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Abstract: Geographical centrality is an evolving concept that differs from one perspective to another
at different stages. The unprecedented development of high-speed information and transportation
networks has highlighted the important role of space of flows and has restructured the mode of spatial
interaction. The geographical centrality analysis method based on relational networks currently
becomes the mainstream, but most related methods ignore the spatial structure. In this study, we
first analyze the impacts of space of flows on geographical space based on spatial interaction theory.
We argue that geographical space and space of flows dominate short- and long-distance interactions,
respectively. Based on this hypothesis, the concept of geographical centrality based on space of flows
is proposed. The new concept categorizes spatial units into four types: global centers, isolated units,
externally oriented units, and locally oriented units. Then, two quantitative measures, namely, global
and local geographical centrality indexes, are defined. In the case study, we analyze the geographical
centrality of cities in China at three different spatial scales and compare the result with three other
geographical centrality analysis methods. City attribute is concluded to be more important than
spatial distance in urban spatial interaction at the national scale, and this situation is caused by the
effect of space of flows on geographical space. The similarities and differences between the proposed
geographical centrality analysis method and the classic spatial autocorrelation analysis method of
Moran’s I are also discussed.
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1. Introduction

Geographical centrality is an evolving concept that differs from one perspective to another at
different stages. A spatial unit has strong centrality when its average distance to the other spatial units
is closer in the region, and such centrality is based on geographical proximity. A spatial unit with
one or some attributes relatively stronger than those of the other spatial units in the region may also
be considered to possess strong centrality, and this centrality is based on scale attributes. In many
cases, the centrality of a spatial unit is determined by its own attributes and the distance from other
spatial units, and we refer to this condition as the centrality based on geographical proximity and
attributes. Central place theory is a classical location theory proposed by the German geographer Walter
Christaller [1]. This theory is a typical representative of the abovementioned idea and has significantly
influenced the research on geographical centrality. At present, most studies on geographical centrality
adopt the centrality concept defined by central place theory. In central place theory, a central place
refers to a settlement that provides central functions, such as goods and services to surrounding
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settlements. The centrality in this theory is a measure that estimates the relative importance of a central
place servicing other places [1–4].

The rapid development of information technology, especially the Internet, since the 1990s has
facilitated the active flow of people, material, information, capital, and technology in the region and
among cities, and geographical space shows different characters from the past. American scholar
Manuel Castells presented the theory of space of flows, which received a wide range of academic
response. Space of flows is defined as “the material arrangements that allow for simultaneity of
social practices without territorial contiguity” [5,6]. Space of flows compresses and re-conceptualizes
geographical space under the new technical environment. Time gradually replaces distance, and
localization is weakened while the network is enhanced. The large-flow and long-distance factor
mobility in a short time is realized [7,8]. Following the theory of space of flows, urban network theory
was proposed. The GaWC (Globalization and World Cities Research Network) founded by Taylor and
the POLYNET (Sustainable Management of European Polycentric Mega-City Regions) led by Hall
have carried out considerable research on the world city [9,10] and urban agglomeration polycentric
networks [11,12], respectively, which have abounded in the field of urban networks. Taylor et al.
considered that the traditional central place pattern and the network pattern both contain the concept
of place and flow. However, the spatial hierarchical distribution of places determines the distribution
of flows in the central place pattern, while the distribution of flows determines the centrality of
places in the network pattern, which is characterized by the multi-directional connections across
the hinterland [13,14]. Urban network theory holds that the centrality of a city is determined by its
relationship with other cities, and we refer to this situation as centrality based on relational networks.
In the late 1990s, small world and scale-free network theories were proposed [15,16]. These theories
set off the upsurge of complex network research and are powerful tools for urban network research.
The centrality of complex networks, such as degree centrality, betweenness centrality, and closeness
centrality, have also been introduced into urban network studies [17,18].

According to the five different ideas of geographical centrality summarized above, centrality
based on geographical proximity and centrality based on scale attributes are one sided because
they tend to define centrality from one single dimension. Central place theory constructs a spatial
hierarchical system of settlements characterized by triangular settlement distribution and hexagonal
market area by considering both geographical proximity and scale attributes. This system is an ideal
settlement distribution pattern in traditional geography and is still the theoretical basis of residential
system planning at present. In practice, some researchers developed central place theory by theoretical
derivation and simulations on its basic hypotheses [19–22]. Other researchers attempted to fit the
realistic settlement distribution pattern to the ideal central place pattern, which was used as the
criterion for the optimal structure [23–26]. Nevertheless, these studies neglected the emergence and
increasing importance of space of flows, a situation that is significantly different from that when central
place theory was proposed. The irrationality of basic hypotheses and the increasing complexity of
realities reduce the credibility and availability of the conclusions. Consequently, centrality based on
relational networks gradually dominates the research on geographical centrality at present. Research
on spatially-embedded networks is an important direction of the complex network research [27–29].
Some researchers studied the spatial effects of spatially-embedded networks through modeling and
simulating methods [30,31]. Some other researchers studied the community detection method of
spatially-embedded networks [32,33]. However, there are few works on the centrality analysis
method, which considers both the network topology structure and the geographical spatial structure
simultaneously. Most of the relevant works are limited to describing the spatial distribution of node
centrality [17,34]. Therefore, the geographical centrality analysis method in the context of space of
flows needs to be improved and developed.

This study proposes a novel analysis method of geographical centrality based on space of flows
to fill the gap of related previous research and aims to arouse the attention of the research community
on geospatial analysis methods in the context of space of flows. Based on spatial interaction theory,
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we first discuss the impacts of space of flows on geographical space and summarize the main characters
of geographical space and space of flows. On the basis of the main characters, we propose the concept
and methods of geographical centrality based on space of flows. Furthermore, global geographical
centrality index (GGCI) and local geographical centrality index (LGCI) are defined to quantitatively
analyze geographical centrality. In the case study, the proposed method is validated by evaluating and
analyzing the geographical centrality of cities in China using social network data that characterize
urban spatial interaction. We compare the proposed method and three other methods used to
analyze geographical centrality. Moreover, the similarities and differences between the proposed
geographical centrality analysis method and the classic spatial autocorrelation analysis method of
Moran’s I are discussed.

2. Method

2.1. Space of Flows and Geographical Centrality

Spatial interaction theory indicates that the occurrence of spatial interaction among spatial units
should meet three conditions: complementarity, transferability, and intervention opportunity [35].
However, the unprecedented development of high-speed information and transportation networks
has prompted the generation and development of space of flows, and space of flows has restructured
the spatial interaction pattern to a great degree. The information network can be considered a virtual
network, which is not restricted by geographical space. High-speed information network, such as the
Internet and mobile communication network, enables the transient transfer of information among
spatial units with nearly no cost. Thus, the complementarity and intervention opportunity are redefined
by the information network. Consequently, the supply–demand relationship of production factors
and products among spatial units with a long distance becomes possible. The transportation network
is a physical network embedded in geographical space. High-speed transportation network, such as
expressway network, high-speed railway network, and aviation network, significantly enhances the
transferability of material elements and compresses the distance of spatial interaction. This situation
further greatly increases the possibility of the supply–demand relationship among spatial units with
a long distance. Accordingly, given the high-speed information and transportation networks, space
of flows affects spatial interaction based on geographical space. Consequently, the large-flow and
long-distance factor mobility occurs in a short time. Even so, geographical space is still the foundation
of spatial interaction, which shows in the dominant strength in spatial interaction. Owing to the
geospatial distance or transportation cost, spatial interaction tends to occur among spatial units with
a short distance. This situation results in a unique character of geographical space called spatial
autocorrelation, which is also known as spatial dependence and is the main difference between
geographical space and space of flows. Space of flows is a counterforce to geographical space to some
extent, and this force overcomes geospatial distance or does not even depend on geographical space to
enable the interaction among spatial units. Considering that the significant character of flows is rapid
or even instantaneous, we can focus only on the starting and ending points of flows while ignoring
their specific paths. The reason is that these paths are handled by the professional and efficient modern
logistics and communications organizations. Although space of flows impacts short- and long-distance
space, the performance differs. In short-distance space, spatial dependence still exists, but space of
flows breaks the traditional central place hierarchical structure and gradually transfers to the network
hierarchical structure. In long-distance space, space of flows enhances spatial interaction and enables
strong interaction among spatial units with a long distance, a situation that rarely happened in the past.

The discussion above indicates that geographical space mainly impacts short-distance space, while
the interaction of long-distance space is caused mainly by space of flows. Based on this hypothesis, we
propose a novel method for analyzing and measuring geographical centrality. As shown in Figure 1a,
spatial units are distributed in a geographical space with a red spatial unit as the center. The dark
and light blue areas represent short- and long-distance geographical spaces, respectively. The spatial
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units of strong interaction with the central spatial unit are represented in black, while the spatial units
of weak interaction are represented in gray. A total of 4 out of 5 spatial units in short-distance space
of the central spatial unit present strong interaction, while 2 out of 10 spatial units in long-distance
space exhibit strong interaction. Therefore, for the central spatial unit, the strength of short-distance
interaction dominated by geographical space is 4/5, while the strength of long-distance interaction
dominated by space of flows is 2/10. The same method is applied to other spatial units to calculate
their strengths of short- and long-distance interactions. Then, the strengths of short- and long-distance
interactions are used as the horizontal and vertical axes, respectively. Accordingly, a scatterplot of
geographical centrality is created, in which spatial units are identified as four types of geographical
centrality (Figure 1b). These types are discussed in detail in the following parts.
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Global centers in the first quadrant. This type of unit has strong short- and long-distance
interactions. Global centers are located mostly in developed areas and are the key units for local and
global development. Global centers can promote the development of local units in their hinterlands,
and they can also allow these local units to interact with spatial units in a long distance through
their strong controllability of space of flows, which the local units do not have. In the latter case,
global centers act as regional hubs. For example, Beijing, Shanghai, and Guangzhou in China have
led the development of regions of Beijing–Tianjin–Hebei, Yangtze River Delta, and Pearl River Delta,
respectively; these cities also become the hubs of their hinterlands interacting with the rest of the
regions of the country. Therefore, they are global centers for the national development.

Externally oriented units in the second quadrant. This type of unit has strong long-distance
interaction, in which space of flows plays a leading role. Usually, externally oriented units rely on
their special factor endowment to interact with long-distance spatial units in the context of space of
flows. Theoretically, this situation is rare. For example, the developed regions in the southeastern
coastal areas of China attract labor flows from the underdeveloped areas in the Midwest where labor
is abundant. Moreover, regions with special tourism resources attract tourist flows from other places.

Isolated units in the third quadrant. This type of unit rarely interacts with spatial units in either
short or long distance. Isolated units are located mostly in the underdeveloped areas, and their future
development should be paid much attention. Policy support and infrastructure construction should be
reinforced to promote their communication with the outside world.

Locally oriented units in the fourth quadrant. This type of unit has strong short-distance
interaction and is dominated by geographical space. Traditional central place theory mainly discusses
this type of units. Locally oriented units interact only with spatial units in their hinterlands and thus
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act only as local centers. When these units need to interact with long-distance units, they have to rely
on the strong controllability of space of flows of global centers.

2.2. Geographical Centrality Index

We aim to quantify the proposed geographical centrality based on space of flows. For this purpose,
we first propose short-distance interaction index (SDII) and long-distance interaction index (LDII) to
measure the strengths of short- and long-distance interactions, respectively. On this basis, we propose
GGCI and LGCI. GGCI measures the relationship between short-distance interaction dominated by
geographical space and long-distance interaction dominated by space of flows. Meanwhile, LGCI
identifies and measures the type and strength of geographical centrality for each spatial unit.

2.2.1. SDII and LDII

Two variables are necessary to measure geographical centrality based on space of flows. One
variable is used to describe the strength of interactions among spatial units. This variable is often
represented by network data of flows among spatial units, such as flows of people, logistics, and
information. Network data acquisition is a difficulty in measuring geographical centrality. This
situation is especially true in China. The other variable is used to describe the spatial relationship
among spatial units, which can be presented by the spatial adjacency matrix or spatial weight matrix
in spatial statistics. In the spatial adjacency matrix, the value is 1 if spatial units are adjacent and 0 if
otherwise. In the spatial weight matrix, the distance between spatial units determines how proximate
they are; thus, the description is more accurate than the spatial adjacency matrix. Therefore, we
adopt the spatial weight matrix in this research. The Gaussian function rather than the reciprocal of
the square of the distance is defined as the weight function. The reason is that the former is more
appropriate and adjustable than the latter.

According to the hypothesis that geographical space and space of flows dominate short- and
long-distance interactions, respectively, spatial weight matrixes of short- and long-distance interactions
are created. These matrixes represent the influence scope of geographical space and space of flows,
respectively. The weight of the former matrix decreases as the distance between spatial units increases,
while the latter increases as the distance increases. By combining the spatial weight with the strength
of interactions among spatial units, SDII and LDII are defined as follows:

WSij = e−
d2

ij
σ2 , (1)

WLij = 1 − WSij , (2)

SDIIi =
∑n

j WSij × Nij

∑n
j WSij

, (3)

LDIIi =
∑n

j WLij × Nij

∑n
j WLij

, (4)

where dij is the distance between spatial units i and j. σ is a distance threshold to determine whether
a distance is short or long. This distance threshold is a relative concept and is chosen according to
the research purpose and study area. We discuss this distance threshold in the case study. WSij and
WLij are spatial weights of short- and long-distance interactions, respectively. Nij is the strength of
interaction between spatial units i and j.
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2.2.2. GGCI and LGCI

In order to have a general understanding of the effect of geographical space and space of flows,
and to identify and measure the geographical centrality of each spatial unit, we proposed GGCI and
LGCI, which are calculated by Equations (5) and (6):

LGCIi =

(
SDIIi − SDII

)(
LDIIi − LDII

)√
∑n

i (SDIIi−SDII)
2

n

√
∑n

i (LDIIi−LDII)
2

n

(5)

GGCI = ∑n
i LGCIi

n
=

∑n
i
(
SDIIi − SDII

)(
LDIIi − LDII

)√
∑n

i
(
SDIIi − SDII

)2
√

∑n
i
(

LDIIi − LDII
)2

(6)

GGCI ranges between [–1, 1]. GGCI > 0 means that spatial units tend to interact with short- and
long-distance units both, a common situation in practice. GGCI < 0 means spatial units tend to interact
with short-distance units only or long-distance units only, an unusual situation in practice. When
GGCI > 0, a large value means the difference between short- and long-distance interactions of spatial
units is small. This condition indicates that the effect of geographical space weakens and space of
flows dominates the spatial interaction. The strength of interactions among spatial units depends on
their attributes rather than the distance among them. On the contrary, a small GGCI value means a
significant difference exists between short- and long-distance interactions among spatial units. This
condition indicates that the effect of geographical space is still strong and space of flows has not yet
worked. Geospatial distance still restricts the interactions among spatial units. Moreover, the value of
GGCI is relative and needs to be determined using the significance test.

For spatial unit i, LGCIi > 0 means the unit is located in the first or third quadrant in the scatterplot
of geographical centrality. This unit is a global center unit or an isolated unit, which means this unit
interacts with short- and long-distance units simultaneously or does not interact with either of them.
LGCIi < 0 means the unit is located in the second or fourth quadrant in the scatterplot of geographical
centrality. This unit is an externally oriented unit or a locally oriented unit, which interacts with either
short- or long-distance units. The absolute value of LGCIi is the degree of their belongingness to the
four types of geographical centrality.

2.2.3. Significance Test of Geographical Centrality

GGCI and LGCI vary with different spatial structures and spatial interaction structures in different
regions; thus, no absolute standard exists to determine whether GGCI and LGCI are high or low.
We aim to avoid random factors influencing GGCI and LGCI. For this purpose, we refer to the random
permutation operation of the Moran’s I method widely used in spatial autocorrelation analysis to test
the significance of GGCI and LGCI and evaluate the reliability of geographical centrality. Random
permutation of geographical centrality randomly permutes rows and columns of the spatial interaction
matrix simultaneously and does not change the spatial weight matrix. This operation does not change
the geospatial structure and spatial interaction structure and permutes the interaction relationships
of a spatial unit at a specific location with other units. After numbers of random permutations and
calculation of GGCI and LGCI, the simulated distributions of GGCI and LGCI are generated. Then, the
corresponding significance test can be conducted accordingly. The significance level in this research is
0.05 by default.

3. Case Study

3.1. Data Sources and the Basic Characters

The primary difficulty in urban network study is data acquisition. Previous studies mostly
used the distribution data of headquarters and branches of multi-location enterprises (e.g., advanced
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producer service enterprises and multinational enterprises) or network data of infrastructures (e.g., air
passenger flows and telecommunication flows among cities) [10]. In recent years, the development
and popularization of smartphones and mobile Internet services (e.g., social network services and
location-based services) have changed the data environment and facilitated the emergence of urban
network studies based on big data [36]. In this research, we use urban network data containing
370 prefecture-level units in China shared by Liu et al. to validate the proposed analysis method
of geographical centrality in the case study. The data are derived from a major location-based
social network platform in China, containing 23.5 million valid checkin data from September 2011 to
September 2012 (Supplementary Materials) [37].

The spatial distribution of spatial interaction (Figure 2a) shows strong interactions among Beijing,
Shanghai, Guangzhou, and Chengdu, thereby forming a typical diamond-shaped urban network
structure in China. The statistical distribution of spatial interaction (Figure 2b) shows that the strength
of intercity interaction is a power-law distribution, which indicates that most intercity interactions are
weak and less is strong. As the distance between cities increases, the number of city pairs interacting
with each other at each distance segment decreases, and the number of city pairs with strong interaction
also decreases. Furthermore, the strength distribution becomes narrow, and the mean and median
become gradually small. This situation indicates that geographical space still dominates spatial
interaction at the national scale. However, the diamond-shaped urban network structure also shows
that high-strength and long-distance interaction have already occurred under the effect of space
of flows.

ISPRS Int. J. Geo-Inf. 2017, 6, 153  7 of 14 

 

network structure in China. The statistical distribution of spatial interaction (Figure 2b) shows that 
the strength of intercity interaction is a power-law distribution, which indicates that most intercity 
interactions are weak and less is strong. As the distance between cities increases, the number of city 
pairs interacting with each other at each distance segment decreases, and the number of city pairs 
with strong interaction also decreases. Furthermore, the strength distribution becomes narrow, and 
the mean and median become gradually small. This situation indicates that geographical space still 
dominates spatial interaction at the national scale. However, the diamond-shaped urban network 
structure also shows that high-strength and long-distance interaction have already occurred under 
the effect of space of flows. 

(a) (b)

Figure 2. Spatial and statistical distribution of interaction strength among cities in China based on 
social network data. (a) Spatial distribution of interaction strength among cities (trips); (b) statistical 
distribution of interaction strength among cities and its relationship with corresponding distance. 

3.2. Geographical Centrality Analysis 

The proposed analysis method of geographical centrality needs a distance threshold σ to 
determine whether a distance is short or long. Such a problem of spatial scale selection is 
considered by many geospatial analysis methods. Two aspects need to be considered to solve this 
problem. One is determining the characteristic spatial scales for the specific geospatial problem, and 
the other is determining the practical significance of the selected scale. The intercity interaction data 
based on the social network in China (Figure 3a) show that, with the increase in σ, the averages of 
SDII and LDII decrease and GGCI increases. The reason is that spatial interaction is stronger in 
short distance than in long distance. With the increase in σ, some long-distance weak interactions 
are added to SDII, while some short-distance strong interactions are removed from LDII. 
Consequently, both SDII and LDII decrease. The increase in GGCI is due to that short-distance 
space expands into long-distance space actually dominated by space of flows, such that the gap 
between SDII and LDII narrows. Furthermore, SDII is one order of magnitude larger than LDII at 
every spatial scale. This finding further indicates that geographical space plays a relatively more 
important role than space of flows in spatial interaction. Therefore, the proposed SDII and LDII are 
relative and generally need to be logarithmically transformed. Moreover, curves within 500 km are all 
changed rapidly, while they are stable beyond 2000 km. The spatial distribution map of cities in China 
(Figure 3b) with Beijing, Shanghai, Guangzhou, and Chengdu as centers shows that the radius of 250 
km covers most cities in their corresponding urban agglomerations; the radius of 500 km covers most 
of the provincial capital cities nearby; the radius of 750 km nearly covers the entire area of provinces 
nearby. Therefore, we define the three spatial scales as the urban agglomeration scale, regional scale, 
and large regional scale. If the radius exceeds 750 km, large overlaps will exist among short-distance 
spaces of different cities, thereby leading to loss of practical significance of the spatial scale. Therefore, 
three spatial scales, 250, 500, and 750 km, are chosen for further analysis of geographical centrality. 

Figure 2. Spatial and statistical distribution of interaction strength among cities in China based on
social network data. (a) Spatial distribution of interaction strength among cities (trips); (b) statistical
distribution of interaction strength among cities and its relationship with corresponding distance.

3.2. Geographical Centrality Analysis

The proposed analysis method of geographical centrality needs a distance threshold σ to
determine whether a distance is short or long. Such a problem of spatial scale selection is considered
by many geospatial analysis methods. Two aspects need to be considered to solve this problem.
One is determining the characteristic spatial scales for the specific geospatial problem, and the other
is determining the practical significance of the selected scale. The intercity interaction data based
on the social network in China (Figure 3a) show that, with the increase in σ, the averages of SDII
and LDII decrease and GGCI increases. The reason is that spatial interaction is stronger in short
distance than in long distance. With the increase in σ, some long-distance weak interactions are
added to SDII, while some short-distance strong interactions are removed from LDII. Consequently,
both SDII and LDII decrease. The increase in GGCI is due to that short-distance space expands into
long-distance space actually dominated by space of flows, such that the gap between SDII and LDII
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narrows. Furthermore, SDII is one order of magnitude larger than LDII at every spatial scale. This
finding further indicates that geographical space plays a relatively more important role than space of
flows in spatial interaction. Therefore, the proposed SDII and LDII are relative and generally need to
be logarithmically transformed. Moreover, curves within 500 km are all changed rapidly, while they
are stable beyond 2000 km. The spatial distribution map of cities in China (Figure 3b) with Beijing,
Shanghai, Guangzhou, and Chengdu as centers shows that the radius of 250 km covers most cities in
their corresponding urban agglomerations; the radius of 500 km covers most of the provincial capital
cities nearby; the radius of 750 km nearly covers the entire area of provinces nearby. Therefore, we
define the three spatial scales as the urban agglomeration scale, regional scale, and large regional scale.
If the radius exceeds 750 km, large overlaps will exist among short-distance spaces of different cities,
thereby leading to loss of practical significance of the spatial scale. Therefore, three spatial scales, 250,
500, and 750 km, are chosen for further analysis of geographical centrality.
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Figure 3. Geographical centrality indexes and spatial distance threshold σ. (a) trends of SDII, LDII, and
GGCI with the increase in distance threshold σ; (b) schematic map of three spatial distance thresholds,
250, 500, and 750 km, in China.

As shown in scatterplots of geographical centrality (Figure 4a,c,e), the distributions of SDII and
LDII at three spatial scales are all lognormal distribution, and spatial units of cities are distributed
in the direction of first-third quadrants. Furthermore, most of the significant units are located in the
first and third quadrants, which are identified as global centers and isolated units, respectively. This
situation suggests that short- and long-distance interactions are relatively synchronous. The effects of
spatial distance and geographical space are relatively limited at the national scale, while space of flows
is relatively significant. This situation is proven by the large and significant GGCI. With the increase in
the spatial scale, the number of significant global centers and isolated units gradually decreases, while
the number of externally and locally oriented units increases. Moreover, the GGCIs at three spatial
scales are 0.8262, 0.8669, and 0.8789, respectively. The corresponding significances are 0, 0.0001, and
0.1227. In other words, GGCI gradually increases but its significance decreases. The reason is due to
that short-distance space expands into long-distance space actually dominated by space of flows with
the increase in the spatial scale.



ISPRS Int. J. Geo-Inf. 2017, 6, 153 9 of 15

ISPRS Int. J. Geo-Inf. 2017, 6, 153  9 of 14 

 

regional scale of 500 km and the large regional scale of 750 km have similar analysis results, which 
can identify the central cities in the four areas of east, west, south, and north in China. Furthermore, 
a global center cluster is formed in Yangtze River Delta; however, the northeast, northwest, and 
central regions of China lack central cities to promote their regional development. In addition, 
isolated units, externally oriented units, and locally oriented units are mostly located in remote 
areas, central provinces, and around western provincial capital cities, respectively. 

(a) (b)

(c) (d)

(e) (f)

Figure 4. Scatterplots of geographical centrality for cities in China and their spatial distributions. 
(a,c,e) are scatterplots of geographical centrality for σ = 250, 500, and 750 km, respectively; (b,d,f) are 
the corresponding spatial distributions. 

  

Figure 4. Scatterplots of geographical centrality for cities in China and their spatial distributions. (a,c,e)
are scatterplots of geographical centrality for σ = 250, 500, and 750 km, respectively; (b,d,f) are the
corresponding spatial distributions.

The spatial distribution of significant units of geographical centrality (Figure 4b,d,f) at the
urban agglomeration scale of 250 km shows that core cities of the main urban agglomerations in
China are all identified as global centers, such as Beijing and Tianjin in the Beijing–Tianjin–Hebei
urban agglomeration, Shanghai, Hangzhou, Nanjing, Ningbo, and 13 other cities in the Yangtze
River Delta urban agglomeration, Guangzhou, Shenzhen, and Hong Kong in the Pearl River Delta
urban agglomeration, Chengdu in the Chengdu–Chongqing urban agglomeration, Wuhan in the
Wuhan urban agglomeration, Xi’an in the Guanzhong urban agglomeration, Jinan and Qingdao in
the Shandong Peninsula urban agglomeration, Xiamen in the urban agglomeration of the west coast
of the Taiwan Straits, and Kunming in the urban agglomeration of the central Yunnan. Moreover,
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Lijiang, which is a tourist city, is also identified as a global center. This situation may be because of the
strong attraction of tourist cities shown on the social network. A total of 11 isolated units distribute in
remote provinces, such as Qinghai, Gansu, and Hainan; three locally oriented units are located around
western provincial capital cities, namely, Urumqi, Lhasa and Kunming; no externally oriented units are
found. At the regional scale of 500 km, the number of global centers decreases from 26 to 14, and most
of them are located in the Beijing–Tianjin–Hebei region, Yangtze River Delta, Pearl River Delta, and
the Chengdu–Chongqing economic zone; these areas are the four endpoints of the diamond-shaped
urban network structure in China. The number of isolated units decreases from 11 to 4, and these units
are still located in Qinghai and Hainan. Four externally oriented units emerge in Hubei and Jiangxi,
and the locally oriented units are nearly the same as those at the urban agglomeration scale. At the
large regional scale of 750 km, four types of geographical centrality change in numbers but retain the
spatial distributions.

According to the analysis at three different spatial scales, the urban agglomeration scale of 250 km
can effectively identify the core cities of the main urban agglomerations in China. Moreover, the
regional scale of 500 km and the large regional scale of 750 km have similar analysis results, which
can identify the central cities in the four areas of east, west, south, and north in China. Furthermore,
a global center cluster is formed in Yangtze River Delta; however, the northeast, northwest, and
central regions of China lack central cities to promote their regional development. In addition, isolated
units, externally oriented units, and locally oriented units are mostly located in remote areas, central
provinces, and around western provincial capital cities, respectively.

4. Discussion

4.1. Geographical Centrality Based on Space of Flows and Other Centralities

Different types of centrality in geography have dissimilar starting points. Their analysis results
present their own characters and exhibit a few relations. In this part, we compare and analyze
three previous types of geographical centrality based on geographical proximity, scale attributes,
and relational networks, and the proposed geographical centralities based on space of flows in this
research. These four types of geographical centrality are referred to as proximity, attribute, network,
and geographical centralities, respectively. The centrality based on geographical proximity and
attributes is not discussed herein because of its complexity and difficulty of implementation. The
proximity centrality is measured by the average distance between one spatial unit and the others, and
the centrality is strong in the central region and weak in the marginal region. The attribute centrality
is estimated by the inverse gravity model [38,39] using the spatial interaction data of cities in China,
and the determination coefficient of the model is greater than 0.7. The network centrality is measured
by degree centrality [40], which is the most representative one in complex network analysis. The
geographical centrality uses the analysis results with σ = 500 km in the previous section.

Figure 5a shows that no clear relation exists between proximity and attribute centrality, and
attributes for different distance segments are all mainly distributed between 1 and 4. Similarly, no
clear relation exists between proximity and network centrality (Figure 5b), and the number of cities
with strong network centrality sharply decreases with the increase in the average distance. However,
a definite exponential relation exists between attribute and network centrality (Figure 5c). In particular,
the strength of network centrality increases in the form of orders of magnitude with the increase in
the strength of attribute centrality. The relationship between geographical and proximity centrality
(Figure 5d) shows that the distributions of global centers and isolated units are very similar and have
no evident distinction. In other words, no clear relation exists between geographical and proximity
centrality. However, the distributions of global centers and isolated units have a similar regularity for
the relationships between geographical and attribute and network centrality (Figure 5e,f). In particular,
global centers correspond to strong attribute and network centrality, while isolated units correspond
to weak attribute and network centrality. Furthermore, the distribution overlap of global centers and
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isolated units is more for attribute centrality and less for network centrality. This situation may be due
to the nonlinear distribution of network centrality.

The analysis above shows that proximity centrality nearly loses its indicative function at the
national scale, while attribute, network, and geographical centrality can prove the applicability of
one another. The definite exponential relation between attribute and network centrality shows that
attributes are more important than geospatial distance in spatial interaction, and geographical space
is affected by space of flows. This situation proves the availability of the proposed GGCI. The
geographical centrality based on space of flows identifies spatial units into four types of geographical
centrality by considering the spatial structure and spatial interaction simultaneously, which is an
approach that is different from the three other direct measures. Furthermore, the belongingness degree
of the four types of geographical centralities can be measured by LGCI and its significance test. On the
one hand, geographical centrality is consistent with attribute and network centrality; on the other
hand, geographical centrality has a better statistical foundation and a wide range of application.ISPRS Int. J. Geo-Inf. 2017, 6, 153  11 of 14 
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4.2. Geographical Centrality Based on Space of Flows and Moran's I

The common traditional geospatial analysis methods include exploratory spatial data analysis,
point pattern analysis, spatial autocorrelation analysis, spatial continuous data interpolation, spatial
regression analysis, and spatial clustering analysis. However, the spatial autocorrelation hypothesis,
which is the basic of these geospatial analysis methods, is weakened under the effect of space of flows.
Thus, the applicability of these methods declines. For example, spatial kernel density analysis of
physical networks (e.g., roads and railways) can obtain the general spatial distribution of networks.
However, the same analysis of virtual networks (e.g., migration and information flows) with known
positions of network nodes but unknown specific spatial paths of transmission makes little sense.
The reason is that the former is the scope of geospatial analysis, while the latter is the scope of space of
flows. Although the analysis methods of complex and social networks have been widely used in the
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geospatial analysis in the context of space of flows, most of these methods ignore the geospatial factors.
Therefore, geospatial analysis methods in the context of space of flows need to be developed urgently
with the unprecedented development of high-speed information and transportation networks. The
geographical centrality based on space of flows is proposed in this context.

The proposed geographical centrality based on space of flows is similar to the Moran’s I method,
which is commonly used in spatial autocorrelation analysis, in terms of expression form and index
calculation. Specifically, the output results of the two methods both include a scatterplot and global
and local indexes [41,42]. Although geographical centrality based on space of flows draws on a few
ideas of the Moran’s I method, the two methods are fundamentally different in terms of the basic
hypothesis, analytical content, application scope, input variables, and significance tests (Table 1). With
regard to the basic hypothesis, the Moran’s I method hypothesizes that spatial dependence exists in
geographical space. By contrast, geographical centrality based on space of flows hypothesizes that not
only the spatial dependence of geographical space but also its “counterforce”, namely, space of flows,
exist, which dominate short- and long-distance interactions, respectively. Regarding analytical content,
the Moran’s I method analyzes the attribute similarity between spatial units and their neighbors.
On the contrary, geographical centrality based on space of flows analyzes the relative strength of short-
and long-distance interactions among spatial units. Relatively, the former is local while the latter is
global. The two main differences lead to different applications. The Moran’s I method is used mainly
to measure the strength of spatial autocorrelation and identify local hot and cold spots and spatial
outliers. Conversely, geographical centrality based on space of flows is used mainly to measure the
relative effect strength of geographical space and space of flows. Furthermore, this method identifies
and measures the type and strength of geographical centrality for spatial units.

Table 1. Comparison of geographical centrality based on space of flows and Moran’s I.

Items Moran’s I Geographical Centrality Based
on Space of Flows

Basic hypothesis Spatial autocorrelation/spatial
dependence.

Geographical space and space of
flows dominate short- and
long-distance interactions,
respectively.

Analytical content
Attribute similarity between
spatial units and their neighbors,
which is relatively local.

The relative strength of short- and
long-distance interactions among
spatial units, which is relatively
global.

Application scope

Measure the strength of spatial
autocorrelation;
Identify local hot and cold spots
and spatial outliers.

Measure the relative effect
strength of geographical space and
space of flows;
Identify and measure the type and
strength of geographical centrality
for spatial units.

Input variables Attributes of spatial units;
Spatial weight matrix.

Spatial interaction matrix;
Spatial distance matrix;
A distance threshold to determine
whether a distance is short or long.

Output results
Scatterplot of Moran’s I;
Global and local Moran’s I
indexes.

Scatterplot of geographical
centrality;
GGCI and LGCI.

Significance test
Generate simulated distribution
by randomly permuting spatial
unit attributes.

Generate simulated distribution
by randomly permuting rows and
columns of spatial interaction
matrix simultaneously.
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5. Conclusions

The unprecedented development of high-speed information and transportation network has
highlighted that the important role played by space of flows and has restructured the mode of spatial
interaction. In this context, we first present a basic hypothesis that geographical space and space of
flows dominate short- and long-distance interactions, respectively. Then, the concept of geographical
centrality based on space of flows is proposed, and spatial units are identified into four types of
geographical centrality, namely, global centers, isolated units, externally oriented units, and locally
oriented units. Furthermore, corresponding quantitative evaluation methods including the scatterplot
of geographical centrality and GGCI and LGCI are proposed. The proposed concept and methods
of geographical centrality develop the geospatial analysis methods in the context of space of flows.
We use the proposed method and spatial interaction data among cities based on social network data to
evaluate and analyze the geographical centrality of cities in China. Moreover, geographical centrality
analysis methods including the proposed one and three others are compared, and an ideal result
is achieved.

The geographical centrality based on space of flows has two basic applications: one is to measure
the relative effect strength of geographical space and space of flows, and the other is to identify
and measure the type and strength of geographical centrality for spatial units. Using time series
data of spatial interactions among spatial units, a changing pattern of geographical centrality for a
region or a transition track of geographical centrality types for a specific spatial unit can be analyzed.
Moreover, regional patterns of geographical centrality can be analyzed and compared using spatial
interaction data for regions of different natural conditions or development stages. Finally, the proposed
geographical centrality analysis method is a beneficial attempt on the research on geospatial analysis
in the context of space of flows. With the increasing attention of space of flows, analysis methods for
space of flows such as complex network and social network will further be applied in and interact
with classic geospatial analysis methods. In summary, geospatial analysis methods in the context of
space of flows still have room for improvement.

Supplementary Materials: The following are available online at www.mdpi.com/2220-9964/6/5/153/s1.
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