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Abstract: Geospatial big data analysis (GBDA) is extremely significant for time-constraint applications
such as disaster response. However, the time-constraint analysis is not yet a trivial task in the cloud
computing environment. Spatial query processing (SQP) is typical computation-intensive and
indispensable for GBDA, and the spatial range query, join query, and the nearest neighbor query
algorithms are not scalable without using MapReduce-liked frameworks. Parallel SQP algorithms
(PSQPAs) are trapped in screw-processing, which is a known issue in Geoscience. To satisfy
time-constrained GBDA, we propose an elastic SQP approach in this paper. First, Spark is used
to implement PSQPAs. Second, Kubernetes-managed Core Operation System (CoreOS) clusters
provide self-healing Docker containers for running Spark clusters in the cloud. Spark-based PSQPAs
are submitted to Docker containers, where Spark master instances reside. Finally, the horizontal
pod auto-scaler (HPA) would scale-out and scale-in Docker containers for supporting on-demand
computing resources. Combined with an auto-scaling group of virtual instances, HPA helps to find
each of the five nearest neighbors for 46,139,532 query objects from 834,158 spatial data objects in
less than 300 s. The experiments conducted on an OpenStack cloud demonstrate that auto-scaling
containers can satisfy time-constraint GBDA in clouds.
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1. Introduction

With the volume of spatial datasets collected from ubiquitous sensors exceeding the capacity of
current infrastructures, a new direction called Geospatial big data (GBD) has drawn great attention
from academia and industry in recent years [1,2]. Analyzing spatial datasets can be valuable for many
societal applications such as transport planning and management, disaster response, and climate
change research [3]. However, efficient processing of them is still a challenging task, especially when
obtaining timely results is preliminary for emergency responses [4,5].

Regardless of the data source, parallel spatial query processing (SQP) is indispensable for
GBD analysis and a must for most spatial databases [6,7]. Since a (Graphics Processing Unit)
GPU-based parallel requires significant effort in redesigning relevant algorithms, t state-of-art research
directs parallel SQP (PSQP) for handling big spatial data in the cloud computing environment [8,9].
For example, Zhong et al. [9] implemented several MapReduce-based spatial query operators for
parallel SQP algorithms (PSQPAs). Although MapReduce-based PSQPAs perform well with enhanced
scalability, the efficiency of the PSQPAs depends on their Hadoop-based property system. Moreover,
MapReduce-based algorithms used in Hadoop suffer dense disk Input/Output (I/O) and network
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communication costs and are thus inappropriate for timely data analysis [10]. To achieve higher
performance, You et al. [8] designed a prototype system, SpatialSpark, based on Spark for large-scale
spatial join queries in cloud computing. Spark is an advanced computing model (CM) similar to but
different from Hadoop MapReduce. Through transferring transformation to in-memory datasets with
resilient distributed datasets (RDDs) abstraction [11], Spark has become the leading in-memory big data
analysis paradigm in recent years [12]. The extensible nature of RDDs cultivates useful frameworks like
GeoSpark and LocationSpark to efficiently process big spatial data [13,14]. The computing model has
shown a potential for high performance GBD computing in a 207 nodes composed of a Hadoop cluster
on the Amazon EC2 cloud, as reported in [12]. However, geometry objects are multidimensional,
and the geometry computation on big spatial datasets would aggressively deplete limited computing
resources. Moreover, the property cloud computing environment only poses ‘vendor-lock-in’ limitation
for private cloud users. Further, even building sophisticated spatial indexes and spatially declustering
the huge datasets, the screw-processing caused by the size or density of the geometry objects may
introduce long latency [15].

Cloud computing emerged as a paradigm with the promise of provisioning theoretically infinite
computing resources for cloud applications. Elasticity, one of the main characteristics of cloud
computing, represents the capability to scale up and down the number of allocated resources for
applications on demand [16]. Both the vertical and the horizontal elasticity provide improvement in
applications performance and cost reduction [17]. The vertical elasticity means that the computing
resource of a single virtual server such as memory and virtual Central Processing Units (VCPUs) can
be scaled up and down on demand, while the horizontal elasticity means the capability to scale in
and out virtual resources on demand. The ‘pay-as-you-go’ paradigm encourages users to reduce
costs by offloading the investment of infrastructures. However, it’s a difficult task for cloud users to
identify the right amount of virtual resources to use, and cloud service providers often cannot satisfy
the Service Level Agreement (SLA) contracts for cloud users [18]. Diversified auto-scaling techniques
for elastic applications in clouds have been proposed [19]. However, there is some geoscience research
that leverages the auto-scaling technologies in the cloud computing environment [20].

The purpose of this paper is to investigate auto-scaling strategies to support time-constraint spatial
query processing in clouds. To the best of our knowledge, we can find a single work that is a little similar
to ours [20]. They suggested using auto-scaling groups in OpenStack clouds with Heat for defining the
rules for adding or removing virtual machines (VMs) on demand. We focus on horizontal auto-scaling
containers, which would be more valuable for cloud applications. Compared with hypervisor-based
virtualization, container-based virtualization has been considered an alternative for providing isolated
environments for applications [21]. Application containers can be regarded as lightweight VMs that
share the same kernel of the underlying operating system. Applications running inside traditional
hypervisor-based VMs depend on the scheduling capacity of gust Operation System (OS), which
introduces an extra level of abstraction [22]. Horizontal auto-scaling VMs often take several minutes
to build virtual computing clusters, which may be unsuitable for time-constraint computational tasks.
In fact, the efficiency of PSQPAs is not only determined by the volume of data but is also highly
relevant with internal parameters and underlying CMs. To reduce the time costs of PSQPAs, we first
introduce the implementation of Spark-based PSQPAs and identify the parameters that impact the
efficiency of the PSQPAs in Section 2. After introducing Docker for container management on a single
computing node, we detail Kubernetes-based container management and scheduling for auto-scaling
containers across cloud computing nodes. Then, some auto-scaling strategies and a spatial query
processing case are given in Section 3. The experiments and results are described in Section 4, followed
by a discussion in Section 5. Finally, we conclude and mention our future works in Section 6.

2. Parallel SQPAs Using Spark CM

Let D and Q be a data object collection and a query object collection respectively. Spatial range
query (SRQ) represents searching data objects of D related to query objects of Q within a certain
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distance. The Nearest neighbor query (NNQ) searches the closest data objects to a given query object.
The query ‘find the nearest hotels close to a given space’ is an example of NNQ, where the hotels are the
data objects and the space is the query object. Spatial join query (SJQ) combines pairs of objects from
the two datasets based on their spatial relationships [23]. Before identifying the parameters impacting
the efficiency of Spark-based PSQPAs, we briefly introduce the implementation and execution of them.

2.1. PSQPAs Using Spark CM

Figure 1 shows the execution of a Spark-based SRQ algorithm (SSRQA). First, spatial data objects
are partitioned and stored in distributed nodes. Then, the query objects are broadcast to the nodes
where the partitions reside. In these nodes, each query object is used to match the data objects by
performing a spatial range predicate computation. We employ GeoSpark for processing large scale
spatial data in this work, which is a software package that provides basic geometrical operations.
BitTorrent-enabled broadcasting is the main approach for the Spark master to share the immutable
objects with Spark workers [10]. Sharing data, the volume of which does not exceed the Java Virtual
Machine (JVM) heap size of the Spark master instances, is efficient. Implementation of a simple SSRQA
includes only one mapping transformation.
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Figure 1. The execution flow of Spark-based spatial range query (SRQ) algorithms. The partitioned
spatial data objects are spatial resilient distributed datasets (RDDs). Spark executors on Spark worker
nodes would do spatial range predicate computation after the mapping transformation tasks are
received from the Spark Master instance.

A Spark-based NNQ algorithm (SNNQA) executes as follows. If we suppose that the query objects
are small and that the data objects are huge, the query objects can be broadcast to the computing nodes
where the partitioned data objects reside. In these nodes, Spark workers execute spatial predicate
computations using local spatial data objects. It is assumed that the query objects are too large to be
shared, whereas the data objects are relative small. We can then spatially partition the data objects
into grids and, if necessary, build an index for them [24]. The grids can then be broadcasted to the
computing nodes where the query objects reside. If both the data objects and the query objects are
too large to be shared, it is still possible to divide the query objects into chunks and submit the same
algorithms with the different chunks as their input. Implementation of a simple SNNQA includes only
one mapping transformation. Since the execution flow of a SNNQA is fairly similar to that of a SSRQA,
we omit the schematic diagram here in order to save space.

Figure 2 shows a Spark-based SJQ algorithm (SSJQA) that executes as follows. After loading
datasets in computing nodes, a Spark engine will partition them into grids according to their
approximate spatial location, such as the minimum bounding rectilinear rectangle (MBR). Next,
the Spark engine joins the datasets according to their grid IDs [25]. For those spatial objects that have
the same grid ID, the spatial overlap that predicates computation is evaluated in the same computing
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nodes. If two types of objects overlap, they are kept in the final results. Finally, the results are grouped
by rectangles with the duplicate objects removed. The implementation of a SSJQA may include several
joins, mapping, and filtering transformations.
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are received from the Spark Master instance.

2.2. Identifying Factors Impacting the Efficiency of Spark-Based PSQPAs

Since the practical method to efficiently query against big spatial data is to employ the divide and
conquer strategy [9,26], most MapReduce-based PSQPAs use certain types of space filling curves, such
as Hilbert space-filling curve, to map MBRs to grids based on the spatial correlation for optimizing
efficiency [27,28]. We simply treat the number of grids p as one of the internal parameters of
Spark-based PSQPAs. We focus on SNNQAs exclusively. Since a SSRQA can be seen as a simple case
of SNNQAs, the spatial range predicates of the SSRQAs that can be wrapped into a single mapping
transformation; that of SNNQAs. SSJQAs are more complex than SNNQAs. The basic units composing
this complexity are multiway joins. Although joins are unavoidable and time-consuming, the projection
operation mapping spatial correlated datasets into the same grids is commonly used in the filter and
refinement stages [28]. From the viewpoint of Spark CM, the number of grids determines the number
of tasks that should be executed, which can directly impact the efficiency of the PSQPAs. The projection
operation only determines the cost of networking communication. Since building cost models for
networking communication is complex, we identify the number of grids as the internal parameters of
PSQPAs. Our purpose is to evaluate the relationship between the number of grids and the execution
time of the PSQPAs, which may be useful for self-adaptive systems. In this paper, we exclusively
use a Spark standalone model because it is easy to configure a Spark cluster without using other
frameworks in a cloud computing environment. Moreover, the standalone model demonstrates good
reliability, as demonstrated in our earlier work. The parameters of the Spark standalone model include;
driver-core, driver-memory, executor-memory, total-executor-cores, and executor-cores. The first two
parameters are application-related and defined by users to set the resource requirement for the Spark
master instances. The last three parameters are used to set the resource requirement for each of the
Spark worker instances. Since the value of the total-executor-cores is an expectation of users who
handle large amounts of spatial data, it is considered another impactor. Further, Spark workers running
on containers compete with each other for available resources. Therefore, we do not consider the
executor-memory and executor-cores as parameters. The other possible parameter of SNNQAs would
be the k parameter, which specifies the desired number of the nearest neighbor’s query objects.
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3. Horizontal Auto-Scaling Containers for Elastic Spatial Query Processing

3.1. Docker with Kubernetes Orchestration for Clustering Containers

Our testing system is based on Docker, which is an open source project for automating the
deployment of containerized applications in a Linux environment [29]. Docker is a framework that
manages the lifecycle of application containers. An application and its dependencies are encompassed
into an image. A Docker image can be built from a basic image and other existing images. The basic
image is a minimum operating system such as a community enterprise operating system (CentOS),
Rancheros, or CoreOS. Applications and a basic image are combined into a single layer-wised image.
Layer-by-layer storage facilitates sharing and updating the application components at minimum cost.
From Docker’s point of view, a container is the basic management unit in which an application runs.
Docker containers share the basic operating system with other containers rather than use another copy.
Figure 3 shows how Docker clients would instruct a Docker host to launch containers for running
applications with specified images. The Docker image registry is the dedicated gallery for storing the
images. We use a private image registry to store Spark-master and Spark-worker images in our tests.
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Figure 3. Docker framework for lifecycle management of containers in a host. Docker images are stored
in Docker image registries. Each host has a Docker engine that deploys and controls these containers
as requested by Docker clients.

The Docker facilitates application executions in a single host. To fabricate computing clusters
using containers, higher level tools such as Docker Swarm and Kubernetes are necessary [30,31].
Docker Swarm is a Docker-native container orchestration system for cluster computing. Since it’s
imple and flexible in deployment, it has been widely-used in OpenStack clouds for data analysis [32].
However, containers on different hosts cannot interact with each other without using the current
unstable Docker overlay network. Moreover, at the time of this writing, many advanced functionalities
such as self-healing and auto-scaling are not supported by Docker Swarm. Kubernetes is another
open source project. It was released in June 2014 and originates from the requirement for managing
billions of containers in the infrastructure. Kubernetes, which is more complex than Docker Swarm,
has been used by Google for decades. The complexities cultivate numerous benefits for containerized
applications such as high availability, self-healing, and auto-scaling containers with fine-grained
cluster monitoring. Figure 4 shows how Kubernetes adapts master-slave architecture to manage
containers in minions. Kubelet and Kube-proxy running on minion, are components for disseminating
changing workloads to pods and routing services-oriented access to pods, respectively. Here each
pod is a logical group of containers that run on the same application. The Application Programming
Interface (API) server is the main services gallery and an access point for Kubectl (a command line
interface for running commands against Kubernetes clusters) to query and define cluster workloads.
The Kube-scheduler and Kube-controller-manager work with the API server for scheduling workloads
in the form of pods and ensuing specified pods replicate running in minions, respectively. For reasons
of simplicity, they are not shown in Figure 4.



ISPRS Int. J. Geo-Inf. 2017, 6, 84 6 of 17
ISPRS Int. J. Geo-Inf. 2017, 6, 84  6 of 17 

 

Master

Container1

Pod1

Container2

ContainerN

Container1

PodN

Container2

ContainerN

…

Minion-1 (kubelet, kube-proxy)

Minion-2 (kubelet, kube-proxy)

Service1
(virtual IP + port)kube-proxy

Pod1 PodN…

kubelet

User acess

scheduling
Repliation controller

kubectl

API Server

 
Figure 4. Kubernetes components for orchestrating containers distributed in minion nodes. 
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3.2. Horizontal Auto-Scaling Containers for Elastic Spatial Query Processing

To explore elastic spatial query processing in a cloud computing environment, we assume that
there are C cores, I maximum instances, and M gigabytes of memory leased for a tenant. Figure 5
shows the computing resources, which are used as follows. The left part consists of a stable cluster,
in which the Kubernetes Master manages containers on a fixed number of minion nodes. A horizontal
pod auto-scaler (HPA) is a plugin for Kubernetes that automatically increases and/or decreases the
number of pods across the minions. To build a robust Spark cluster on top of Kubernetes, users can
request Kubernetes to create a replication controller to ensure one, and only one, Pod that runs the
Spark-master image. Kubernetes allows users to explicitly define resource quotas for pods. Therefore,
a pod that has sufficient memory, and cores would be exclusively used by the Spark-master instance.
Then, the HPA would create an auto-scaling group of containers for Spark-worker instances based
on some auto-scaling strategies. Finally, Spark-workers connect to the Spark-master instances by
using a Kubernetes service for fabricating an elastic Spark cluster. Kubernetes services are logical
groups of pods. They are used for routing the incoming traffic to background pods. Three parameters
are mainly used to define the auto-scaling strategies. The minReplicas and maxReplicas parameters
declare the minimum and maximum number of pods allowed, respectively. Kubernetes calculates the
arithmetic mean of the pods’ CPU utilization with the target value, as defined by the target percentage
parameter, and if necessary adjusts the number of pods allowed. The right part includes an auto-scaling
group, in which virtual machines (VMs) scale in and scale out according to the policies defined in
the Heat templates. The minimum and maximum size properties of an auto-scaling group are used
to define the threshold of instances allowed for cloud users. To horizontally scale Docker containers
in an auto-scaling group, the preliminary requirement is that the VMs can automatically join the
Kubernetes cluster. Fortunately, the cloud-config files of OpenStack can be used in this context [33].
The loading of the kube-proxy and kubelet services on the minion nodes can be done automatically on
the boot of the VMs.

This proposed empirical strategy divides the computing resources into two parts and provides
a way to distribute the containers over all the nodes. By separating the Spark-master and Spark-workers
into containers and leveraging the HPA to distribute the workload, we can build self-healing Spark
clusters to process huge volumes of spatial datasets. The experiments and results are presented in
Section 4.
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4. Experiments and Results

4.1. Spatial Datasets for A Spatial Query Processing Case

In this paper, we introduce the concept of spatial datasets to better understand patterns of human
mobility in urban areas. In order to perform this analysis, which is fundamental for city planners,
trajectory data are collected from inexpensive GPS-equipped devices, such as taxicabs. Taxi trip data is
widely-used for mining traffic flow patterns, as described in [34,35]. For example, the NYC Open Data
Plan has built a portal for publishing its digital public data for city-wide aggregation, as required by
local law. In addition, the New York City Taxi and Limousine Commission has published, since 2009,
taxi trip data sets to the portal. In 2015, a total of 11,534,883 rows of green taxi trip data were recorded.
The records include field capturing, pick-up and drop-off dates, times, locations, distances, payment
types, and driver-reported passenger counts. Since the pick-up and drop-off locations are just pairs of
geographical coordinates, additional spatial data sets that include land use type (LUT) are required.
We collected a data set named NYC MapPluto Tax Lot from the NYC Department of City Planning.
The fields in the data set include LandUse, XCoord, and YCoord, which describe the land use categories
such as Family Building, Commercial and Office Buildings, Industrial and Manufacturing, and the
approximate location of the lots. The Tax Lot dataset contains 834,158 records. A taxi customer’s
pick-up location near a Family Building and drop-off location near a Commercial and Office Building
at rush hour, indicates that the person’s taxi request may be work related. We explore the data
sets with the previously mentioned SNNQAs. Readers can find the datasets by using the following
links: https://data.cityofnewyork.us/Transportation/2015-Green-Taxi-Trip-Data/n4kn-dy2y and
http://www1.nyc.gov/site/planning/data-maps/open-data.page (last access date: 2017/2/8)

4.2. Cloud Computing Environemt

There are six machines used for setting-up our OpenStack cloud. The Liberty version of OpenStack,
released to public in October 2015, was choosen. As shown in Table 1, the controller node is
a commodity PC equipped with 1 processor, 4 cores, 4 GB memory, and 500 GB disks, on which
the Keystone identity service, Telemetry service, Neutron networking service, and Glance service
run. The Neutron Linux bridge agents running on computing nodes are connected with each other
to fabricate networking for virtual instances. We use four Dell PowerEdge M610 servers to build
the computing nodes clusters, with one of them having two physical CPUs, 24 cores, 92 GB of main
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memory, and a 160 GB disk, and three of them having two physical CPUs, 24 cores, 48 GB of main
memory, and a 500 GB disk. The block storage node is a HP Z220 workstation configured with
two physical CPUs, 8 cores, 32 GB of main memory, and 3 TB disks. The Cinder services running
on the HP workstation is using Network File System (NFS) to provide virtual instance with storage.
To simulate complex network infrastructure, we let the computing nodes traverse two different subnets.
1000 Mbps networking devices are used to bridge the two subnets. All nodes in the cloud computing
environment adapt a Ubuntu 14.04.4 LTS 64 bits operating system. All required packages that support
the OpenStack cloud are installed with their native package. More specifically, RabbitMQ 3.5.4 is
used for coordinating operations and status information among services. MariaDB 5.5.52 is used for
services to store data. The libvirt KVM and Linux Bridge are used to provide platform virtualization
and networking for virtual instances. We exclusively use the vxlan mechanism to provide networking
with virtual instances. For some convenience, we abbreviate the auto-scaling VM instances and the
auto-scaling Docker containers as ASVI and ASVC, respectively.

Table 1. Specification of the OpenStack cloud computing environment.

Node Cloud Actors Specification Services

192.168.203.135 Controller 4 cores, 4 GB memory and 500 GB disks

Nova-cert, Nova-consoleauth,
Nova-scheduler, Nova-conductor,
Cinder-scheduler, Neutron-metadata-agent,
Neutron-linuxbridge-agent,
Neutron-l3-agent, Neutron-dhcp-agent,
Heat-engine

192.168.203.16 Compute 24 cores, 92 GB memory and 160 GB disks Nova-compute, Neutron-linuxbridge-agent
192.168.200.97 Compute 24 cores, 48 GB memory and 500 GB disks Nova-compute, Neutron-linuxbridge-agent

192.168.200.109 Compute 24 cores, 48 GB memory and 500 GB disks Nova-compute, Neutron-linuxbridge-agent
192.168.200.111 Compute 24 cores, 48 GB memory and 500 GB disks Nova-compute, Neutron-linuxbridge-agent
192.168.203.16 Block Storage 8 cores, 32 GB memory and 3 TB disks Cinder-volume

4.3. Result

4.3.1. Comparison of SNNQAs using ASVI and ASVC

To test the efficiency of SQP using ASVI and ASVC, we construct two clusters using two OpenStack
Heat templates. As shown in Table 2, the only difference between the clusters is the image and software
used. The two clusters can be comparable in this context, since the deployment of instances on which
computing nodes can be exactly specified by using an OS::Nova::Server availability zone property
in Heat templates. In the Ubuntu cluster, the node having 4VCPUs and 8 GB of memory hosts the
Spark master instance, while the other four instances host the Spark worker instances. In the CoreOS
cluster, the nodes holding each type of Spark component are determined at runtime. More specifically,
the softwares and their versions are listed in Table 3.

Table 2. Two comparable clusters in the OpenStack cloud.

Virtual Cluster Specification Images and Software

Ubuntu_cluster
1 instance with 4 VCPUs and 8 GB
RAM, and 4 instances each with
2V-CPus and 4 GB RAM

Ubuntu 14.04.5 trusty image with Spark
1.5.2, Java(TM) SE Runtime Environment
(build 1.7.0_45-b18), Scala 2.10.4

CoreOS_cluster
1 instance with 4 VCPUs and 8 GB
RAM, and 4 instances each with
2V-CPus and 4 GB RAM

CoreOS 1185.3.0 image with Kubernetes
1.3.4, Heapster 1.1.0 and Docker 1.11.2

Assuming the clusters’ launching time is negligible, we first test the efficiency of the SNNQAs
under the two clusters. Since it is necessary to specify the Ubuntu image in advance, the number
of Spark workers running on each virtual instance is the same when using the ASVI. As shown in
Figure 6, the efficiency of SNNQAs using the two auto-scaling strategies on the OpenStack cloud is
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very different. When p = 3000 and k = 5, there are 3000 grids on which to store spatial data objects,
and each query object queries the five nearest spatial data objects in the grids. The average execution
time is recorded when each SNNQA submission is executed 10 times with the total-executor-cores
parameter set to six. We observe that increasing the number of Spark workers does not guarantee better
efficiency of the algorithms. For example, when there are 12 Spark workers, the average execution
time of the SNNQA using the ASVI strategy is 235.84 s. Doubling the number of Spark workers to
24 raises the average execution time of the SNNQA using the ASVI strategy (SNNQA-ASVI) to nearly
400 s, and when the number of Spark workers is increased to 32, the average execution time of the
SNNQA-ASVI falls to 281.18 s. Then, when we increase the number of Spark workers to 36, the average
time cost of the SNNQA-ASVI rises to 420 s. The high SNNQA-ASVI efficiency variability is possibly
due to two factors; (1) the performance disturbance of the virtual instances and (2) the uncertainty
of the number of Spark workers introduces SNNQA variations using the ASVI. We notice that Spark
workers are quite often lost in the tests. Data-intensive computational tasks executed on each Spark
worker require too many memory resources, which may disrupt the connection between the Spark
workers and the Spark master instance. Further, there are no self-healing mechanisms for Spark
workers in this context. When given fewer than 28 Docker containers to the algorithm, the execution
time is always less than 270 s. As the results in Figure 6 show, when given 24 Docker containers, the
average execution time is 269.91 s. When the number of Docker containers is limited to 20, the average
execution time falls to 250.31 s. The time cost of the SNNQAs, using the two strategies, grows rapidly
when the number of Spark workers is more than 32. These results indicate that the SNNQAs using the
ASVC could be robust if the Docker container number is smaller than 32.

Table 3. The summary table of software used in the following tests.

Software Version

Docker 1.11.2
CoreOS 1185.3.0
Spark 1.5.2
Scala 2.10.4
JDK 1.7.0_45-b18

Heapster 1.1.0
Kubernetes 1.3.4
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To investigate the effectiveness of the index to the SNNQAs, we conduct the second experiment
as follows. When using the ASVI and 20 Spark workers, the Spark-based KNN algorithms using the
Sort-Tile-Recursive tree (STRtree) index (SKNN-STRtree) completes in about 297.92 s, as shown in
Figure 7. The Spark-based KNN algorithms without the STRtree index complete in about 284.89 s,
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as shown in Figure 6. These results indicate that using the index does not reduce the execution time of
the SNNQAs using the ASVI strategies. The reason may be because the number of data objects in the
grids is not large; therefore indexing in this context may not be necessary. The grid number determines
the average number of objects that are processed by each Spark worker. When the grid number is small,
the number of objects is large. Each Spark worker consumes more memory and increases the amount
of time spent executing the spatial predicate calculation. When the grid number is large, the number
of objects is small. When using the ASVC, the Spark-based K Nearest Neighbor (KNN) algorithms
using the STRtree index complete in less than 300 s if working with 20 to 28 containers. These results
indicate that the SNNQAs with the STRtree index using the ASVC could be robust if the container
number is smaller than 28, and when giving more than 28 containers to the Spark workers, the costs of
the SKNN-STRtree obviously increase. These results indicate that the CoreOS cluster may be too small
for Kubernetes to auto-scale many containers. We also notice that the efficiency of the SKNN-STRtree
varies when using the ASVI strategy. These similar results indicate that, regardless of whether or
not indexing is used, the efficiency of the SNNQAs using the ASVI strategy is highly variable in
clouds. The number of Spark worker daemons running on virtual instances varies. The Spark daemons
residing on each virtual instance are prone to be out of service for many reasons. Data-intensive tasks
consume lots of the memory of a Spark worker instance, which may lead to an ‘out of memory’ error.
Additionally, networking in the cloud is typically unstable, and the networking between the Spark
workers and the Spark master can sometimes be broken. We observe that the Spark worker daemons
frequently fail during the tests. Therefore, we focus our remaining research, in this paper, exclusively
on the ASVC strategies.
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4.3.2. SNNQAs Using ASVC

To understand how the parameter p impacts the efficiency of the SNNQAs, we conduct the third
experiment as follows. Each submission of the SNNQA using the ASVC is executed 10 times with
the total-executor-cores parameter set to six, and the average execution time is recorded. As shown
in Figure 8, when there are fewer than 32 Docker containers relative to Spark workers, the SNNQAs
complete in less than 300 s. When setting p = 3000, k = 5, and using 20 Docker containers, the average
minimum execution time of the SNNQAs is about 250 s. When setting p = 2500, k = 5, and using
20 Docker containers, the average minimum execution time of the SNNQAs is about 270 s. When
setting p = 2000, k = 5, and using 20 Docker containers, the average minimum execution time of the
SNNQAs is about 271 s. We found that reducing the value of parameter p would increase the execution
time of SNNQAs in this context. For example, when setting p = 1500, k = 5, and using 20 Docker
containers, the average minimum execution time of the SNNQAs is about 330 s. When setting p = 1000,
k = 5, and using 20 Docker containers, the average minimum execution time of the SNNQAs is about
437 s. The results testified that Spark is more suitable for handling small parallel tasks. As discussed
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earlier, the parameter p controls the number of parallel tasks at each stage of the Spark transformation
chains. When the parameter p is small, the number of spatial objects processed by each Spark executor
would be large, and the latency of the algorithms would thereafter increase. We do not explicitly
state which configuration is best in this paper, but the curves of the average execution time of the
SNNQAs using the ASVC exhibits great consistence when the Docker container number is fewer than
32. Our testing reveals that Spark workers running on the same host communicate with each other
at low cost; therefore the performance of the SNNQAs is reliable. We observe that when more than
32 Docker containers are given to Spark workers, the execution cost of the SNNQAs increases, mainly
because Kubernetes cannot sustain the required number of containers in the small CoreOS clusters.
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k is an important parameter for the SNNQAs and, according to our tests, demonstrates a similar
pattern to our parameter p observation. In the interest of saving space, the results are not depicted
in this paper. We prefer to know the efficiency of the SNNQAs using the ASVC in large clusters.
Therefore, we conduct a fourth experiment as follows. A CoreOS cluster with 19 virtual instances is
built in which one instance has four VCPUs and 8 GB of RAM, and other instances each have two
VCPUs and 4 GB of RAM. The average execution time is recorded for each of the 10 submissions.
As shown in Table 4, when setting the total-executor-cores parameter to six, the SNNQAs with different
parameters complete in less than 300 s. The average execution time of the SNNQAs is from 259.53 s to
288.50 s. When providing 90 Docker containers with Spark workers, the average execution time of
the SNNQAs is about 259.53 s. The results have verified our earlier discussion. In a small Kubernetes
cluster, a large number of Docker containers may pose higher completion to the underlying OS, which
is the primary reason that the efficiency of the SNNQAs declines. Although Kubernetes enables
auto-scaling hundreds and even thousands of containers in a few seconds, we suggest not using a large
number of Docker containers in small clusters in order to avoid overloading.

Table 4. The impact of container number to the efficiency of SNNQAs using ASVC and setting p = 3000
and k = 5.

Container Number Execution Time

32 271.89 s
36 285.16 s
40 274.20 s
50 288.50 s
60 276.39 s
70 279.95 s
80 272.63 s
90 259.53 s
100 271.92 s
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Since the CoreOS cluster has a total of 40 cores, the value of the parameter ‘total-executor-cores’
can be larger than six in the above tests. To understand the impact of the Docker container number
on the efficiency of the SNNQAs using more cores, we conduct our fifth experiment as follows.
Each submission of an SNNQA using ASVI is executed 10 times with p = 3000 and k = 5, and the
average execution time is recorded. As shown in Figure 9, when the value of the ‘total-executor-cores’
is from 6 to 18, the average execution time is about 300 s. Even when the Docker container number
is set to 100, the time cost never exceeds 300 s. However, the performance varies when there are
24 total-executor-cores. For example, when giving 50 Docker containers to Spark workers, the average
execution time is 343.92 s. When increasing the number of Docker containers given to the Spark
workers to 70, the average execution time rises to more than 400 s. Increasing this number of Docker
containers further, to 90, reduces the average execution time down to approximately 300 s. These results
indicate that the container number and total executor cores used by Spark workers are the determining
factors for the performance of the SNNQAs. When giving 40 Docker containers for Spark workers and
setting the total-executor-cores to 12, the average execution time of the SNNQAs is 203.33 s. Using the
same number of Docker containers for Spark workers but increasing the number of total-executor-cores
to 18 increases the SNNQAs’ average execution time to 208.93 s. These results indicate that if we choose
a relatively small number of Docker containers with moderate total executor cores for Spark workers,
the SNNQAs’ performance reliability and efficiency increase. It is important to note that the time
cost of the SNNQAs is nearly 300 s when giving six, 12, and 18 cores to Spark workers. We observe
that the overall performance of the SNNQAs using 12 cores is more robust than that using six and
18 cores. The total-executor-cores parameter is an upper threshold that represents the maximum
number of cores that Spark worker containers can consume. As more cores are given to Spark workers,
the number of chances for each Spark worker to execute tasks increases, but the larger value of the
parameter also introduces more scheduling tasks for the Kubernetes scheduler. This situation is clear
when we use a larger number of Docker containers since Kubernetes would take more time to assure
that the specified number of Docker containers is ready. The larger the number of total executor cores
used by Spark workers, the greater the amount of competition that occurs between containers that
run Spark worker daemons. Kubernetes takes more time to reschedule crashed Spark workers, which
in this situation causes the Spark master instance to reschedule failed tasks. The execution of the
SNNQAs was about 625 s when giving 30 cores to Spark workers and setting the container number to
50, and execution of the SNNQAs always failed when giving 30 cores to Spark workers with more
than 60 containers.
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4.3.3. SNNQAs Using Different ASVC Strategies

To investigate the efficiency of the SNNQAs using different auto-scaling strategies, we conduct
the sixth experiment as follows. A Heapster plugin is used to collect CPU workload metrics from
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kubelet daemons. Each submission of the algorithm is executed 10 times and the average execution
time is recorded. As shown in Table 5, when the MinReplicas, MaxReplica, and TargetPercentage are
set to 1%, 40%, and 50% respectively, the average execution time of the SNNQAs is 303.49 s. When
the values of the MinReplicas, MaxReplica, and TargetPercentage parameters are 10%, 40%, and 50%
respectively, the average execution time of the SNNQAs is 247.68 s. These results indicate that the
minimum number of replicas of Spark workers guaranteed by Kubernetes has a certain impact on
the efficiency of the SNNQAs, but the impact is not clear, as observed in our testing. For example,
when we set the values of the MinReplicas, MaxReplica, and TargetPercentage to 1%, 40%, and
80% respectively, the average execution time of the SNNQAs is 272.56 s. When the values of the
MinReplicas, MaxReplica, and TargetPercentage parameters are 10%, 40%, and 80% respectively,
the average execution time is 249.89 s. We observe that the number of containers never grows to
40 when we set the value of the MinReplicas parameter to 10%, 20%, and 30% because of two factors.
The first reason is that Kubernetes master fails to calculate the averaged CPU workload in the very
short period of each submission. The second reason is that the Heapster plugin may fail to collect
the metrics for the containers. Our goal, in the near future, is to find alternatives that provide real
time monitoring for Kubernetes. Although there are still some flaws in the auto-scaling strategies,
we observe that when setting the value of the MinReplicas to 1%, an HPA works well in all the tests.

Table 5. The impact of different auto-scaling strategies to the efficiency of SNNQAs using ASVC.

Total Executor Cores MinReplicas MaxReplica TargetPercentage Execution Time

6 1 40 50% 303.49 s
6 10 40 50% 247.68 s
6 20 40 50% 253.91 s
6 30 40 50% 242.62 s
6 1 40 80% 272.56 s
6 10 40 80% 249.89 s
6 20 40 80% 252.53 s
6 30 40 80% 262.80 s

4.3.4. SNNQAs Using ASVC in an Auto-Scaling Group

To investigate the efficiency of the SNNQAs using an HPA combined with an auto-scaling group,
we conduct the seventh experiment as follows. First, a Heat template is used to depict the minimum,
the desired, and the maximum number of CoreOS instances, which should be 5, 5, and 10, respectively.
Each CoreOS instance has two VCPUs and 4 GB of RAM. Next, we force the auto-scaling group to scale
out when the CPU utilization rate is above 80% and lasts about 1 min. Second, a Kubernetes template
is used to depict the values of the minimum and maximum replicas of Spark workers, which should
be 1 and 200, respectively. The TargetPercentage parameter is set to 80%. Finally, the SNNQAs are
submitted to the auto-scaling group using the parameters: total-executor-cores = 18, p = 3000, and k = 5.
Each submission of the SNNQAs is executed five times and the average execution time is recorded.
As shown in Figure 10, increasing the number of query objects monotonically increases the execution
time of the SNNQAs using the HPA exhibits when the auto-scaling group is not used. Finding the
five nearest neighbors from 834,158 spatial data objects for each of the 34,604,649 query objects took
approximately 660.64 s, while the execution time that uses the HPA combined with the auto-scaling
group results in great performance. All of the runs complete in less than 300 s. The results show that
the HPA combined with the auto-scaling group is beneficial for reliable spatial big data analysis. It is
suggested that future research be directed toward automatically configuring these parameters.



ISPRS Int. J. Geo-Inf. 2017, 6, 84 14 of 17
ISPRS Int. J. Geo-Inf. 2017, 6, 84  14 of 17 

 

 
Figure 10. Comparison of the efficiency of SNNQAs using the horizontal pod auto-scaler (HPA) and 
HPA combined with auto-scaling group (ASG) in OpenStack cloud. 

5. Discussion 

Elasticity is one of the main characteristics of cloud computing, which means that computing 
resources can be increased or decreased in a dynamic and on demand way according to the current 
workload of applications [17]. Current solutions direct use of the auto-scaling groups to spawn VMs 
on which a dedicated VM is used to run Spark master daemons and other VMs are used to run Spark 
worker daemons. Since the performance variability of VMs running Spark master daemons can 
impact the scheduling tasks of the Spark engine, it may be less likely to build useful regression 
models for estimating the execution time of Spark-based PSQPAs. Moreover, the Spark master and 
worker daemons running on VMs can be out of work without using an additional recovery 
mechanism. Additionally, the capacity of the dedicated VM would be over-provisioned or 
under-provisioned let alone the computing resource ineffectively used. As shown in Figure 6, when 
using the ASVI strategies, the efficiency of the SNNQAs is highly variable. Since each Spark worker 
daemon consumes a fixed number of memory resources on the Ubuntu VMs, we cannot specify a 
large value to the number of Spark workers that run on the same VM. During our testing, we 
observed that Spark worker daemons are frequently lost. This may be correlated with the 
Transmission Control Protocol (TCP)-oriented Netty protocol used for receiving the commands 
from the Spark master and transmitting data between Spark workers. If the connection is lost, then 
Spark workers would be out of services. In addition, the limited memory space of Spark executors 
can’t satisfy the computation requirement when handling too much data or too many query objects. 
The relationship between the number of Spark worker daemons running on VMs and the execution 
time of the SNNQAs is indefinite. To satisfy time-constrained data analysis, the uncertainty should 
be removed. The performance variability of the VMs and the lack of a self-healing mechanism for 
Spark workers running on VMs preclude us from using an ASVI strategy, while the overall 
performance of SNNQAs using ASVC is more stable than that using ASVC strategies. The time costs 
of SNNQAs could complete in less than 280 s if we provide less than 28 Docker containers in this 
context. We notice that the time cost grows rapidly when using more than 32 containers for Spark 
workers and an ASVC strategy. The reason may be highly correlated with the kernel burden for 
switching processes, and the completion between Kubernetes pods would be high. Since Kubernetes 
adapts an implicit optimization policy that always tries to achieve the specified status according to 
the current available resource, the scheduler would take more time to reassign the failed containers 
to proper nodes. Compared with VMs, Linux containers demonstrate equal or better performance 
under various workloads [22].As shown in Figure 8, SNNQAs using ASVI strategies complete in less 
than 300 s when fewer than 32 containers for Spark workers are used. Other than self-healing 
containers, Kubernetes facilitates auto-scaling containers to all available computing nodes through 
the use of an HPA. We also explore the relationship between the execution time of SNNQAs and the 
number of containers in large clusters. Figure 9 shows that a small number of containers with a 

Figure 10. Comparison of the efficiency of SNNQAs using the horizontal pod auto-scaler (HPA) and
HPA combined with auto-scaling group (ASG) in OpenStack cloud.

5. Discussion

Elasticity is one of the main characteristics of cloud computing, which means that computing
resources can be increased or decreased in a dynamic and on demand way according to the current
workload of applications [17]. Current solutions direct use of the auto-scaling groups to spawn VMs
on which a dedicated VM is used to run Spark master daemons and other VMs are used to run
Spark worker daemons. Since the performance variability of VMs running Spark master daemons
can impact the scheduling tasks of the Spark engine, it may be less likely to build useful regression
models for estimating the execution time of Spark-based PSQPAs. Moreover, the Spark master and
worker daemons running on VMs can be out of work without using an additional recovery mechanism.
Additionally, the capacity of the dedicated VM would be over-provisioned or under-provisioned let
alone the computing resource ineffectively used. As shown in Figure 6, when using the ASVI strategies,
the efficiency of the SNNQAs is highly variable. Since each Spark worker daemon consumes a fixed
number of memory resources on the Ubuntu VMs, we cannot specify a large value to the number of
Spark workers that run on the same VM. During our testing, we observed that Spark worker daemons
are frequently lost. This may be correlated with the Transmission Control Protocol (TCP)-oriented Netty
protocol used for receiving the commands from the Spark master and transmitting data between Spark
workers. If the connection is lost, then Spark workers would be out of services. In addition, the limited
memory space of Spark executors can’t satisfy the computation requirement when handling too much
data or too many query objects. The relationship between the number of Spark worker daemons
running on VMs and the execution time of the SNNQAs is indefinite. To satisfy time-constrained
data analysis, the uncertainty should be removed. The performance variability of the VMs and the
lack of a self-healing mechanism for Spark workers running on VMs preclude us from using an
ASVI strategy, while the overall performance of SNNQAs using ASVC is more stable than that using
ASVC strategies. The time costs of SNNQAs could complete in less than 280 s if we provide less than
28 Docker containers in this context. We notice that the time cost grows rapidly when using more than
32 containers for Spark workers and an ASVC strategy. The reason may be highly correlated with
the kernel burden for switching processes, and the completion between Kubernetes pods would be
high. Since Kubernetes adapts an implicit optimization policy that always tries to achieve the specified
status according to the current available resource, the scheduler would take more time to reassign the
failed containers to proper nodes. Compared with VMs, Linux containers demonstrate equal or better
performance under various workloads [22].As shown in Figure 8, SNNQAs using ASVI strategies
complete in less than 300 s when fewer than 32 containers for Spark workers are used. Other than
self-healing containers, Kubernetes facilitates auto-scaling containers to all available computing nodes
through the use of an HPA. We also explore the relationship between the execution time of SNNQAs
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and the number of containers in large clusters. Figure 9 shows that a small number of containers with
a moderate number of total executor cores used by Spark, results in robust executions of the SNNQAs.
The relationship is definite when the total executor cores do not exceed the number of virtual cores of
all available VMs. Lastly, we check the feasibility of an HPA combined with an auto-scaling group for
the elastic provision of containers in a scale-out manner. The results, as shown in Figure 10, indicate
that an HPA combined with an auto-scaling group is useful for predicting an SQP in a cloud computing
environment. Although tremendous efficiency can be obtained when an HPA is used, we observe
that the Heapster plugin sometimes fails to collect CPU metrics, which may impact auto-scaling
container strategies. Another shortage is that Spark components running in Docker containers have
no simple way to share data and software packages. We use the volume NFS image for sharing data
among Kubernetes Pods, which may impact the total execution time of SNNQAs. This is an area
future research.

6. Conclusions

In this paper, we proposed an elastic spatial query processing approach in an OpenStack
cloud computing environment by using Kubernetes-managed Docker containers for auto-scaling
an Apache Spark computing engine. By leveraging the self-healing and auto-scaling mechanism
of Kubernetes and utilizing the in-memory computing paradigm of Spark, we can build an elastic
cluster computing environment for spatial query processing in a cloud computing environment.
To satisfy time-constrained data analysis, we introduces the implementation of Spark-based spatial
query processing algorithms (SQPAs) in this paper, and then we identified three factors that would
impact the execution time of SQPAs. The first factor is the internal parameters of the SQPAs, which
includes the number of grids p that are used for grouping spatial correlation datasets. Since the
Spark engine is suitable for tackling tremendous but relatively small tasks, we suggested using
a large value of the parameter p and considering the volume of spatial datasets and the underlying
computing resource. The second factor is the parameters of the Spark computing model such as
total-executor-cores. For example, an inappropriate number of total executor cores used by the Spark
engine would bring about intense completion between containers. We suggested using a small number
of containers with a moderate number of total executor cores for reliable spatial query processing of
big spatial data. The last factor is the parameters used for defining auto-scaling strategies. For example,
MinReplicas, MaxReplica, and Targetpercentage parameters would impact the execution time of
SQPAs. The experiments and the tests conducted on an OpenStack cloud computing platform indicate
a chance for time-constrained SQPAs. Considering the parameters, our future work will investigate
how to build cost models for Spark-based spatial query algorithms that use the ASVC strategies and
how to automate the settings of these parameters in OpenStack clouds for processing spatial big data
in the big data era.
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