
Article

Efficient Geometric Pruning Strategies for
Continuous Skyline Queries

Jiping Zheng 1,2,3,*, Jialiang Chen 1 and Haixiang Wang 1

1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China; chenjialiang@nuaa.edu.cn (J.C.); wanghaixiang@nuaa.edu.cn (H.W.)

2 Collaborative Innovation Center of Novel Software Technology and Industrialization,
Nanjing 211106, China

3 School of Computer Science and Engineering, The University of New South Wales, Sydney,
NSW 2052, Australia

* Correspondence: jzh@nuaa.edu.cn; Tel.: +86-25-8489-6490 (ext. 16116)

Academic Editors: Norbert Bartelme and Wolfgang Kainz
Received: 15 November 2016; Accepted: 19 March 2017; Published: 22 March 2017

Abstract: The skyline query processing problem has been well studied for many years. The
literature on skyline algorithms so far mainly considers static query points on static attributes.
With the popular usage of mobile devices along with the increasing number of mobile applications
and users, continuous skyline query processing on both static and dynamic attributes has become
more pressing. Existing efforts on supporting moving query points assume that the query point
moves with only one direction and constant speed. In this paper, we propose continuous skyline
computation over an incremental motion model. The query point moves incrementally in discrete
time steps with no restrictions and predictability. Geometric properties over incremental motion
denoted by a kinetic data structure are utilized to prune the portion of data points not included in
final skyline query results. Various geometric strategies are asymptotically proposed to prune the
querying dataset, and event-driven mechanisms are adopted to process continuous skyline queries.
Extensive experiments under different data sets and parameters demonstrate that the proposed
method is robust and more efficient than multiple snapshots of I/O optimal branch-and-bound
skyline (BBS) skyline queries.

Keywords: continuous skyline queries; incremental motion model; geometric properties;
event driven mechanisms; grid file index

1. Introduction

The skyline query [1,2] is a useful operation for many important applications, including
multi-criteria optimal decision making. Given two certain and multi-dimensional tuples u and v,
u dominates v iff u is no worse than v in all dimensions, and strictly better than v in at least
one dimension. Due to the exponentially increasing usage of smartphones and the availability of
inexpensive position locators, location-based services (LBS) are increasingly popular where skyline
queries are based on the current location of the user, which changes continuously as the user moves.
Taking an example of a tourist looking for restaurants, she/he may be interested in the restaurants
close to her/his location that are cheap and have good reputations. Since the distances between
the tourist and the restaurants are changing as the tourist travels, the skyline needs to be updated
continuously. In addition, the tourist may have a destination in her/his mind and she/he moves
towards the place. As shown in Figure 1, the user at time t0 (i.e., at the place q(t0)) moves in an
upright direction (though users may move in arbitrary directions, in reality one user at a time only
moves in one direction). At the next time t1, the user arrives at the place q(t1). The ideal route may

ISPRS Int. J. Geo-Inf. 2017, 6, 91; doi:10.3390/ijgi6030091 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2017, 6, 91 2 of 28

be the red one. However, for various reasons, such as picking up a friend, carriage maintenance, and
traffic congestion etc., the actual route may be the yellow or the blue one.

q(t0)

q(t1)p1

p2

p3

p4

p5

p6

p7

p8

query
candidate

hypothetical route

actual routes

Figure 1. Routes for finding restaurants while moving.

In other real-time applications such as e-games and digital battle systems, the route between a
player and her destination may not be straight. Instead, the route is tortuous, as in the routes in the
previous restaurant finding example. When the fighting player moves, she should keep her eyes on
those guardians who are close and most dangerous to her in terms of energy, weapon, etc. To find
suitable restaurants during travel or to escape guardians while moving to the player’s destination,
the intuitive approach to updating the skyline query results is to recalculate the skyline results
using efficient algorithms from scratch, such as branch-and-bound skyline (BBS) [3,4]. However, the
relatively effective solution is to cache the last computed skyline results and to only calculate those
data objects that may enter or leave the skyline results.

Note that existing approaches always assume that the motion of the query point is continuous
and exactly calculable. Huang et al. [5] assumed that the query point was moving consecutively and
the velocity of query point was known as (vx, vy). Lin et al. [6] and Guo et al. [7] considered the
motion of the query point a to be a line, and Lin et al. [6] also assumed the query point was moving
within a certain range. For location privacy consideration, the user query point is sometimes assumed
to vary in a disk region [8]. In this paper, we address the motion typically presented incrementally
over a series of discrete time steps, which is more practical for real applications.

Since discrete motion patterns are more suitable for moving points, we utilize the incremental
motion model for the continuous skyline queries. That is, query points are moving incrementally in
discrete time steps. Unlike existing motion models in [5–8], given the drift error bound and velocity
of the drift, the incremental motion model places no restrictions on the motion or on its predictability
(although the direction in this paper is given, we have no restrictions on moving directions). Under
the incremental motion model, we utilize the geometric properties to prune the region in which the
data objects will not be in the final skyline query results. To avoid calculating the skyline results from
scratch while query points are moving, we maintain a data structure similar to kinetic data structures
(KDSs) [9,10], which are famous in the area of computational geometry. The KDS keeps the desired
relationship between data by storing all those data in some structures specific to the relationship. The
contents in KDS do not change unless the relationship between some data points has been changed.
The data structure includes a list for skyline query results at each time step. When the query point
moves, the data structure decides whether the data object(s) enter(s) the skyline results or goes out
of the result set. The implementation of the data structure is based on event-driven mechanisms.
The framework of processing continuous skyline queries under an incremental motion model is
illustrated as shown in Figure 2. First, the input dataset is pruned using geometric properties based
on the incremental motion model. Then, we calculate the initial skyline results on the pruned dataset.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 3 of 28

Event-driven mechanisms are adopted to compute the continuous skyline results when the query
point is moving. To sum up, the key contributions are as follows:

• We adopt an incremental motion model for the continuous skyline queries which neither
restricts the motion nor makes any predictions.

• By utilizing the geometric properties as a query point moves under incremental motion
model, we prune skyline non-result-related data points, which can accelerate the processing
of continuous skyline queries.

• Instead of accurate dominance, we propose probabilistic dominance under an incremental
motion model for two data points which possibly dominate each other. By giving different
thresholds of possible dominance, we decide the final query results, which are more actual in
real applications.

• We demonstrate the efficiency of the geometric pruning strategies under an incremental motion
model with extensive experiments on large-scale datasets.

Event Queue

Initial Skyline Set

Source

Dataset

Data access

data pre-pruning

operation

Initial events

creation

Events

execution and

Skyline update

Continuous Skyline

Querying Results

Incremental

Motion Model

Pruned

Dataset

Extension

Multiple types of motion

Parameter

determination and motion

model establishment

geometric pruning operation

Region-based

partition for dataset

Figure 2. Continuous skyline processor.

The rest of the paper is organized as follows. Section 2 introduces related work. Preliminaries
are given in Section 3. Section 4 presents the geometric pruning strategies. Data structures and
event-driven processing mechanisms are provided in Section 5. Extensions to specific motion patterns
are proposed in Section 6. Results of comprehensive performance studies are discussed in Section 7.
Section 8 concludes the paper.

2. Related Work

Skyline Queries. The skyline operator was introduced to the database community by Borzsonyi et al. [1]
in 2001. Consequent studies have focused on efficient skyline query processing. Tan et al. [11]
developed bitmap and index techniques. Chomicki et al. [12] developed the sort-filter-skyline
algorithm (SFS), which improved Block Nested Loop (BNL) by pre-sorting the dataset. Several
optimizations to the SFS algorithm (e.g., [13]) increase its efficiency. Kossmann et al. [14] presented
a nearest neighbor algorithm (NN) which allowed users to change preferences during runtime.
Papadias et al. [4] proposed a progressive algorithm called branch-and-bound skyline (BBS), based
on a nearest neighbor search technique supported by R-trees. Variations of the skyline operator
have also been explored, such as in a distributed environment, road networks, skyline cubes, reverse
skylines, and approximate skylines, just to name a few. See [2] and [15] for more extensions. However,
the above studies only consider static query points on static attributes. Sharifzadeh et al. [16] first
introduced the spatial skyline queries which are also named multi-source skyline queries in road
networks by Deng et al. [17]. They differentiate the attributes of the data objects to two categories:
spatial attributes and non-spatial attributes, which are also called dynamic and static dimensions or

ISPRS Int. J. Geo-Inf. 2017, 6, 91 4 of 28

static attributes and dynamic attributes. They also only considered static query points on dynamic
attributes.
Motion Modeling and Skyline Processing. Another related area is monitoring continuous motions
using kinetic data structures (KDS) in computational geometry. Basch et al. [9] first proposed a
conceptual framework for KDS to continuously maintain evolving attributes of mobile data. A basic
assumption in the KDS framework is that the object trajectories are known. More recently, several
efforts have been made to deal with data in much less restricted models of motion. Mount et al. [18]
studied the maintenance of geometric structures in a setting where the trajectories are unknown.
They separated the concerns of tracking the points and updating the geometric structure into two
modules: the motion processor (MP) and the incremental motion algorithm (IM). They further presented
a simple online model in which two agents named observer and builder cooperated to maintain the
incremental motion [19].

Motion considered in skyline queries includes a moving query point and moving data objects.
Huang et al. [5] proposed a kinetic-based data structure to update the skyline results. The query
point was moving along with predefined motion patterns (i.e., uniform motion in a straight line).
Lee et al. [20] also studied a similar problem. However, both of the attempts rely on the assumption
that the velocities of the moving points are known. Unfortunately, this assumption does not hold in
many real-world applications where the points (e.g., cars, tourists) frequently change their motion
patterns (e.g., speed and direction). Furthermore, the extension of their techniques is non-trivial
for the scenarios where velocities are unknown. Lin et al. [6] assumed that the query point is in a
predefined spatial range instead of an exact location or moving along with a line segment. To handle
the movement of the querying objects, the incremental version of the line-based skyline solution
has been devised to reduce both the result set size and the computation cost. Hsueh et. al [21]
presented an algorithm to update the skyline when the data objects change their attribute values.
Cheema et al. [22] proposed a safe zone-based approach for monitoring moving skyline queries
which allows queries to move in an arbitrary fashion. The query results are required to be updated
only when the query leaves its safe zone. In the framework, when a query point moves in the
time interval between two adjacent events, its trajectory belongs to a safe zone. Vu et al. [23]
introduced uncertainty both on the query point and Points Of Interest (POIs) for spatial skyline
queries. The uncertainties here are represented as square disks with varied radii. Compared to
this method, our incremental motion model considers not only the uncertainties (represented by
the disk whose radius is the maximum speed), but also the directions. Another difference from
these studies is that we prune the data points not belonging to the final skyline results based on
geometric properties as a preprocessing step, which accesses less data points and thus saves more
CPU time. The authors in [3,4,24–26] studied dynamic skylines. However, [3,4,24] used branch and
bound method (BBS) to calculate the skyline results from scratch. References [25,26] utilized a caching
mechanism to accelerate the dynamic/constraint skyline query processing. However, for continuous
skyline queries, they are based on past queries not fully utilizing the query results of last moment.
In addition, the methods of Sacharidis et al. [25] are not practical due to the shortcomings of bitmap
coding mechanisms.

3. Preliminaries

When query points move, the distances between the query point and data points need to be
estimated for further processing of skyline queries. In this section, we first estimate the location of
the query point on incremental motion model, and then evaluate distance dominance between the
data points for further calculating skyline results. Table 1 summarizes the notations frequently used
throughout the paper.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 5 of 28

Table 1. Summary of notations.

Notation Meaning

pi ≺ pj pi dominates pj
pi ≺dist pj pi dominates pj in distance

pt, pi, pj, qs data points, the center of the Euclidean ball
sn, si, sj, sk, sk′ skyline point

sp f the farthest skyline point
Ssta the static partial skyline
Schg the volatile partial skyline
S,S0 the complete skyline

MB(M) the boundary of the motion M
L vertical bisector of pi and pj

L1, L2 the tangent lines of an incremental motion model (a series of Euclidean balls)
LL a bidirectional linked list to store skyline points
Q a priority queue to hold events

3.1. Problem Definition

Given n data points in the dataset D, each point has d-dimensional non-spatial attributes, also
called static attributes. Each point pi is stored as (p(pi), pi,1, pi,2, ..., pi,d), and p(pi), pi,j are the
location of pi and jth-dimensional static attribute of pi, respectively. Thus, pi can be represented as
pi = (pi,1, pi,2, ..., pi,d, pi,d+1), where pi,d+1 is the distance of the query point q and data point pi.

Definition 1. (Static Dominance) For two data points pi, pj and all attributes of pi except distance attribute,
∀k, k = (1, 2, ..., d), pi,k ≤ pj,k and at least one < holds, we say that pi statically dominates pj, represented as
pi ≺sta pj.

Definition 2. (Complete Dominance) For two data points pi, pj, ∀k, k = (1, 2, ..., d + 1), pi,k ≤ pj,k and at
least one < holds, we say that pi completely dominates pj, denoted as pi ≺ pj.

Although the skyline processing involves spatial and static attributes in our problem, some data
points could be always in the skyline no matter how the query point moves. This is because these
data points have the dominating nonspatial attributes which guarantee that no other data points can
dominate them. We denote this subset of skyline points as Ssta, the final skyline query results as
S , and the difference of the two sets S − Ssta, as Schg for data points in Schg might not be skyline
points when query point moves. It is obvious that Schg contains two parts: the first part is Sin, which
includes the data points from non-skyline dataset D − S . These points become skyline points when
the query point moves. The second part is Sremain, which contains the skyline points not moving out
of S when the query point moves.

Instead of snapshot skyline queries like I/O optimal BBS method, we define the continuous
skyline queries as follows.

Definition 3. (Continuous skyline queries) Given the skyline results S0 at time t0, the skyline result S1 at
next time t1 is based on S0 and only considers two varied sets: S0 − S1, the data points move out of skyline
results of time t0, and S1 − S0, the data points from D − S0 become skyline points.

From References [1,5,20,21], we know that the skyline result S0 is small compared with D.
However, the dataset D − S0 is also too large. Fortunately, not all data points in this dataset have
the possibility to become skyline points. In practice, according to the motion of query point q, only
a very small part of D − S0 can be skyline points. So, the computation overhead of the continuous
skyline queries will be decreased to some extent compared with snapshot skyline queries.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 6 of 28

3.2. Incremental Motion Model

The incremental motion model was first proposed by Mount et al. [18]. Later, Cho et al. [19]
utilized this model to maintain net and net tree structures under an incremental motion model.
We give a brief introduction to this model with adaptive modifications to our problem.

3.2.1. Query Point Position

Let q be a query point. The position of q in Euclidean space at time t is denoted as q(t).
The motion of point q,M, is a finite sequence of point positions sampled at discrete time instances:
M =< q(t0), q(t1), ..., q(tN) >, where ti−1 < ti. The interval between two consecutive instances is a
time step: s = [ti−1, ti]. Let v denote the estimation of a query point’s current velocity. The estimated
displacement of the point over this step is sv, and its actual displacement is given by the vector
u = q(ti)− q(ti−1). Let |u| denote the Euclidean length of vector u. we use drift of this point at time
ti to represent the relative error between the actual and estimated displacements:

edri f t =
|u− sv|
|sv| (1)

Let δ be the drift bound; we say that the motionM satisfies this motion estimate if for all time
steps the drift of M relative to the velocity estimate v is at most δ. Given the velocity estimate v
and given any time t, the estimated location of the point after an elapsed time of s is defined to be
q̂(t, s) = q(t) + sv. For example, the estimated location of q(ti−1) after step s is q̂(ti−1, s)
(see Figure 3a). Let B(q, r) denote a Euclidean ball of radius r centered at point q. From the above
definitions, we have

q(ti) ∈ B(q̂(ti−1, s), sδ|v|) (2)

Let T be a time interval of duration starting at time t, T = [t, t + s]. If a motionM satisfies a given
motion estimation, then for each time instance t + s′ ∈ T, 0 ≤ s′ ≤ s, the query point q(t + s′) lies
within a Euclidean ball centered at q̂(t, s′) and the boundary of M is determined by a series of the
balls mentioned above (see Figure 3b). The following equation specifies the constraints on its position
at any time:

MB(M) =
⋃

1≤s′≤s
B(q̂(t, s′), δs′|v|) (3)

s |v|

q(ti)

),(ˆ 1 sti q

q(ti-1)

u

sv

(a)

s |v|
q(t)

sv

q(t+s')

pi

max

min

L1

L2

),(ˆ s'q t

(b)

Figure 3. Incremental motion (IM) model. (a) Error bounds; (b) Location estimation.

3.2.2. Time Parameterized Distance Function

In our problem, the velocity of a query point is determined by the positions of the point at
different time steps:

v =
q(ti)− q(ti−1)

ti − ti−1
(4)

For simplicity, we assume that the query point q moves in 2d space, v = (vx, vy), and the position
of q at time ti is q(ti) = (xi, yi). We use qs to represent the center of the Euclidean ball. At time ti,

ISPRS Int. J. Geo-Inf. 2017, 6, 91 7 of 28

qs = (xi, yi). After an elapsed time of s = [ti, ti+1], the center of the incremental motion model qs

changes to (xi+1, yi+1) and equals to (xi + svx, yi + svy). Then, for a data point p located at (xp, yp),
at time ti+1, the estimated distance between qs and p can be expressed as follows:

D̂(p, qs) =
√
(xi + svx − xp)2 + (yi + svy − yp)2 (5)

By Equation (3), the estimated location of the query point is q(ti+1) ∈ B(q̂(ti, s), sδ|v|). Since the
estimated location of a query point after an elapsed time s is in a Euclidean ball, the actual distance
between q(ti+1) and p is constrained in a certain range (see Figure 3b). We use I(p, q(ti+1)) to denote
the distance between p and q(ti+1):

I(p, q(ti+1)) = [D̂(p, qs)− sδ|v|, D̂(p, qs) + sδ|v|] (6)

Besides, dist(p, q(ti+1)) is used to denote the actual distance between p and q(ti+1), which is in the
range of I(p, q(ti+1)) denoted by Equation (6).

3.3. The Dominance Relationship of Distance

As the query point moves constantly, the distance between the moving point and each data
point changes, which is inaccurate because we cannot predict the actual position of the query
point exactly. However, we are sure that the distance is in a certain range: I(pi, qs). In addition,
if dist(pi, qs) < dist(pj, qs), pi is closer to the query point than pj. The dominance relationship between
dist(pi, qs) and dist(pj, qs) is not confirmed, because both of them are inaccurate but within a known
range. So, we need a rational method to compute the probability that pi is better than pj in distance.

Assume that after an elapsed time s, the position of a query point is shown in Figure 4, the radius
of the incremental motion model is sδ|v|, and L denotes the perpendicular bisector of pi pj which
divides the ball into two regions: Di and Dj. Then, we use A and B to denote the two intersections of
L and the ball. When the query point q is within region Di, dist(pi, qs) < dist(pj, qs).

Lemma 1. Assume that the position of query point q is uniformly distributed in the Euclidean ball. The angle
between the estimated position of query point q to the intersections of the perpendicular bisector of pi pj and the
bound of the incremental motion model is 2θ, then the probability that pi is better than pj in distance, denoted
by Pr(pi <dist pj), can be calculated by

Pr(pi <dist pj) =
θ − sin θ cos θ

π2 (7)

Proof. As long as the query point is in the region Di, pi is closer to the query point than pj;
consequently, the probability that pi is better than pj in distance is equal to the probability that
the query point falls in the region Di. Assuming that the possible positions of the query point
are uniformly distributed in the ball, we only need to compute the proportion of region Di to the
whole ball.

The angle between the estimated position of query point q to the intersections of the
perpendicular bisector of pi pj is 2θ, so the area of fan-shaped AqB is:

S(^AqB) =
2θ

2π
πR2 = θR2 (8)

where R denotes the radius of the ball.
In addition, the area of triangle ABq is:

S(4ABq) =
1
2
|AB| × |qC| = 1

2
2R sin θR cos θ =

1
2

R2 sin(2θ) (9)

So, the area of Di can be expressed as follows:

S(Di) = S(^AqB)− S(4ABq) =
(2θ − sin(2θ)R2

2π
=

(θ − sin θ cos θ)R2

π
(10)

ISPRS Int. J. Geo-Inf. 2017, 6, 91 8 of 28

Then, we can obtain that:

Pr(pi <dist pj) =
S(Di)

πR2 =
θ − sin θ cos θ

π2 (11)

From the above analysis we can see that with the movement of a query point the distance
between the moving point and each data point is not certain, and is related to the estimated position
of the query point. Next, we will give the definition of dominance in distance. Lemma 1 has shown
how to compute the probability that pi is better than pj in distance.

s |v|

pi

pj

L

q

Di

Dj

A

B
C

Figure 4. Dominance of distance for two data points.

Definition 4. (Dominance in Distance) If the probability that pi is better than pj in distance is greater
than a predefined threshold—That is, Pr(pi <dist pj) > τ—, we say that pi dominates pj in distance
(i.e., pi ≺dist pj).

Definition 5. (Skylines based on Thresholds) If 1− τ ≤ Pr(pi <dist pj) ≤ τ or 1− τ ≤ Pr(pj <dist pi) ≤ τ,
pi and pj cannot dominate each other in distance, and if no other data point can dominate pi or pj, they both
belong to the skylines.

The probability here is defined by the ratio of two areas (see Figure 4 and Equation (11)); the
skyline queries are not probabilistic skyline queries as in Pei et al. [27] where probabilities denote the
probable occurrence of each possible world from the PWS (possible world semantics) space composed
by uncertain data objects.

4. Evaluating Skyline Changes under Incremental Motion

4.1. Pruning Using Geometric Properties

The final skyline results consist of the points which are not dominated by any other skyline,
both in distance and all static dimensions. So, if pi cannot dominate pj in static dimensions, pi cannot
dominate pj after considering the distance dimension. That is, pi can dominate pj only if pi dominates
or at least equals pj in all static dimensions. Thus, we can use the static skyline results and the earliest
spatial relations of the data points to minimize the scale of data and reduce unnecessary data accesses.

Lemma 2. For a query point q at time t, if sp f is the farthest point in Ssta to the query point q, then any point
pt that cannot dominate sp f in distance is not in S .

Proof. Obviously, pt /∈ Ssta, thus ∃sp ∈ Ssta, and sp dominates pt in static dimensions. Since sp f is
the farthest point in Ssta to the query point q, sp dominates sp f in distance and sp f dominates pt in
distance; thus, pt is dominated by sp when considering distance and static dimensions, pt /∈ S .

Lemma 2 indicates a search bound when processing skyline queries. We can prune the portion
of the unqualified data points before query processing: points that are dominated in distance by all
points in Ssta can be eliminated. Furthermore, if the drift error bound δ and the estimated velocity of
a query point v are given, the range of the ball in the incremental motion model is determined.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 9 of 28

Lemma 3. As shown in Figure 5, the tangent lines of the ball of the increment motion model are L1, L2 (see
Figure 3b). Through query point q we draw lines H1H′1, H2H′2 vertical to L1 and L2, respectively. All these
lines partition the entire area space into three parts: region A, region B, and the remaining area. Then, for any
data point p in region B, if there exists a data point sk in region A and satisfies sk ≺ p while the query point
resides in the region L1qL2, p cannot be in the final skyline.

H1

H2

L
2

q'
q

p0

sk0

L1

A
B

H1'

H2'

Figure 5. Pruning under IM Model.

Proof. Initially, p is dominated by sk, so sk dominates (or is equal to) p in all static dimensions, and
dist(sk, q) ≤ dist(p, q). There may be two situations in the future:

1. sk is always in the skyline.
2. sk leaves the skyline at some time step.

For situation 1, consider the extreme case: sk lies on the boundary of region A (qH′1 or qH′2), then
we take q as the center and dist(sk0, q) as the radius to draw a circle (see Figure 5). We only need to
prove that any data point p in region B or outside of the circle, if p is dominated by sk in initial, it will
still be dominated by sk in the future. p0 is one of the extreme cases: through point q we draw a line
vertical to p0sk0 (i.e., the line L1), because the whole estimated region of q is on the right side of the
line, so sk0 is nearer to the query point than p0 in the future and sk0 still dominates p0.

For situation 2, if sk leaves the skyline, there exists a point sk′ ≺ sk; in this case, sk′ dominates
(or is equal to) sk in all static dimensions, and dist(sk′, q) ≤ dist(sk, q). Referring to situation 1, sk ≺ p
still holds, so sk′ ≺ p and p can be safely pruned.

We use Lemma 3 to divide a dataset into several regions, and verify each data point by the region
it belongs to, then we prune the points that have no potential to enter the skyline S in the future.

Lemma 4. On the basis of Lemma 3, we add following constraint: the angle of the incremental motion model
α ≤ 60◦ as shown in Figure 6a. L is the reverse extension line of the angular bisector of ∠L1qL2, H2H′2 and L
divide the entire area space into several parts, denoted by dark grey and light grey color. A data point p cannot
be in the final skyline when the query point q still resides in the estimated region and one of the following two
situations is satisfied:

1. p lies in region D1 and is dominated by another point S in C1.
2. p lies in region D2 and is dominated by another point S in C2.

Note that D1, D2, C1, and C2 are trapezoidal regions in Figure 6.

Proof. From the above analysis, for a data point p lying in region D1 we only need to prove that sk still
dominates p in distance. Similar to the proof of Lemma 3, when α ≤ 60◦, we draw the perpendicular
bisector of p and sk, the estimated region of q is on the sk side of the perpendicular bisector. Figure 6
has shown an extreme situation. Because H1H′1, H2H2 are the perpendicular bisectors of L1 and L2,
respectively, α + β = β + γ, then α = γ. Obviously, γ + 2θ = 180◦. When γ = 60◦, p0sk0 ‖ H2H′2,

ISPRS Int. J. Geo-Inf. 2017, 6, 91 10 of 28

so the perpendicular bisector of p0sk0 is the line L2, as the estimated region of q is on the sk0 side of
L2, sk0 still dominates p0 in the future. When p belongs to region D2 = area(LqH2) symmetrically to
D1, similar to situation 1, p is dominated as shown in Figure 6b.

q
L1

L2

q'

sk0

p0

H2 H1'

H1 H2'

C1
D1

L
q

!

"

#

#

(a)

q
L1

L
2

q

H1 H2'

H2 H1'

q'

C2
D2

L
!

"

#

#

(b)

Figure 6. Sophisticated pruning. (a) D1 is dominated; (b) D2 is dominated.

Lemma 5. As shown in Figure 7, let α be the angle of the incremental motion model, then we add extra angle
α outside L1, L2, and draw two auxiliary lines L′1 and L′2. After an elapsed time of s, assume that the estimated
position of the query point is q′. If in initial any data point p in region P is dominated by a point sk in region
S, p cannot be in the skyline in the elapsed time of s.

L1

L1'

L2'

P

L2

q
q'

S

p0

sk0

Figure 7. Pruning by prediction.

Proof. Similar to the proof of Lemma 3, we first draw the perpendicular bisector of p and sk and
what we need to prove is that estimated region of q is on the sk side of the perpendicular bisector.
Figure 7 shows the extreme case: draw the perpendicular bisector of sk0 and p0, sk0 dominates p0 in
initial, in this situation, the perpendicular bisector goes through the start position of q. Additionally,
∠L′1qL1 = ∠L1qL2 = α, so the perpendicular bisector is L1. the estimated region of q is on the sk0 side
of L1, sk0 still dominates p0 in the elapsed time of s.

4.2. Change of Skyline under Moving Contexts

When the query point moves, the dominance of data points may change. As shown in Figure 8, at
time t1, Pr(pj <dist pi) = 1, pj ≺dist pi, and at time t5, Pr(pi <dist pj) = 1, pi ≺dist pj. The distances to
query point q of pi and pj overlap at time t2, t3, and t4. Although the distance dominance relationship
is uncertain at these moments, we can still compute the probabilities of dominance in distance.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 11 of 28

q

pi

pj

L

q(t1)

v v

q(t2)

q(t3) q(t4) q(t5)

Figure 8. Change of distance dominance for two data points.

At moment t3, the perpendicular bisector of pi pj goes through the center, Pr(pj <dist pi) = 0.5,
according to the threshold setting 0.5 ≤ τ ≤ 1, the dominating relation in distance is likely to change.
At moment t3, the relationship is determined by τ. Intuitively, we set τ = 0.5, and t is the moment
that distance dominance relationship between the two data points changes, called an intersection.
A skyline point may leave the skyline after time t. On the other hand, a nonskyline point at time t
may enter the skyline. In Figure 8, after time t2 si must be dominated by a skyline point sj. Those
points that used to dominate the point before t2 will stop dominating it. If τ > 0.5, because of the
change of the dominance relationship in distance, the time that pj leaves the skyline will be later
than t2. Similarly, the time that pi enters the skyline will be earlier than t2. That is, both pj and pi will
remain in the skyline as long as they cannot dominate each other in distance. If there is no intersection,
the distance dominance relationship will remain unchanged. Whether an intersection will affect the
skyline depends on which set pi and pj belong just before time t. Obviously, not every intersection
causes the skyline to change. Table 2 shows possible dominance changes after an intersection.

We have the following theorems to describe these possibilities in detail.

Table 2. Possibilities for an intersection of two data points.

Possibility Before Intersection After Intersection

A pi ≺dist pj pj ≺dist pi
B pi ≺dist pj incomparable
C incomparable pj ≺dist pi

Theorem 1. An intersection has no influence on the skyline if one of the following conditions holds before t:

1. In all conditions, pi ∈ Ssta, pj ∈ S ;
2. In all conditions, pi /∈ S ;
3. In condition C, pi ∈ S , pj /∈ S ;
4. In condition B, pi ∈ Schg, pj ∈ S .

Note that condition A, B, C are shown in Table 2.

Proof.

1. If pi ∈ Ssta, it is obvious that pi does not leave the skyline. As pj ∈ S , there are two situations.
First, we assume that pj ∈ Ssta. Thus, pj is still in the skyline and the skyline remains unchanged.
Second, we assume that pj ∈ Schg. Since pj ∈ S , there exists no point p that dominates pj. Before
time t, the points which have potential to dominate pj do not intersect with pj. So, pj is still in Schg
and causes no change to the skyline.

2. Since pi /∈ S , before time t there must be at least one point sk ∈ S in the skyline dominating
it. The intersection has no influence on sk ≺dist pi if pj ∈ Ssta and pj will not leave the skyline.
Additionally, if pj ∈ Schg, for the same reason as in item (1), pj will stay in the skyline. If pj /∈ S , as
in item (1).

ISPRS Int. J. Geo-Inf. 2017, 6, 91 12 of 28

3. Since pi ∈ S , there are two situations: pi ∈ Ssta and pi ∈ Schg. We first assume pi ∈ Ssta. Then, pi is
still in the skyline after the intersection. Then, we assume pi ∈ Schg. On one hand, because pj /∈ S ,
pj cannot dominate pi in all static dimensions, and pi is still a skyline point after the intersection;
on the other hand, pj /∈ S and pi and pj cannot dominate each other in distance, so pj is unable to
dominate pi, there must be a point p ∈ S which dominates pj. Therefore, there is no intersection
between p and pj, p ≺ pj and pj /∈ S .

4. For the same reason as in item (1), pj is still in the skyline after the intersection. pi ∈ Schg, assume
that pj dominates pi in all static dimensions. After the intersection, pj and pi cannot dominate each
other in distance, so pj cannot dominate pi. Thus, pi ∈ Schg.

Theorem 2. An intersection may have influence on the skyline if one of the following conditions holds before t:

1. In condition A or B, pi ∈ S , pj /∈ S ;
2. In condition A or C, pi ∈ Schg, pj ∈ S .

Note that conditions A, B, and C are shown in Table 2

Proof.

1. First, assume that pi ∈ Ssta. So, pi is still in the skyline after the intersection. Since pj /∈ S , there
must be at least one skyline point in S dominating it. If pi dominates pj before t, then after t there
may be one of the following situations: pj ≺dist pi or pi and pj cannot dominate each other in
distance. Consequently, pj will enter the skyline after t in both situations.

2. Obviously, pj will not leave the skyline after t. pi ∈ Schg, pj ∈ S , if pj dominates pi in all static
dimension, after t, pi will leave the skyline since pj ≺dist pi.

According to Theorem 2, we only need to consider the two following cases in which the skyline
may change:

1. In initial, si ∈ S , sn /∈ S , and si ≺ sn. After an intersection, si can no longer dominate sn, then sn

can enter the skyline and depends on whether si is the unique skyline point that dominates it.
2. Initially, si ∈ Schg, sj dominates si in all static dimensions. After an intersection, si can be

dominated by sj and leave the skyline.

5. Skyline Computation

5.1. Continuous Skyline Query Processing

We now explore the continuous skyline query processing techniques according to the above
analysis. A naive way is to call the existing algorithms to process skyline queries in each time step
to acquire continuous query results. Since we know the estimated position of the query point and
parameters of the associated incremental motion model, the results are credible. However, processing
continuous skyline queries in this way needs to traverse the entire dataset repeatedly, which will
inevitably increase the running time and I/Os. In practice, the speed of a query point is not very fast;
therefore, the skyline will not change frequently. For example, as mentioned in Section 1, a user is
looking for restaurants. Her/his moving speed is considerable not too fast. So, the skyline results
in the last moment can be utilized to process skyline queries of the next moment. Otherwise, if the
speed is too fast or the time interval is large enough that the skyline results in the last time step are
all changed at the next moment, we would rather utilize snapshot skyline queries for this situation.
For the motivation examples, these will not occur. So, in this paper, we assume the query points
are not moving too fast and skyline results in last moment can be used for next time step query

ISPRS Int. J. Geo-Inf. 2017, 6, 91 13 of 28

processing. For the problem, we can use the strategies mentioned in previous sections to compute the
intersections that may influence the skyline and maintain the skyline results incrementally.

First, we compute the initial skyline. After that, we decide which moment may cause the skyline
change and record the intersections the skyline results may change. Then, when an intersection
comes, we deal with it and determine further intersections for the updates of the skyline.

Corollary 1. Assume that the distances of skyline points si, sj, and sk to the estimated query point is an
increasing sequence, then the intersection between si and sk will not occur before an intersection between any
two adjacent points of si, sj, and sk.

Proof. Assume that si and sj intersect at time tx, sj, sk, and si, sk intersect at time ty, tz, respectively.
Before an intersection, we know that si <dist sj <dist sk, and we only need to prove that tz must
be later than tx and ty. Now suppose that tz is earlier than tx or ty. So, after time tz, sk <dist si.
Additionally, si <dist sj is still valid since no intersection happens between any two adjacent points,
which contradicts sk <dist si. Therefore, tz must be later than tx and ty.

We stored the skyline in a sequence according to their distances to the query point. We also only
need to compute intersections between two adjacent skyline points.

5.2. Data Structure and Conditions

We use a bidirectional linked list (other similar data structures, such as heap and array are
also fine for we process these structures not “on-line”; instead, they could be processed during the
interval of two time steps) named LL to store current skyline points, which are sorted in ascending
order of their distances to the query point. The form of each skyline point si in LL is denoted as
(f lag, dist, tvalid, tskip). f lag indicates whether si belongs to Ssta, dist is the distance between si and
the query point q, tvalid is the validity time of si, which is only available to each changing skyline point
and recording the time when si is dominated, and tskip is the time si will exchange its position with
its successor in LL (see the algorithms below for details).

By Theorem 2, there are two situations that may cause the skyline to change. Assume the time
of an intersection is tinsec (τ = 0.5):

1. Before time tinsec, si is a changing skyline point. sj is farther to query point q than si, and sj
dominates si in all static dimensions. Then, after tinsec, si will be dominated by sj and leave
the skyline;

2. Before time tinsec, si is a skyline point, and sn is a nonskyline point. Then, after tinsec, sn can
enter the skyline depending on whether si is the unique skyline point which dominates it.

To summarize the above analysis, we only need to consider the cases which may cause the
skyline to change. For simplicity, this paper has made two assumptions on the threshold τ:

1. The perpendicular bisector of pi pj goes through the centre of the ball in the incremental
motion model, so θ = 90◦, we can derive from Lemma 1 that:

Pr(pi <dist pj) =
2θ − sin(2θ)

2π
= 0.5

For τ = 0.5, before time t2, pj ≺dist pi, and after that pi ≺dist pj (as shown in Figure 8).
2. Assume that the perpendicular bisector of pi pj goes through the point C where is 1/4 of the

diameter (see Figure 4); i.e., |qC| = 1/2|qA|. Therefore, cos θ = 0.5, and θ = 60◦; we can
obtain from Lemma 1 that:

Pr(pi <dist pj) =
2θ − sin(2θ)

2π
=

1
3
−
√

3
4π

ISPRS Int. J. Geo-Inf. 2017, 6, 91 14 of 28

For convenience of calculation, we set Pr(pi <dist pj) = τ.

Theorem 3. As shown in Figure 8, assume that the position coordinates of p1, p2 are (x1, y1) and (x2, y2).
The query point is starting from (xq, yq) with velocity v(vx, vy), then the time of the intersection can be
presented as below:

1. τ = 0.5, t = yq−kxq−C
kvx−vy

2. τ = 1
3 −

√
3

4π , time of the intersection are t2 and t4, t2 and t4 can be given as follows: t2 =
kxq−yq+C

δ|v|
√

k2+1−kvx+vy
, t4 = − kxq−yq+C

δ|v|
√

k2+1+kvx−vy
where k = x1−x2

y2−y1
, C = y1+y2

2 − k x1+x2
2 .

Proof. The coordinates of p1, p2 are (x1, y1) and (x2, y2), the perpendicular bisector of p1 p2, denoted
by L, can be written as: y− y1+y2

2 = x1−x2
y2−y1

(x− x1+x2
2); that is, x1−x2

y2−y1
x− y + (y1+y2

2 − x1−x2
y2−y1

x1+x2
2) = 0.

Let k = x1−x2
y2−y1

, C = y1+y2
2 − k x1+x2

2 :

1. If τ = 0.5, we only need to compute when the query point will meet the perpendicular bisector of
p1 p2; that is, the moment p1 and p2 is equal to the distance to the query point: (xq + tvx − x1)

2 +

(yq + tvy − y1)
2 = (xq + tvx − x2)

2 + (yq + tvy − y2)
2, then t = yq−kxq−C

kvx−vy

2. If τ = 1
3 −

√
3

4π , at time t2 and t4, the query point satisfies the condition of 1/4 of the diameter
(see Figure 4) , time t1 and t5 are the tangential moments of the perpendicular bisector and the
bound of the ball in the incremental motion model. We derive time t4 via t3 and t5; t2 is similar.
The vertical speed of the perpendicular bisector is denoted by v⊥. At time t5, distance from
the query point to L is equal to the current radius of the ball in the motion model, so we have
|k(xq+vxt5)−(yq+vyt5)+C|√

k2+1
= δ|v|t5. According to (1), t3 =

yq−kxq−C
kvx−vy

, then v⊥ can be obtained by

v⊥ = δ|v|t5
t5−t3

. Therefore, from t3 to t4, the distance varies along the direction of v⊥ is equal to half of
the radius. So, v⊥(t4 − t3) =

1
2 δ|v|t4.

Based on the above equations, as a conclusion, t4 = − kxq−yq+C
δ|v|
√

k2+1+kvx−vy
. Similarly, t2 =

kxq−yq+C
δ|v|
√

k2+1−kvx+vy
.

As the query point moves, the distances between all data points and the query point are varying,
which may cause the skyline to change. According to the type of the change, three events are
formulated as follows:

• Event exit. This occurs when any skyline point leaves the skyline, which will only happen to
a volatile skyline. Assume that si ∈ Schg, and there is another skyline point sj with potential
to dominate si, then if si intersects with sj in distance and Pr(sj <dist si) > τ, si will leave the
skyline; that is, an exit event happens.

• Event in. This occurs when any nonskyline point enters the skyline. For a nonskyline point
sn and all those skyline points currently dominating it, if sn gets closer to query point q than
skyline point si, si can no longer dominate it; that is, an in event happens. However, whether
it will enter the skyline depends on whether si is the only one to dominate it. This will be
checked when an event of this kind is being processed.

• Event chgord. This occurs when a couple of skyline points in LL make a sequential change.
For a skyline point si, if it intersects with its successor sj and sj cannot dominate it, si and sj
exchange positions in LL; that is, a chgord event happens. Notice that sj does not have the
potential to dominate si; otherwise, an exit event will happen instead.

As shown in Figure 9, the list includes {sk1, sk2, sk3, sk4} data points, and the points are sorted in
ascending order of their distances to the query point. At time t, Pr(sk3 <dist sk2) > τ, sk3 dominates
sk2 in all static dimensions. Then, an exit event will happen because sk2 will be dominated and

ISPRS Int. J. Geo-Inf. 2017, 6, 91 15 of 28

leaves the skyline (see Figure 9b). If sn is the skyline point dominated by sk3 uniquely, at time t, if
dist(q, sk3) > dist(q, sn), then an in event will happen because sn will enter the skyline (see Figure 9c).
Additionally, at time t, if sk3 gets closer to query point q than sk2 and sk3 has no potential to dominate
sk2, then an chgord event will happen because sk2 and sk3 will exchange their positions in the list
(see Figure 9d).

sk1

sk2 sk3

sk4

(a)

sk1

sk2 sk3

sk4

(b)

sk1

sk2 sk3

sk4

nsp

(c)

sk1

sk3 sk2

sk4

(d)

Figure 9. Processing for three events. (a) Original event sequence; (b) Exit event; (c) In event;
(d) Change event.

A global queue is used to maintain all events to represent future skyline changes. Each event is
in the form of (time, type, sel f , rel) when the event happens at time time, and type is used to record
the kind of this event. sel f and rel respectively represent the skyline point and the relevant data point
involved in the event. In an exit or chgord event, sel f represents the skyline point si, while peer is
its successor sj. In an in event, sel f represents the skyline point while peer stands for the relevant
nonskyline point sn.

Initially, LL contains all the current skyline points while Q contains recent events that will
happen in the nearest future. As time elapses, events in the queue are dequeued and handled
according to their types. While handing events and updating the skyline, the process also incurs
future incoming events. Therefore, Q evolves with existing events being dequeued and new events
enqueued. After all due events are processed, LL contains all the correct skyline points with respect
to the query point q’s current position.

5.3. Event-Driven Mechanisms for Continuous Query Processing

In our method for the static data set, we use a simple 2D grid file index dividing the data space
into h× v cells. We set the data points within each cell are stored in one disk page. At the beginning
of the algorithm, the static skyline will be computed in advance. According to Lemma 2, the farthest
distance is recorded in variable d f arest as a search bound, and the cells beyond d f arest are pruned for
reducing I/Os (see Figure 10).

sk1

sk2 sk3

q

Figure 10. Pruning with the grid file index.

As shown in Algorithm 1, in initial, all permanent skyline points in Ssta are inserted into LL
based on their distance to the starting position of query point q. First, we prune the dataset by utilizing
geometric properties. Then, starting from the cell where q’s initial position lies, all grid cells are
searched in a spiral manner so that those on an inner surrounding circle are searched before those

ISPRS Int. J. Geo-Inf. 2017, 6, 91 16 of 28

on an outer one, as shown in Figure 10. Then, we organize the data set according to Lemma 3, 4, 5 with
heap structure. A heap H is used to store cells or data points that are possible to enter the skyline,
which its top is the cell or the data point which is closest to q’s estimated position. Points or cells in the
heap are sequentially compared to the current skyline points in LL, which is adjusted with deletion
or insertion if necessary. After that, events will be created for continuous skyline query—all events
for all skyline points, except the last one in LL. Next, the farthest skyline point is applied to compute
possible in events for those points farther than it.

Algorithm 1: Initialization
Input: the position of a query point q
Output: the initial skyline IS for q, the event queue Q with initial events

1 According to Ssta , insert an entry (1, dist, ∞, ∞) into LL;
2 Search bound determined by d f arest = (LL.last, q);
3 Prune the dataset by Ssta ;
4 Insert the cell where q’s position lies into H
5 Scan the grid file from where q lies;
6 while !Empty H do
7 pop(H), pop and process the top entry e;
8 if e is a data point then
9 compare with all the current skyline points in LL;

10 if Not dominated then
11 Insert e into LL;

12 if s is a cell then
13 if Not dominated then
14 Insert child entries of e into H sequentially;

15 for each cell celli on next outer surrounding circle do
16 if dist(celli , q) < d f arest || celli is not dominated then
17 insert celli into H
18 else
19 break

20 for each si from LL.last.prev to LL. f irst do
21 CreateEvents(si , q);

22 Compute possible in events with LL.last;

Algorithm 2 has shown the process of CreateEvents in detail. For a given skyline point si, the
algorithm first computes the time t when si and the next skyline point sj in LL will exchange their
positions in the list that sj will dominate si in distance. If t is later than sj’s exchange time or si’s
validity time, it is ignored. Otherwise, it means an exit event depending on sj’s validity time if
si ∈ Schg, or it is a simple chgord event. Then compute in events for each nonskyline point sn that
distance to q’s estimated position comparing with si and sj’s distances.

When the nearest event in Q happens, it is dequeued and processed with the relevant points
involved according to its type. Then create new events after the new skyline is obtained (as shown in
Algorithm 3). At any time when Q is empty, all the points in LL are the correct skyline of the current
time point.

According to Algorithm 3, the actions to process each kind of event are described as follows:
for an exit event, si is removed from the skyline list LL and creates new events for its predecessor
since the successor has been changed; for an in event, the nonskyline point sn will be checked to
see whether it is unique and dominated by si. If yes, sn will be inserted into the skyline list LL and
new events are computed for relevant points. Otherwise, a possible new in event is computed and
enqueued. For a chgord event, the skyline list is correctly adjusted by exchanging the positions of si
and sj. Similarly, relevant events are created and enqueued for them and their predecessors if exists.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 17 of 28

Algorithm 2: CreateEvents
Input: a skyline point si in LL
Output: events for s

1 rel = NULL;
2 sj = si .next; // sj is the successor point of si in LLi ;
3 t = time sj and si will intersect in distance to q;
4 if t < sj .tskip and t < sj .tvalid then
5 if si /∈ Ssta then
6 if (t < sj .tskip) and (t < sj .tvalid) then
7 rel = sj ;
8 si .tvalid = t;
9 EnQueue an exit event to Q;

10 else
11 si .tskip = t;
12 EnQueue a chgord event to Q;

13 for each sp from si to LL. f irst do
14 t is time nonskyline point p get closer to q than sp ;
15 if (t > sp .tvalid) or (t > sp .tskip) then
16 continue;

17 if ∀s in LL, s � p then
18 Enqueue an in event to Q;
19 break;

Algorithm 3: Process due event
Input: the current time t_cur
Output: the updated skyline S , updated list LL

1 while !empty Q & Q. f ront.time == t_cur do
2 Dequeue Q. f ront process due event based on type;
3 if type == exit then
4 Delete si in LL;
5 CreateEvent for si .prior;

6 if type == chgord then
7 exchange positions of si and sj in LL;
8 CreateEvent for relevant points;

9 if type == in then
10 Insert sn into LL and before si ;
11 CreateEvent for relevant points;
12 else
13 EnQueue a new in event to Q;

14 DeQueue;

6. Pruning Strategies for Specific Motion Patterns

The geometric pruning strategies can be easily integrated into the known moving trajectories
to reduce the number of data points. In this section, we provide the geometric pruning strategies
under the incremental motion model for three different classes of trajectories: enclosed, bounded, and
unbounded. In the case that the movement or part of the moving range boundary of a query point
is known, if the position of the point is now not qualified to establish an incremental motion model,
we assume that there is a “virtual query point” somewhere in the past, and it was able to be applied
to the incremental model. Moreover, the movement of the true query point—though not consistent
with the incremental motion model—stays in the estimated region of the incremental motion model
set up by the virtual query point.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 18 of 28

(a)Circle (b)Ellipse (c)Parabola

(d)Sinusoid (e)Spiral (f)Peach (g)Archimedean Spiral

Figure 11. Motion Patterns: (a–c) Enclosed; (d,e) Bounded; (f,g) Unbounded.

Enclosed motion patterns If the movement of a query point q is an enclosed curve, the query point
stays in the enclosed region surrounded by the curve. Figure 11a–c are three typical enclosed motion
patterns: circle, ellipse, and parabola. In this case, in spite of q’s moving speed, the point moves along
the curve and makes an influence to the skyline repeatedly. In consideration of the characteristics of
enclosed curves, the exact upper and lower bounds in all directions of a query point can be obtained.
Based on all of the above curves, we can establish incremental motion models in different directions
to acquire a series of virtual query points; after that, the geometric pruning algorithm will be executed
iteratively, and filtering out most of the redundant points which make no influence to the skyline.

Motion patterns with bounds If the movement of a query point q is a curve with bounds, it means
that we can acquire its upper and lower bounds in one or several directions while the rest have no
boundaries or could not be predicted (Sinusoid and Spiral are two of this kind of motion pattern, as
shown in Figure 11d,e). According to the property of these curves, we can still utilize the starting
position of the query point and the directions that bounds can be obtained to establish an incremental
motion model, get a virtual point, and apply to the geometric pruning strategies. Basically, though
the effect of filtering is not as efficient as the situation of enclosed patterns, it is still worth executing
compared to snapshot skyline queries.

Motion patterns without bounds If the movement of a query point q is a curve without bounds,
then no bounds can be gained in each direction and it is infeasible to use the geometric pruning
strategies based on incremental motion model (examples of this kind of motion pattern are peach and
Archimedean spiral in Figure 11f,g).

According to the characteristics of different types of trajectories, the curves can be classified
as follows:

1. There exists an upper or lower bound in one or several directions (prerequisite). For this kind
of curve we can try to establish an incremental motion model by making a pair of tangent
lines (e.g., parabola, logarithmic curves). The qualifications of tangent lines are:

(a) There exists an upper or lower bound in some direction(s).
(b) The pair of tangent lines will intersect and generate a virtual query point.
(c) The angle between the pair of tangent lines satisfies the demands of the geometric

pruning framework.
2. There exists no bound in all directions or it is unable to acquire a pair of qualified tangent lines

in (1). In this case, we cannot adopt the geometric pruning strategies directly. Then, we need

ISPRS Int. J. Geo-Inf. 2017, 6, 91 19 of 28

to take the characteristics of the curves into account and adapt it to the framework by adding
additional restrictions.

7. Experiments

A näive approach to monitoring moving skylines is to call existing algorithms such as I/O
optimal BBS [3,4] to recompute the skyline whenever the results need to be updated. In this
section, we compare the näive algorithms to the proposed methods against various factors which
may potentially affect the performance of the algorithms. All the algorithms are implemented in
standard C++ with STL library support and compiled with GNU GCC 4.9.3. Experiments were run
on a PC with Intel Core i3-3240 3.40GHz dual CPU and 4G memory running Ubuntu Linux 14.04 LTS.
The disk page size was fixed to 4096 bytes.

To generate datasets for the experiments, we first fetched real-life California’s interesting points
from the website [28] (see Figure 12), then we combined the real locations with nonspatial dimensions
following different distributions: Independent, Correlated, Anti-correlated, and Zipf. The data size
of California’s real locations is about 100 K, and we generate nonspatial dimensions like that in
reference [1]. The attribute value of a data point varied from 1 to 1000. CPU time and I/O counts were
used to measure the efficiency of the algorithms under 100 runs of skyline queries. The concerned
parameters used in the experiments are listed in Table 3. In particular, the following algorithms
were evaluated:

• Continuous skyline query (CSQ): Incremental model-based continuous skyline method which
performs the skyline change tracing algorithm in reference [5] directly without using the
geometric pruning strategies.

• GP-CSQ: Method performing the skyline change tracing algorithm combined with the
geometric pruning strategies using the Lemma 3 (Lemma 4, its extension) only.

• GP2-CSQ: An instance of the method performing the skyline change tracing algorithm
combined with the geometric pruning strategies using both Lemma 3 (Lemma 4) and 5.

43

42

41

40

39

38

37

36

35

34

33

32

-125 -124 -123 -122 -121 -120 -119 -118 -117 -116 -115 -114

�
✁
✂✄
✂☎
✆
✝

✞✟✠✡☛☞☛✌✍✎

Figure 12. California’s points of interest (circle dots and the star denote the starting positions).

Since the BBS algorithm is the most efficient method for computing skyline in static settings
(both data points and query point are static), we adopted it for comparison in the experiments.
When the location of the query point changed, we only modified the “mindist” to adapt the basic

ISPRS Int. J. Geo-Inf. 2017, 6, 91 20 of 28

BBS algorithm (see [4]). Besides, we also used the method which is called “ex-BBS” in [5] for contrast
to our proposed methods.

Table 3. Parameter and ranges (Default value ∗).

Parameter Range

Cardinality 10 K, 20 K, 30 K, 50 K, 100 K∗

Static Attributes 2∗, 3, 4, 5
Starting Position (42° N, –125° W), (39.5° N, –122.5° W)

(37 °N, –120° W)∗, (34.5° N, –117.5° W)
Moving Speed (1,-1)∗, (2,-2), (4,-4), (8,-8)
Error Bound 0.2, 0.35, 0.5∗, 0.65

Effect of Cardinality. To generate different-sized datasets, we randomly selected part of the real
locations and then combined with two synthetic nonspatial dimensions. Thus, we converted the
size of the datasets from 10 K to 100 K. Then, we executed 100 (10 for anti-correlated) continuous
skyline queries on the datasets. For each query, we set the starting position of the query point as
(37◦ N,–120◦ W). The default speed of the query point was (1, −1), while the moving direction was
the same as vector (1, −1). The threshold was fixed to be 0.5.

In Figure 13, the CPU cost of the original CSQ algorithm is higher than BBS algorithms in some
cases, because CSQ not only processes non-skyline objects but also computes the initial events to
maintain the skyline in the future; GP-CSQ and GP2-CSQ were faster in general because the geometric
pruning policies can filter out a large number of unqualified data points and cut down the CPU cost of
event computing. Note that in Figure 13d, CSQ takes much time and the size of the skyline results is
large because anti-correlated datasets incur more events. Figure 14 shows that as cardinality increases,
the I/Os of CSQ, GP-CSQ, and GP2-CSQ are nearly 10% less than that of BBS, while GP-CSQ and
GP2-CSQ are a little better than CSQ algorithm.

 0

 1

 2

 3

10K 20K 30K 50K 100K

C
P

U
 t
im

e
(s

)

Cardinality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(a)

 0

 150

 300

 450

 600

10K 20K 30K 50K 100K

1
0

-3
×
C

P
U

 t
im

e
(s

)

Cardinality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(b)

 0

 1.5

 3

 4.5

 6

10K 20K 30K 50K 100K

C
P

U
 t
im

e
(s

)

Cardinality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(c)

 0

 4

 8

 12

 16

10K 20K 30K 50K 100K

C
P

U
 t
im

e
(s

)

Cardinality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(d)

Figure 13. Effect of cardinality (CPU time). BBS: branch-and-bound skyline; CSQ: continuous
skyline query; GP-CSQ: CSQ with geometric pruning; GP2-CSQ: CSQ using geometric pruning from
Lemmas 3, 4, 5. (a) Independent; (b) Correlated; (c) Anti-correlated; (d) Zipf.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 21 of 28

 100

 1000

 10000

 100000

10K 20K 30K 50K 100K

N
u
m

b
e
r

o
f
I/
O

Cardinality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(a)

 10

 100

 1000

 10000

 100000

10K 20K 30K 50K 100K

N
u
m

b
e
r

o
f
I/
O

Cardinality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(b)

 0.1

 1

 10

 100

 1000

10K 20K 30K 50K 100K

1
0

3
×
N

u
m

b
e
r

o
f
I/
O

Cardinality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(c)

 10

 100

 1000

10K 20K 30K 50K 100K

N
u
m

b
e
r

o
f
I/
O

Cardinality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(d)

Figure 14. Effect of cardinality (I/O). (a) Independent; (b) Correlated; (c) Anti-correlated; (d) Zipf.

Effect of nonspatial dimensionality. We used a real 100 K road network dataset combined with
nonspatial dimensionality ranging from two to five to evaluate the effect of nonspatial dimensionality
on our methods. Values on these nonspatial dimensionalities varied from 1 to 1000. The set of other
parameters are the same as shown in Table 3.

As shown in Figure 15, the pruning strategies can save running time to a certain extent while
supporting higher nonspatial dimensionality. In Figure 16, CSQ algorithms have a clear advantage
in I/Os since they focus on dynamic attributes while nonspatial attributes are considered only in
dominance checking. Note that the efficiency of the geometric pruning strategies were affected
slightly because a data point is harder to be dominated in higher nonspatial dimensionality and
makes it almost impossible to prune more data points.

 0

 30

 60

 90

2 3 4 5

C
P

U
 t
im

e
(s

)

Non-spatio Dimensionality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(a)

 0

 1

 2

 3

 4

2 3 4 5

C
P

U
 t
im

e
(s

)

Non-spatio Dimensionality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(b)

 0.1

 1

 10

 100

 1000

 10000

2 3 4 5

C
P

U
 t
im

e
(s

)

Non-spatio Dimensionality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(c)

 0

 5

 10

 15

 20

2 3 4 5

C
P

U
 t
im

e
(s

)

Non-spatio Dimensionality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(d)

Figure 15. Effect of nonspatial dimensionality (CPU time). (a) Independent; (b) Correlated;
(c) Anti-correlated; (d) Zipf.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 22 of 28

 0.1

 1

 10

 100

 1000

 10000

2 3 4 5

1
0

3
×
N

u
m

b
e
r

o
f
I/
O

Non-spatio Dimensionality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(a)

 1

 10

 100

 1000

 10000

2 3 4 5

1
0

3
×
N

u
m

b
e
r

o
f
I/
O

Non-spatio Dimensionality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(b)

 1

 10

 100

 1000

2 3 4 5

1
0

3
×
N

u
m

b
e
r

o
f
I/
O

Non-spatio Dimensionality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(c)

 1

 10

 100

 1000

2 3 4 5

1
0

3
×
N

u
m

b
e
r

o
f
I/
O

Non-spatio Dimensionality

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(d)

Figure 16. Effect of nonspatial dimensionality (I/O). (a) Independent; (b) Correlated; (c) Anti-correlated;
(d) Zipf.

Effect of Starting Positions. Obviously, the effectiveness of geometric pruning strategies is related to
the location of query points. In this section, we performed experiments simulating an object moving
from the northwest to the southeast in California to verify the influence of different starting positions.
Representatively, the starting positions will be chosen in (42◦ N,–125◦ W), (39.5◦ N,–122.5◦ W),
(37◦ N,–120◦ W), (34.5◦N,–117.5◦ W); other query parameters were picked up in the same way as
in previous experiments. We mainly explored the effect of position related to the efficiency of the
pruning strategies by choosing the above four representative positions for evaluation. Moreover, we
intended to obtain the general performance of the geometric pruning strategies.

As shown in Figures 17 and 18, the costs are quite distinct since the efficiency of pruning
operations are obviously affected by the positions of the query point. The pruning operation of
ex-BBS was almost disabled since there exists a permanent skyline far from the query position. If
the query point approaches the center of the spatial area, the pruning operations of ex-BBS are more
likely to malfunction. The geometric pruning strategies tend to be available except in the extreme
situation in which the query point is starting from the edge of the spatial location. Moreover, the
proposed GP-CSQ and GP2-CSQ methods can filter out most of the unqualified data points in some
specific cases in which the region to be pruned is extensive (e.g., in the position (34.5◦N, –117.5◦W),
saving about 60%–80% of CPU time and I/Os). Note that in Figure 17d, the CPU cost of the CSQ
algorithm is much higher since there are a mount of events needing to be computed and GP-CSQ and
GP2-CSQ are approaching that of BBS due to the optimization of the geometric pruning strategies.

Effect of Moving Speed. In this section, we run the experiments where the speed of the query
point varies from (1,−1) to (8,−8). We still use the real-world dataset of 100 K combined with two
correlated, independent, anti-correlated, and zipf-distributed nonspatial attributes.

In Figures 19 and 20, it is obvious that the cost of CSQ increases with the query speed because
the distance of data points intersects more frequently, which means larger numbers of events incur
and need to be disposed of, thus consuming more I/Os and CPU time. Optimized by the proposed
geometric pruning strategies, the I/O cost of GP-CSQ and GP2-CSQ is not too sensitive. However,
the CPU time for creating and handling events is still too high when the query point moves very fast.
We can see that CSQ, GP-CSQ, and GP2-CSQ algorithms are more suitable in the context of lower
moving speeds. If the query point moves at a high speed, we prefer to compute skyline from scratch;
i.e., call BBS algorithm for each time step.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 23 of 28

Effect of Error Bound. In this section, we change the setting of thresholds from 0.2 to 0.65 running
on the California road network dataset. A higher threshold means that more data points can get in
the skyline earlier or leave it later. In Figures 21 and 22, as the thresholds get wider, the costs of
CSQ increases slightly since more points remain in the skyline and create more events. Generally, the
change of threshold would not cause a prominent effect on the costs of the GP-CSQ and GP2-CSQ
methods. In particular, in Figure 22c, the second-time pruning operations using Lemma 5 were
evidently weakened by wider threshold, since the available region of data points to be pruned
became too small and the distribution made it fail to filter out unqualified data points. The CPU
cost was lower when the threshold was equal to 0.5 because the process of computing the probability
of dominance checking is simplified to speed up the processing.

 0

 500

 1000

 1500

 2000

 2500

(42,-125) (39.5,-122.5) (37,-120) (34.5,-117.5)

1
0

-3
×
C

P
U

 t
im

e
(s

)

Location of data(latitude,longitude)

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(a)

 0

 20

 40

 60

 80

(42,-125) (39.5,-122.5) (37,-120) (34.5,-117.5)
1
0

-3
×
C

P
U

 t
im

e
(s

)

Location of data(latitude,longitude)

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(b)

 0

 1.5

 3

 4.5

 6

(42,-125) (39.5,-122.5) (37,-120) (34.5,-117.5)

C
P

U
 t
im

e
(s

)

Location of data(latitude,longitude)

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(c)

 0

 50

 100

 150

 200

 250

(42,-125) (39.5,-122.5) (37,-120) (34.5,-117.5)

1
0

-3
×
C

P
U

 t
im

e
(s

)

Location of data(latitude,longitude)

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(d)

Figure 17. Effect of starting position (CPU time). (a) Independent; (b) Correlated; (c) Anti-correlated;
(d) Zipf.

 1

 10

 100

 1000

(42,-125) (39.5,-122.5) (37,-120) (34.5,-117.5)

1
0

3
×
N

u
m

b
e
r

o
f
I/
O

Location of data(latitude,longitude)

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(a)

 10

 100

 1000

 10000

 100000

(42,-125) (39.5,-122.5) (37,-120) (34.5,-117.5)

N
u
m

b
e
r

o
f
I/
O

Location of data(latitude,longitude)

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(b)

 0.1

 1

 10

 100

 1000

(42,-125) (39.5,-122.5) (37,-120) (34.5,-117.5)

1
0

3
×
N

u
m

b
e
r

o
f
I/
O

Location of data(latitude,longitude)

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(c)

 0

 50

 100

 150

 200

(42,-125) (39.5,-122.5) (37,-120) (34.5,-117.5)

1
0

3
×
N

u
m

b
e
r

o
f
I/
O

Location of data(latitude,longitude)

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(d)

Figure 18. Effect of starting position (I/O). (a) Independent; (b) Correlated; (c) Anti-correlated;
(d) Zipf.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 24 of 28

 0

 2000

 4000

 6000

 8000

(1,-1) (2,-2) (4,-4) (8,-8)

1
0

-3
×
C

P
U

 t
im

e
(s

)
Velocity of movement

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(a)

 0

 1500

 3000

 4500

 6000

(1,-1) (2,-2) (4,-4) (8,-8)

1
0

-3
×
C

P
U

 t
im

e
(s

)

Velocity of movement

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(b)

 0

 2.5

 5

 7.5

 10

(1,-1) (2,-2) (4,-4) (8,-8)

C
P

U
 t

im
e

(s
)

 Velocity of movement

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(c)

 50

 100

 150

 200

 250

(1,-1) (2,-2) (4,-4) (8,-8)

1
0

-3
×
C

P
U

 t
im

e
(s

)

Velocity of movement

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(d)

Figure 19. Effect of moving speed (CPU time). (a) Independent; (b) Correlated; (c) Anti-correlated;
(d) Zipf.

 0.1

 1

 10

 100

 1000

(1,-1) (2,-2) (4,-4) (8,-8)

1
0

3
×
N

u
m

b
e

r
o

f
I/

O

 Velocity of movement

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(a)

 0.1

 1

 10

 100

(1,-1) (2,-2) (4,-4) (8,-8)

1
0

3
×
N

u
m

b
e

r
o

f
I/

O

Velocity of movement

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(b)

 0

 15

 30

 45

 60

(1,-1) (2,-2) (4,-4) (8,-8)

1
0

3
×
N

u
m

b
e

r
o

f
I/

O

 Velocity of movement

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(c)

 0

 10

 20

 30

(1,-1) (2,-2) (4,-4) (8,-8)

1
0

3
×
N

u
m

b
e

r
o

f
I/

O

 Velocity of movement

BBS
ex-BBS

CSQ

GP-CSQ
GP2-CSQ

(d)

Figure 20. Effect of moving speed (I/O). (a) Independent; (b) Correlated; (c) Anti-correlated; (d) Zipf.

 0

 1

 2

 3

 4

0.2 0.35 0.5 0.65

C
P

U
 t

im
e

(s
)

Error Bound

CSQ
GP-CSQ

GP2-CSQ

(a)

 0

 0.25

 0.5

 0.75

 1

0.2 0.35 0.5 0.65

C
P

U
 t

im
e

(s
)

Error Bound

CSQ
GP-CSQ

GP2-CSQ

(b)

 0

 2.5

 5

 7.5

 10

0.2 0.35 0.5 0.65

C
P

U
 t

im
e

(s
)

Error Bound

CSQ
GP-CSQ

GP2-CSQ

(c)

 0

 0.5

 1

 1.5

 2

 2.5

0.2 0.35 0.5 0.65

C
P

U
 t

im
e

(s
)

Error Bound

CSQ
GP-CSQ

GP2-CSQ

(d)

Figure 21. Effect of error bound (CPU time). (a) Independent; (b) Correlated; (c) Anti-correlated;
(d) Zipf.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 25 of 28

 0

 300

 600

 900

 1200

 1500

0.2 0.35 0.5 0.65

N
u
m

b
e
r

o
f
I/
O

Error Bound

CSQ

GP-CSQ

GP2-CSQ

(a)

 0

 100

 200

 300

 400

0.2 0.35 0.5 0.65

N
u
m

b
e
r

o
f
I/
O

Error Bound

CSQ

GP-CSQ

GP2-CSQ

(b)

 400

 500

 600

 700

 800

0.2 0.35 0.5 0.65

N
u
m

b
e
r

o
f
I/
O

Error Bound

CSQ

GP-CSQ

GP2-CSQ

(c)

 250

 500

 750

 1000

0.2 0.35 0.5 0.65

N
u
m

b
e
r

o
f
I/
O

Error Bound

CSQ

GP-CSQ

GP2-CSQ

(d)

Figure 22. Effect of error bound (I/O). (a) Independent; (b) Correlated; (c) Anti-correlated; (d) Zipf.

Geometric Pruning Framework Efficiency Evaluation. In this section, we compare the effect of the
geometric pruning framework under different kinds of motion patterns (e.g., Enclosed, with Bounds,
and without Bounds) to explore whether it is efficient and versatile enough. For simplicity, we take
ellipse, sinusoid, and parabola as representative of the three motion patterns mentioned above.

Figure 23 shows that the geometric pruning framework works efficiently as the cardinality of
each dataset increases. In particular, for the ellipse, the pruning effect is very strong since we can
eliminate most of the data points by invoking the geometric pruning algorithm several times for
an enclosed motion pattern. More specifically, for the rest motion patterns, about 60% of the initial
candidates were pruned out, which can still dramatically reduce the query execution time.

 0

 100

 200

 300

 400

 500

 600

100K 200K 300K 400K 500K1
0

3
×
R

e
m

a
in

g
 d

a
ta

 s
iz

e

Cardinality

Original
Ellipse

Sinusiod
Parabola

(a)

 0

 100

 200

 300

 400

 500

 600

100K 200K 300K 400K 500K1
0

3
×
R

e
m

a
in

g
 d

a
ta

 s
iz

e

Cardinality

Original
Ellipse

Sinusiod
Parabola

(b)

 0

 100

 200

 300

 400

 500

 600

100K 200K 300K 400K 500K1
0

3
×
R

e
m

a
in

g
 d

a
ta

 s
iz

e

Cardinality

Original
Ellipse

Sinusiod
Parabola

(c)

 0

 100

 200

 300

 400

 500

 600

100K 200K 300K 400K 500K1
0

3
×
R

e
m

a
in

g
 d

a
ta

 s
iz

e

Cardinality

Original
Ellipse

Sinusiod
Parabola

(d)

Figure 23. Effect of cardinality. (a) Independent; (b) Correlated; (c) Anti-correlated; (d) Zipf.

Figure 24 shows the influence of nonspatial dimensionality. The proposed pruning strategy
is slightly affected by higher nonspatial dimensionality, since every data point will not be easily
dominated in higher dimensionality, but the result indicates that it is still worth executing the pruning

ISPRS Int. J. Geo-Inf. 2017, 6, 91 26 of 28

operations. Note that the remaining data sizes of the anti-correlated datasets are large due to their
greater skyline results.

 0

 50

 100

 150

2 3 4 51
0

3
×
R

e
m

a
in

g
 d

a
ta

 s
iz

e

Non-spatio Dimensionality

Original
Ellipse

Sinusiod
Parabola

(a)

 0

 50

 100

 150

2 3 4 51
0

3
×
R

e
m

a
in

g
 d

a
ta

 s
iz

e

Non-spatio Dimensionality

Original
Ellipse

Sinusiod
Parabola

(b)

 0

 50

 100

 150

2 3 4 51
0

3
×
R

e
m

a
in

g
 d

a
ta

 s
iz

e

Non-spatio Dimensionality

Original
Ellipse

Sinusiod
Parabola

(c)

 0

 50

 100

 150

2 3 4 51
0

3
×
R

e
m

a
in

g
 d

a
ta

 s
iz

e

Non-spatio Dimensionality

Original
Ellipse

Sinusiod
Parabola

(d)

Figure 24. Effect of nonspatial dimensionality. (a) Independent; (b) Correlated; (c) Anti-correlated;
(d) Zipf.

8. Conclusions

In this paper, we address continuous skyline queries on moving query points under the
incremental motion model. Geometric properties are fully exploited to prune the data points which
will not belong to the final skyline results, thus improving the efficiency of skyline query processing.
Further, event-based mechanisms and a grid file index-based pruning policy are proposed to maintain
continuous skyline results instead of computing skyline results from scratch. Two efficient algorithms
(GP-CSQ and GP2-CSQ) are proposed based on geometric properties, and our extensive experiments
have shown that the two geometric property-based algorithms are more effective and efficient than
existing methods.

There are many promising future directions. Firstly, suitable motion patterns for specific
applications can be found, and we can study how to alter the pruning strategies based on
corresponding geometric properties to adapt the new motion pattern under our framework. Secondly,
since we assume only query points and point attributes are dynamic, if the databases change (i.e., the
data points are varying—insert, update, or delete), we can study how to develop efficient algorithms
to answer user continuous skyline queries. Thirdly, future work can be devoted to investigating
the possibility of using the proposed geometric pruning strategies to support other variants of
skyline queries, such as reserve skyline queries [24], skyline cubes [29], spatial skyline queries [16],
probabilistic skylines [27], and so on. While results obtained from comprehensive experiments
indicated the superiority of our approaches devised based on the geometric pruning strategies over
existing works, we believe that these explored geometric features and the proposed framework are
useful for other skyline query variants not examined in this paper. Another interesting problem is to
extend the geometric pruning strategies to other real applications (e.g., recommendation systems [30],
mobile sensor networks [31,32], and surveillance systems [33]) such that whenever a query point is
located, after a snapshot query is performed, by using the proposed geometric pruning strategies or
other extentions, we can get the small part of candidates which may impact the query result in the
near future without verifying all data points in the system so that the query results can be maintained
efficiently according to the small-scale candidate datasets.

ISPRS Int. J. Geo-Inf. 2017, 6, 91 27 of 28

Acknowledgments: This work is partially supported by the National Basic Research 973 Program of China
under Grant No. 2014CB744900, the Natural Science Foundation of Jiangsu Province of China under grant No.
BK20140826, the Fundamental Research Funds for the Central Universities under grant No. NS2015095, Funding
of Graduate Innovation Center in NUAA under grant No. KFJJ20151606. The authors also would like to thank
the anonymous reviewers for their helpful suggestions.

Author Contributions: Jiping Zheng, Jialiang Chen and Haixiang Wang conceived and designed the
experiments; Jialiang Chen and Haixiang Wang performed the experiments; Jiping Zheng analyzed the data;
Jiping Zheng and Jialiang Chen wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:
BNL Block nested loop
SFC Sort filter skyline
NN Nearest neighbor
MP Motion processor
IM Incremental motion
PWS Possible world aemantics
LBS Location-based service
KDS Kinetic data structure
BBS Branch-and-bound skyline
CSQ Continuous skyline query
GP Geometric pruning

References

1. Börzsöny, S.; Kossmann, D.; Stocker, K. The Skyline Operator. Available online: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.21.2504 (accessed on 21 March 2017)

2. Chomicki, J.; Ciaccia, P.; Meneghetti, N. Skyline Queries, Front and Back. SIGMOD Rec. 2013, 42, 6–18.
3. Papadias, D.; Tao, Y.; Fu, G.; Seeger, B. An Optimal and Progressive Algorithm for Skyline Queries.

In Proceedings of the SIGMOD 2003, San Diego, CA, USA, 9–12 June 2003,.
4. Papadias, D.; Tao, Y.; Fu, G. Progressive skyline computation in database systems. TODS 2005, 30, 41–82.
5. Huang, Z.; Lu, H.; Ooi, B.C.; Tung, A.K.H. Continuous Skyline Queries for Moving Objects. TKDE 2006,

18, 1645–1658.
6. Lin, X.; Xu, J.; Hu, H. Range-Based Skyline Queries in Mobile Environments. ICDE 2013, 25, 835–849.
7. Guo, X.; Zheng, B.; Ishikawa, Y.; Gao, Y. Direction-based Surrounder Queries for Mobile Recommendations.

VLDB J. 2011, 20, 743–766.
8. Qiao, Z.; Gu, J.; Lin, X.; Chen, J. Privacy-Preserving Skyline Queries in LBS. In Proceedings of the 2010

International Conference on Machine Vision and Human-machine Interface, Kaifeng, China, 24–25 April 2010.
9. Basch, J.; Guibas, L.J.; Hershberger, J. Data Structures for Mobile Data. In Proceedings of the SODA ’97,

New Orleans, LA, USA, 5–7 January 1997.
10. Basch, J.; Guibas, L.J.; Hershberger, J. Data Structures for Mobile Data. J. Algorithms 1999, 31, 1 – 28.
11. Tan, K.L.; Eng, P.K.; Beng, C.O. Efficient Progressive Skyline Computation. Available online: http://www.

vldb.org/conf/2001/P301.pdf (accessed on 21 March 2017).
12. Chomicki, J.; Godfrey, P.; Gryz, J. Skyline with Presorting. Available online: http://ieeexplore.ieee.org/

document/1260846/ (accessed on 21 March 2017).
13. Godfrey, P.; Shipley, R.; Gryz, J. Maximal Vector Computation in Large Data Sets. In Proceedings of the 31st

International Conference on Very Large Data Bases, Trondheim, Norway, 30 August–2 September 2005.
14. Kossmann, D.; Ramsak, F.; Rost, S. Shooting Stars in the Sky: An online algorithm for skyline queries.

In Proceedings of the VLDB ’02 , Hong Kong, China, 20–23 August 2002.
15. Hose, K.; Vlachou, A. A Survey of Skyline Processing in Highly Distributed Environments. VLDB J. 2012,

21, 359–384.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.2504
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.2504
http://www.vldb.org/conf/2001/P301.pdf
http://www.vldb.org/conf/2001/P301.pdf
http://ieeexplore.ieee.org/document/1260846/
http://ieeexplore.ieee.org/document/1260846/

ISPRS Int. J. Geo-Inf. 2017, 6, 91 28 of 28

16. Sharifzadeh, M.; Shahabi, C. The Spatial Skyline Queries. In Proceedings of the VLDB ’06, Seoul, Korea,
12–15 September 2006.

17. Deng, K.; Zhou, X.; Shen, H.T. Multi-source Skyline Query Processing in Road Networks. In Proceedings
of the ICDE ’07, Istanbul, Turkey, 15–20 April 2007.

18. Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. A Computational Framework for
Incremental Motion. In Proceedings of the SCG ’04, Brooklyn, New York, USA, 8–11 June 2004.

19. Cho, M.; Mount, D.; Park, E. Maintaining Nets and Net Trees under Incremental Motion. In Algorithms and
Computation; Springer: Berlin, Germany, 2009; pp. 1134–1143.

20. Lee, M.W.; Hwang, S.W. Continuous Skylining on Volatile Moving Data. In Proceedings of the ICDE ’09,
Shanghai, China, 29 March–2 April 2009.

21. Hsueh, Y.; Hascoet, T. Caching Support for Skyline Query Processing with Partially Ordered Domains.
TKDE 2014, 26, 2649–2661.

22. Cheema, M.A.; Lin, X.; Zhang, W.; Zhang, Y. A Safe Zone Based Approach for Monitoring Moving Skyline
Queries. In Proceedings of the EDBT 2013, Brussels, Belgium, 23–27 March 2013.

23. Vu, K.; Zheng, R. Efficient Algorithms for Spatial Skyline Query with Uncertainty. In Proceedings of
the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Orlando, FL, USA, 5–8 November 2013.

24. Dellis, E.; Seeger, B. Efficient Computation of Reverse Skyline Queries. In Proceedings of the 33rd
International Conference on Very Large Data Bases, Vienna, Austria, 23–28 September 2007.

25. Sacharidis, D.; Bouros, P.; Sellis, T. Caching Dynamic Skyline Queries. In Proceedings of the
20th International Conference on Scientific and Statistical Database Management, Hong Kong, China,
9–11 July 2008.

26. Mortensen, M.L.; Chester, S.; Assent, I.; Magnani, M. Efficient caching for constrained skyline queries.
In Proceedings of the EDBT ’15, Brussels, Belgium, 23–27 March 2015.

27. Pei, J.; Jiang, B.; Lin, X.; Yuan, Y. Probabilistic Skylines on Uncertain Data. In Proceedings of the 33rd
International Conference on Very Large Data Bases, Vienna, Austria, 23–28 September 2007.

28. Feifei, L. Spatial Datasets. Available online: https://www.cs.utah.edu/~lifeifei/SpatialDataset.html
(accessed on 21 March 2017).

29. Yuan, Y.; Lin, X.; Liu, Q.; Wang, W.; Yu, J.X.; Zhang, Q. Efficient Computation of the Skyline Cube.
In Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway,
30 August–2 September 2005.

30. Pazzani, M.J.; Billsus, D. Content-Based Recommendation Systems. In The Adaptive Web: Methods and
Strategies of Web Personalization; Brusilovsky, P.; Kobsa, A.; Nejdl, W., Eds.; Springer: Berlin, Germany, 2007;
pp. 325–341.

31. Ciuonzo, D.; Buonanno, A.; D’Urso, M. Distributed classification of multiple moving targets with binary
wireless sensor networks. In Proceedings of the FUSION ’11, Chicago, IL, USA, 5–8 July 2011.

32. Buonanno, A.; D’Urso, M.; Prisco, G. Mobile sensor networks based on autonomous platforms
for homeland security. In Proceedings of the Advances in Radar and Remote Sensing (TyWRRS),
Naples, Italy, 12–14 September 2012.

33. Tsiligkaridis, T.; Sadler, B.M.; Hero, A.O. On decentralized estimation with active queries. IEEE Trans.
Signal Process. 2015, 63, 2610–2622.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.cs.utah.edu/~lifeifei/SpatialDataset.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Preliminaries
	Problem Definition
	Incremental Motion Model
	Query Point Position
	Time Parameterized Distance Function

	The Dominance Relationship of Distance

	Evaluating Skyline Changes under Incremental Motion
	Pruning Using Geometric Properties
	Change of Skyline under Moving Contexts

	Skyline Computation
	Continuous Skyline Query Processing
	Data Structure and Conditions
	Event-Driven Mechanisms for Continuous Query Processing

	Pruning Strategies for Specific Motion Patterns
	Experiments
	Conclusions

