated as in Figure 13, which is a simple example.

5.2. Formal Semantics of Model Graph

Given three finite alphabets ΣM, ΣC, and ΣVar as the available labels for the models, connectors
and variables, respectively, the integration of the models is defined with a labeled multidigraph with
ports, as follows:

GM: = <M, C, L, PVa, IVar, OVar, s, t, ι, lM, lC, lVar>.

M and C are two finite sets of vertices that denote models and connectors, respectively. M includes
basic models and pre-existing integrated models.

L ⊆ (M × OVar) × (C × IVar) ∪ (C × OVar) × (M × IVar) is a set of direct edges, which indicates
the dataflow among the sub-models and connectors. The edge set includes both sequence and feedback
related dataflow. To distinguish them, we use the label ls for sequence edge and lb for feedback edge,
and L = Ls ∪ Lb.

P, I, and O are the set of parameters, input variables, and output variables, respectively, and Var
= P ∪ I ∪ O.

ι = ιM ∪ ιC. ιM = (ιp, ιi, ιo): M →PVar × IVar × OVar assigns a parameter variable (port) set,
an input variable (port) set and an output variable (port) set to each model, with ιp(M) = PM, ιi(M) = IM,
ιo(M) = OM, and ι(M) = (PM, IM, OM).
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Figure 13. The example of a model graph. (a) The example of a model graph; (b) The unified view of
an integrated model based on a.

Similarly, ιC = (ιp, ιi, ιo): C →PVar × IVar × OVar assigns a parameter variable (port) set, an
input variable (port) set and an output variable (port) set to each connector, with ιp(C) = PC, ιi(C) = IC,
ιo(C) = OC, and ι(C) = (PC, IC, OC).

s: L→M × OVar ∪C × OVar and t: L→M × IVar ∪ C × IVar are two maps indicating the source
and target model/connector of an edge. A map n: M × OVar ∪C × OVar ∪M × OVar ∪C × OVar→{0}
∪ N is defined for the source and target of the edge to indicate the produce rate and consumption
rate, respectively.

lM: M → ΣM, lC: C → ΣC and lVar: L → ΣVar are three maps describing the labeling of the
models, connectors and variables.

5.3. Construct Complex Integrated Model

The model graph is intuitive, such that the integrator can use it easily to represent the interaction
of integrated models. At the same time, the IEM tools can use the properties of the graph to check the
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integrated schema. In running time, the structure of the graph can be used to monitor the procedure of
the simulation. Once errors occur, the IEM tool can locate them with the graph as well.

In the graph model, there are two types of relations between any two sub-models. The first is
the partial ordering relation, which is based on the sequence operator. If there is a path between two
sub-models mh and mt such that mh→m1, m1→m2, . . . , mi→mt, we can say that mh →→ mt and call it
order. It is obvious that mt begins to perform after mh has finished in one cycle. Another type is called
noninterference, i.e., two sub-models perform in parallel without mutual interference.

As a result, we can obtain a width first search algorithm to construct a model from a model graph.
The algorithm can be seen in the following graph (Figure 14).
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From the algorithm, we know that the integration of many sub-models can also be taken as
a model.

6. Results

Although there are few formal frameworks for IEM being studied specially, each IEM platform
has its own potential formalist basis. We compare our formal framework with several platforms
or standards to illustrate our framework’s characteristics (in Table 1). The selected platforms are
OMS3 [39], OpenMI [8] and ESMF [40].

Table 1. The comparison with other platforms.

Our
Framework OMS3 OpenMI ESMF

Technological Basis
/ Object-Oriented Component-Based

/ DSL + POJO + Annotation Interface-Based Mediator Pattern

Dataflow yes yes yes yes
sequence yes yes yes yes

Formalism feedback yes yes yes yes
select yes no extra codes extra codes
iterate yes no extra codes extra codes

Integration reusable easy difficult difficult difficult

From the comparison, we can see that there are some advantages embedded in our framework.
The formal framework can be used as the semantic basis of an IEM Domain Specific Language
(DSL) with which the complicated model can be integrated from pre-existing models. Based on the
framework, a light weighted IEM DSL named irDSL (integration-reusable Domain Specific Language)
has been developed in our recent work. In Appendix A, some code snippet with irDSL for the
integrated model in Figure 1 is listed. The additional details of irDSL will be discussed in another paper.

7. Conclusions and Future Work

In this paper, a formal framework for the IEM system is proposed. In the framework, the features
of the model are divided into two parts, i.e., the static and dynamic features. The static features include
the traditional parameters, input variables, output variables, and functions of the model. The dynamic
feature is the transformation of the static features during the simulation and is represented as an
FSM, which adapts the integrated model to dynamic application scenarios. Based on the framework,
a unified definition of the model is proposed that makes the integrated model more manageable
and reusable, as are the simple models. The integration is also represented as a multidigraph with
port. An algorithm is used to explore its sufficiency such that there is a unified representation for
a multidigraph.

Our proposed definition can also be used as the interface between specification and formal
verification. Based on the framework, it supports integration verification at a specified time (similar
to [34,41]) such that the integration specification can be proven to be correct before its implementation;
thus, an iterative cycle between the implementation and the specification can be avoided. At the
same time, global understanding of the integration is increased, which makes the application easy to
understand and, therefore, easy to maintain. Future work should address the enhancement of this tool
by supporting the proposed methodology with additional automation features.
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Appendix A. Some Code Snippet with irDSL for the Integrated Model in Figure 1.

The following is a code snippet with irDSL for the integrated model in Figure 1. The conceptual
integrated model is not bound to any concrete application and can be reused easily.

In a concrete simulation, just as in Peña-Haro’s example [31], a hypothetical simplified
two-dimensional-vertical flow system with a height of 20 m and a length of 200 m is used. Two
different spatial discretizing schemas (such as Schema 1 with 2 zones and Schema 2 with 5 zones) are
intended to be adopted, for comparison with traditional integration. Qualitatively, it can be seen that
instantiation of the model needs relative few codes based on the conceptual integrated model.

//Conceptual integrated model named WOHYMO;
model WOHYMO{

model WOFOST(“path_WO”);
//import basic WOFOST model;
// path_WO: the path of jar file including the POJO of WOFOST;
model HYDRUS_1D(“path_HY”); //Ditto;
model MODFLOW(“path_MO”); //Ditto;

//A select control for WOFOST used to specify that the WOFOST
// begins to run after the crop germinates.
select is_WOFOST_RUN { //Control flow

if (!before_Emergence)
WOFOST; // WOFOST doesn’t run until a crop emergency

}

//A connector for LAI (Leaf Area Index) which is produced by WOFOST
// and consumed by HYDRUS as its one boundary condition.
connector LAI_WO_HY{ // the ordinary connector;

in lai1; out lai2; //input and output;
expr expr(lai2=lai1); //indicates ordinary connector;

}

//simplified link for ordinary connector, implying a sequence operator;
forward link_LAI_WO_HY{

source WOFOST.lai;
target HYDRUS_1Dconn1.lai;

}

//A connector for vBot in HYDRUS (or recharge in MODFLOW) which represents
// the water flows from unsaturated zone to saturated zone, which is produced by
// HYDRUS and consumed by MODFLOW as its boundary condition.
connector vBot_HY_MO{ // the recharge from HYDRUS to MODFLOW;

in vBot; //input, weak typing, will be taken as an array;
out recharge; //output;
expr expr(recharge = vBot)); // has same recharge in a zone;

}

forward link_ vBot_HY_conn {
source HYDRUS_1D.vBot;
target vBot_HY_MO.vBot;

}
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forward link_ recharge_conn_HY {
source vBot_HY_MO.recharge;
target MODFLOW.recharge;

}

//A connector for Hb (pressure head) from MODFLOW to HYDRUS H or Hb is
// produced by MODFLOW and transferred to HYDRUS-1D as its boundary
// condition.
connector Hb_MO_HY { // the H or Hb from MODFLOW to HYDRUS;

in H; //input, weak typing, ;
out Hb; //output, weak typing, will be taken as an array;
expr expr(Hb = H);

}

backward link_Hb_MO_conn { //implying a feedback operator;
source MODFLOW.H;
target Hb_MO_HY.H;

}

forward link_ Hb_conn_HY {
source Hb_MO_HY.Hb;
target HYDRUS_1D.Hb;

}

relation m2o <HYDRUS_1D,MODFLOW>; //m2o relation, for extendability;
relation o2m < MODFLOW, HYDRUS_1D >; //o2m relation;

//other codes are omitted due to space limitations.
}
//Instance of WOHYMO with the 5 zones
model WOHYMO WOHOMO_5 { //instance definition;

model WOFOST inst_WOFOST [5]; //5 instances of WOFOST;
model HYDRUS inst_HYDRUS [5]; //5 instances of HYDRUS;
model MODFLOW inst_MODFLOW; //1 instances of MODFLOW;
for i in [1..5] //o2o relation;

inst_WOFOST [i] ->inst_ HYDRUS [i];
inst_HYDRUS [1..5] ->inst_ MODFLOW;
//5 inst_HYDRUSes relates to 1 inst_MODFLOW;
inst_MODFLOW ->inst_HYDRUS [1..5];
//1 inst_MODFLOW relates to 5 inst_HYDRUSes;

}

//instance of ex16_WOHYMO with the 2 zones
model WOHYMO WOHOMO_2 { //instance definition;

model WOFOST inst_WOFOST [2]; //2 instances of WOFOST;
model HYDRUS inst_HYDRUS [2]; //2 instances of HYDRUS;
model MODFLOW inst_MODFLOW; //1 instances of MODFLOW;
for i in [1..2] //o2o relation;

inst_WOFOST [i] ->inst_ HYDRUS [i];
inst_HYDRUS [1..2] ->inst_ MODFLOW;

//2 inst_ HYDRUSes relates to 1 inst_ MODFLOW;
inst_MODFLOW ->inst_HYDRUS [1..2];

//1 inst_MODFLOW relates to 2 inst_HYDRUSes;
}
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