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Abstract: Satellite scene classification is challenging because of the high variability inherent in satellite
data. Although rapid progress in remote sensing techniques has been witnessed in recent years,
the resolution of the available satellite images remains limited compared with the general images
acquired using a common camera. On the other hand, a satellite image usually has a greater number
of spectral bands than a general image, thereby permitting the multi-spectral analysis of different
land materials and promoting low-resolution satellite scene recognition. This study advocates
multi-spectral analysis and explores the middle-level statistics of spectral information for satellite
scene representation instead of using spatial analysis. This approach is widely utilized in general
image and natural scene classification and achieved promising recognition performance for different
applications. The proposed multi-spectral analysis firstly learns the multi-spectral prototypes
(codebook) for representing any pixel-wise spectral data, and then, based on the learned codebook,
a sparse coded spectral vector can be obtained with machine learning techniques. Furthermore, in
order to combine the set of coded spectral vectors in a satellite scene image, we propose a hybrid
aggregation (pooling) approach, instead of conventional averaging and max pooling, which includes
the benefits of the two existing methods, but avoids extremely noisy coded values. Experiments on
three satellite datasets validated that the performance of our proposed approach is very impressive
compared with the state-of-the-art methods for satellite scene classification.

Keywords: multi-spectral analysis; remote sensing images; sparse coding; generalized aggregation;
scene recognition

1. Introduction

The rapid progress in remote sensing imaging techniques over the past decade has produced
an explosive amount of remote sensing (RS) satellite images with different spatial resolutions and
spectral coverage. This allows us to potentially study the ground surface of the Earth in greater detail.
However, it remains extremely challenging to extract useful information from the large number
of diverse and unstructured raw satellite images for specific purposes, such as land resource
management and urban planning [1–4]. Understanding the land on Earth using satellite images
generally requires the extraction of a small sub-region of RS images for analysis and for exploring the
semantic category. The fundamental procedure of classifying satellite images into semantic categories
firstly involves extracting the effective feature for image representation and then constructing a
classification model by using manually-annotated labels and the corresponding satellite images.
The success of the bag-of-visual-words (BOW) model [5–7] and its extensions for general object and
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natural scene classification has resulted in the widespread application of these models for solving
the semantic category classification problem in the remote sensing community. The BOW model was
originally developed for text analysis and was then adapted to represent images by the frequency
of ”visual words” that are generally learned from the pre-extracted local features from images by a
clustering method (K-means) [5]. In order to reduce the reconstruction error led by approximating
a local feature with only one ”visual word” in K-means, several variant coding methods such as
sparse coding (Sc), linear locality-constrained coordinate (LLC) [8–11] and the Gaussian mixture model
(GMM) [12–15] have been explored in the BOW model for improving the reconstruction accuracy of
local features, and some researchers further endeavored to integrate the spatial relationships of the
local features. On the other hand, local features such as SIFT [16], which is handcrafted and designed
as a gradient-weighted orientation histogram, are generally utilized and remain untouched in terms
of their strong effect on the performance of these BOW-based methods [17–19]. Therefore, some
researchers investigated the local feature learning procedure automatically from a large number
of unlabeled RS images via unsupervised learning techniques instead of using the handcrafted
local feature extraction [20–22], thereby improving the classification performance to some extent.
Recently, deep learning frameworks have witnessed significant success in general object and natural
scene understanding [23–25] and have also been applied to remote sensing image classification [26–30].
These framework perform impressively compared with the traditional BOW model. All of the
above-mentioned algorithms firstly explore the spatial structure for providing the local features,
which is important for local structure analysis in high-definition general images, such as those in
which a single pixel covers several centimeters or millimeters. However, the available satellite images
are usually acquired at a ground sampling distance of several meters, e.g., 30 m for Landsat 8 and
1 m even for high-definition satellite images from the National Agriculture Imagery Program (NAIP)
dataset [31]. Thus, the spatial resolution of a satellite image is much lower than that of a general image,
and the spatial analysis of nearby pixels, which often belong to different categories in a satellite image,
may not be suitable. Recently, Zhong et al. [32] proposed an agile convolution neural network (CNN)
architecture, named SatCNN, for high-spatial resolution RS image scene classification, which used
smaller kernel sizes for building the effective CNN architecture and validated promising performance.

On the other hand, despite its low spatial resolution, a satellite image is usually acquired in
multiple spectral bands (also known as hyper-spectral data), which is expected for pixel-wise land
cover investigation even with mixing pixels. It is labor intensive to concentrate on the traditional
mixing pixel recovery problem (known as the unmixing model) [33–35]. This model can obtain
material composition fraction maps and a set of spectra of pure materials (also known as endmembers)
and has achieved acceptable pure pixel recovery results. These pixel-wise methods assume that the
input images contain pure endmembers and that they can process the image with mixed pixels of
several or dozens of endmembers. This study aims to classify a small sub-region of the satellite
image into a semantic category by considering that a pixel spectrum in an explored sub-region is
a supposition of several spectral prototypes (possible endmembers). At the same time, because of
the large variety of multi-spectral pixels even for the same material due to environmental changes,
we generate an over-complete spectral prototype set (dictionary or codebook), which means that the
number of prototypes is larger than the number of spectral bands. It also takes into consideration the
variety of multi-spectral pixels for the same material, whereas most optimization methods for simplex
(endmember) identification [36–39] in an unmixing model generally only obtain a sub-complete
prototype set, thereby possibly ignoring some detailed spectral structures for representation. Therefore,
based on the learned over-complete spectral codebook, any pixel spectrum can be well reconstructed by
a linear combination of only several spectral prototypes to produce a sparse coded vector. Furthermore,
deciding how to aggregate the sparse coded spectral vector for the sub-region representation is a
critical step for affecting the final recognition performance. In the conventional BOW model and its
extensions with the spatially-analyzed local features, the coded vectors in an image are generally
aggregated with an average or max pooling strategy. The average pooling simply takes the mean
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value of the coded coefficients corresponding to a learned visual word, which is specially utilized
accompanied with hard assignment (i.e., representing any local feature using only one visual word),
whereas max pooling takes the maximum value of all coded coefficients in an image or region
corresponding to a learned visual word (atom), which is applied accompanied with soft-assignment or
sparse coding approaches. The max pooling strategy accompanied with sparse coding approaches
achieved promising performance in the classification and detection of different objects, which means
that only exploiting the highest activation status of the local description prototype (possibly a distinct
local structure in an object with spatial analysis) is effective. However, the max pooling strategy only
retains the strongest activated pattern and would completely ignore the frequency: an important
signature for identifying different types of images of the activated patterns. In addition, because of the
low spatial resolution of satellite images, the exploration of spatial analysis and pixel-wise spectral
analysis to provide the composition fraction of any spectral prototype would be unsuitable. We aim to
obtain the statistical fractions of each spectral prototype to represent the explored sub-region, whereas
max-pooling unavoidably ignores almost all of the coded spectral coefficients, while average pooling
would take the coded spectral coefficients of some outliers to form the final representation. Therefore,
this study proposes a hybrid aggregation (pooling) strategy of the sparse coded spectral vectors by
integrating not only the maximum magnitude, but also the response magnitude of the relatively large
coded coefficients of a specific spectral prototype, a process named K-support pooling. This proposed
hybrid pooling strategy combines the popularly-applied average and max pooling methods and, rather
than awfully emphasizing the maximum activation, preferring a group of activations in the explored
region instead. The proposed satellite image representation framework is shown in Figure 1, where
the top row is for over-complete spectral prototype set learning, and the bottom row manifests the
sparse coding of any pixel spectral and the hybrid pooling strategy of all coded spectral vectors in a
sub-region to form the discriminated feature.
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Figure 1. Proposed satellite image representation framework. The top row manifests the learning
procedure of the multi-spectral prototypes, whereas the bottom row denotes the coding and pooling
procedure of the pixel-wise multi-spectra in images to provide the final representation vector.
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Because of the low spatial resolution of satellite images, this study explores the spectral analysis
method instead of spatial analysis, which is widely used in general object and natural scene recognition.
The main contributions of our work are two-fold: (1) unlike the spectral analysis in the unmixing model,
which usually only obtains the sub-complete basis (the number of the bases is fewer than the number
of spectral bands) via simplex identification approaches, we investigate the over-complete dictionary
for more accurate reconstruction of any pixel spectrum and obtain the reconstruction coefficients by
using a sparse coding technique; (2) we generate the final representation of a satellite image from all
coded sparse spectral vectors, for which we propose a generalized aggregation strategy. This strategy
not only integrates the maximum magnitude, but also the response magnitude of the relatively large
coded coefficients of a specific spectral prototype instead of employing the conventional max and
average pooling approaches.

This paper is organized as follows. Section 2 describes related work including the BOW model
based on spatial analysis and the multi-spectral unmixing problem by assuming a limited number of
bases (endmembers) and the corresponding abundance for each spectral pixel. The proposed strategy,
which entails sparse coding for multi-spectral representation of pixels, is introduced in Section 3
together with a generalized aggregation approach for coded spectral vectors. The experimental results
and discussions are provided in Section 4. Finally, the concluding remarks are presented in Section 5.

2. Related Work

Considerable research efforts are being devoted to understanding satellite images. Among the
approaches researchers have developed, the bag-of-visual-words (BOW) model [5–7] and its extensions
have been widely applied to land-use scene classification. In general, this type of classification
considers large-scale categories (with coverage of tens or hundreds of meters in one direction) such
as airports, farmland, ports and parks. A flowchart of the BOW model is shown in Figure 2 and
includes the following three main steps: (1) local descriptor extraction, which concentrates to explore
the spatial relation of nearby pixel and ignores or separately analyzes the intensity variation of
different colors (spectral bands) by using methods such as SIFT [16] and SURF [40]; (2) a coding
procedure, which approximates a local feature using a linear combination of pre-defined or learned
bases (codebook), and transforms each local feature into a more discriminated coefficient vector;
(3) a pooling step, which aggregate all of the coded coefficient vectors in the region of interest into
the final representation of this region via a max or average pooling strategy. The local descriptor
in the BOW model for most applications usually remains untouched as SIFT and SURF, of which
the design is handcrafted for exploring the local distinctive structure of the target objects. The local
descriptor, which is most generally used, namely SIFT, needs to roughly and uniformly quantize
the gradient direction between the nearby pixels into several orientation bins; however, this would
cause the loss of some subtle structures and affect the final image representation ability. Therefore,
some researchers investigated the local feature extraction procedure by automatically learning from
a large number of unlabeled images with unsupervised learning techniques instead of using the
handcrafted local feature extraction [20–22] and improved the classification performance to some
extent. However, all of the above-mentioned algorithms mainly concentrate on spatial analysis to
explore the distinctive local structure of general objects and take less consideration of the color (spectra)
information, an approach that would be unsuitable for satellite scene classification as a result of its
low spatial resolution. Recently, developments in deep convolutional networks have witnessed great
success in different image classification applications, including applications involving the use of remote
sensing images; however, these methods still focus on convoluting a spatial supported region into
local feature maps. Because of the presence of multiple available spectral bands in satellite images, this
study proposes to investigate the pixel spectral band and validate the feasibility and effectiveness for
satellite scene classification.

On the other hand, the existence of multiple spectral bands (also known as hyper-spectral data)
in satellite images has promoted many researchers to propose pixel-wise land cover investigation to
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enable the variety of mixed pixels, known as an unmixing model [33–35], to be processed. The purpose
of the unmixing model is to decompose the raw satellite images, composed of mixed pixels, into
several material composition fraction maps and the corresponding set of pure spectral materials (also
known as endmembers). The flowchart representing this procedure is shown in Figure 3. Given a
multi-spectral satellite image I with size B ∗ N ∗M (where B denotes the number of spectral bands
and N and M denote the height and width of the satellite image, respectively), where the pixels may
cover several types of land materials due to the low spatial resolution, we first re-arrange the image
in the form of a matrix Z with a pixel-wise spectral column vector (size: B ∗ (N ∗M)). The spectral
vector zi of the i-th pixel is assumed to be a linear combination of several endmembers (basis) with
the composition fraction as the weighted coefficients: zi = Eai, where E = [e1, e2, · · · , eK] is a set of
spectral column vectors (K) representing the existing endmembers (land materials) in the processed
satellite image. Considering the physical phenomenon of the spectral image, the elements in the
endmember spectra and the fraction magnitude of the pixel abundance are non-negative, and the
abundance vector for each pixel is summed to one. Then, the matrix formula for all pixels in a satellite
image of interest can be formed as follows:

Z = EA, s.t. E >= 0, A >= 0, ∑ ai = 1 (1)

Much work has been devoted to concentrating the endmember determination, which is usually
considered as a simplex identification problem [36–39]. However, the unmixing procedure is
investigated in an image-wise approach, and the endmember and the abundance have been optimized
independently for different images, which leads to completely different endmembers for different
images. Furthermore, only a sub-complete set of the simplex (the number of simplexes are fewer
than the number of spectral bands) can be obtained in the optimization. This study aims to learn a
common set of bases (endmembers) for different sub-regions of satellite images, and an over-complete
dictionary is preferred to take into consideration the variety of pixels in the same material and possible
outliers in the target application. In the next section, we describe our proposed strategy in detail.
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Figure 2. Bag-of-visual-words model for image representation.
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Figure 3. Flowchart of the linear unmixing model.

3. Generalized Aggregation of Sparse Coded Multi-Spectra

The low spatial resolution of satellite images, for example a 30× 30 ground sampling distance of
each pixel in Landsat 8 images, has led us to focusing on the multiple spectral bands of a single pixel
for statistical analysis. Let X be the set of D-dimensional spectral vectors of all pixels extracted from a
satellite image, i.e., X = [x1, x2, · · · , xN ] ∈ RD×N . Our goal is first to code the spectral vector to a more
discriminated coefficient vector based on a set of common bases (codebook). Given a codebook with K
entries, B = [b1, b2, · · · , bK] ∈ RD×K, different coding schemes can transform each spectrum into a



ISPRS Int. J. Geo-Inf. 2017, 6, 175 6 of 19

K-dimensional coded coefficient vector to generate the final image representation. Next, we provide
the detail of the codebook (an over-complete basis) learning and coding methods.

3.1. Codebook Learning and Spectral Coding Approaches

The most widely-applied codebook learning and vector coding strategy in general object
recognition applications is the vector quantization (VQ) method. However, because this strategy
approximates any input vector with only one learned base, it possibly leads to a large reconstruction
error. Therefore, several efforts have been made to approximate an input vector using a linear
combination of several bases such as sparse coding (SC) and locality-constrained linear coding (LLC).
These methods have been proven to perform impressively in different general object and natural scene
classifications. As mentioned in [11], the smoothness of coded coefficient vectors is more important
than the sparse constraint. This means the coded coefficient vector should be similar if the inputs are
similar. Therefore, this study focuses on locality-constrained sparse coding for multi-spectral analysis.

Vector quantization: given training samples X = [x1, x2, · · · , xN ], the codebook learning procedure
with VQ solves the following constrained least-squares fitting problem:

min
B,C

N

∑
n=1
‖xn − Bcn‖2

subject to : Card(cn) = 1, ‖cn‖1 = 1; ci ≥ 0;

(2)

where C = [c1, c2, · · · , cN ] is the set of codes for X. The cardinality constraint Card(ci) = 1 means
that there will be only one non-zero element in each code ci, corresponding to the quantization of xi.
The non-negative constraint ci ≥ 0, and the sum-to-one constraint ‖ci‖1 = 1 means that the summation
of the coded weight for xi is one. The codebook B = [b1, b2, · · · , bK] can be learned from the prepared
training samples, which are the spectral vectors of all pixels from a large number of satellite images, by
the expectation maximization (EM) strategy. The detail of the algorithm of the VQ implementation
in Equation (2) is shown in Algorithm 1. In the VQ method, the codebook vectors can be freely
assigned as any larger number than the dimension of the input spectral vector xn, which forms an
over-complete dictionary. After learning the codebook using the training spectral samples, it is fixed for
coding the multi-spectral vectors of all pixels. The VQ approach can obtain the sparsest representation
vector cn for an input vector xn (only one non-zero value), which means that it only approximates
any input vector with one selected base from the codebook B and thus leads to large reconstruction
error. Therefore, several researchers proposed the use of sparse coding for vector coding, which can
adaptively select several bases to approximate the input vector and thus reduce the reconstruction
error. Sparse coding has been proven to perform more effectively in different applications.

Locality-constrained sparse coding: In terms of local coordinate coding, Wang et al. [11] claimed
that locality is more important than sparsity, which not only leads to sparse representation, but also
retains the smoothness between the transformed representation space and the input space. Therefore,
this study incorporates a locality constraint instead of the pure sparsity constraint in Equation (3). This
approach can simultaneously result in sparse representation, known as the locality-constraint sparse
coding (LcSC), which is applied for codebook learning and spectral coding with the following criteria:

min
B,C

N

∑
n=1
‖xn − Bcn‖2 + λ‖sn � cn‖2

subject to : 1Tcn = 1, ∀n;

(3)

where the first term is the reconstruction error for the used samples and the second term is the constraint
of locality and implicit sparsity. � denotes the element-wise multiplication, and the constraint 1Tcn = 1
allows the shift-invariant codes. sn ∈ RD is the locality controller for supplying different freedom of
each basis vector bk proportional to its similarity to the input descriptor xn. We define the controller
vector sn as the following:
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sn = [sn1, sn2, · · · , snK]

= [exp(
‖xn − b1‖2

σ
), · · · , exp(

‖xn − bK‖2

σ
)]

(4)

where σ is used for adjusting the rate of weight decay for the locality controller. The locality controller
vector imposes very large weight on the coded coefficients of the basis vectors that have no similarity
(large distance) to the input vector, and in the results, the coefficients corresponding to the basis vectors
that are not similar would be extremely small or zero. Therefore, the resulting coded vector for any
input xn would be sparse and smooth between the coded space and the input space as a consequence
of only using similar basis vectors. The detail implementation of the LcSC method in Equation (3) is
shown in Algorithm 2. Binit in Algorithm 2 is initialized with the VQ method.

Algorithm 1 Codebook learning of VQ method in Equation (2).

Input: X ∈ RD×N

Output: B
Initialization: Randomly take K samples Binit ∈ RD×K from X for initializing B: B← Binit.

2: for n = 1 : N do
for k = 1 : K do

4: Calculate the Euclidean distance dnk between xn and bk, and assign
xn to k′ − th cluster if dnk′ = mink(dnk),

end for
6: Recalculate bk with the assigned samples Xk to the k-th cluster

end for
8: Repeat the above Steps 2–7 until the predefined iteration is arrived or the change of the codebook

becomes small enough in two consecutive iterations.

Algorithm 2 Codebook learning of LcSC method in Equation (3).

Input: Binit ∈ RD×K, X ∈ RD×N , λ, σ
Output: B

1: Initialization: B← Binit.
2: for n = 1 : N do
3: for k = 1 : K do
4: Calculate the control element snk between xn and bk using Equation (4),
5: end for
6: Normalize dn: dn ← normalize(0,1)(dn);
7: Calculate the temporary coded vector cn with the fixed codebook B using Equation (3),
8: Refine the coded vector cn via selecting the atoms with the larger coded coefficients only:

id← {k|abs(cn(k) > 0.01}, Bn ← B(:, id), and
c′n ← minc ‖xn − Bncn‖2, s.t. ∑k c′n(k) = 1.

9: Update Bn: Bn ← Bn − µ4 Bn/|c′n|2, where Bn = −2c′n(xn − Bnc′n) and µ =
√

1/n,
10: Project Bn back to B: B(:, id)← proj(Bn)
11: end for

3.2. Generalized Aggregation Approach

Given a satellite image sub-region, the multi-spectral vectors X = [x1, x2, · · · , xN ] having the
same number of pixels can be generated and thus produce the same number of coded coefficient
vectors C = [c1, c2, · · · , cN ] using coding approaches. The approach selected to aggregate the obtained
coefficient vectors to form the final representation z of the investigated sub-region plays an essential
role in determining the recognition results of this region. As we know, the widely-used pooling
methods for aggregating the encoded coefficient vectors in the traditional BOW model and its extension
versions are average and max strategies. Average pooling aggregates all of the weighted coefficients,
which are the coded coefficients of a pre-learned word in the BOW model, in a defined region by
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taking the average value, whereas max pooling aggregates these by taking the maximum value. In
the vision community, the max pooling in combination with popularly-used coding methods such
as SC and soft assignment manifests promising performance in a variety of image classification
applications. However, the max-pooling strategy only retains the strongest activated pattern (the
learned visual word) and would completely ignore the frequency of the activated patterns (visual
words). This frequency counting the number of local descriptors, which are similar to the learned
visual words, is also an important signature for identifying different types of images. Therefore,
this study proposes a hybrid aggregation (pooling) strategy of the sparse coded spectral vectors by
integrating not only the maximum magnitude, but also the response magnitude of the relatively
large coded coefficients of a specific spectral prototype, termed K-support pooling. This proposed
hybrid pooling strategy combines the popularly used average- and max-pooling methods and can
avoid emphasizing the maximum activation; instead, it prefers using a group of activations in the
explored region.

Let us denote the coded coefficient weight of the k-th codebook vector for the n-th multi-spectra
in a satellite image I as ck,n. We aim to aggregate all of the coded weights of the k-th codebook vector
in the image I to obtain the overall weight indication as the following:

zI
k = f ({ck,n}, n ∈ I) (5)

where zI
k denotes the pooled coded weight of of the k-th codebook vector in the image I. We can

design different transformation functions f for aggregating the set of activations into a indicating
value. The simplest pooling method simply averages the coded weights of all input vectors in this
processed image formulated as:

zI
k =

1
NI

∑
n∈I

ck,n (6)

The average-pooling strategy is generally used in the original BOW model, which assigns a local
feature only to a nearest word and thus produces coded coefficients with a value of either one or zero.
It eventually creates the representative histogram of the learned words for an image. Motivated by
the visual biological study, the maximum activation would be more related to the human cortex
response than the average activation and can provide translation-invariant visual representation.
Therefore, the max pooling strategy has been widely used accompanied with SC and soft assignment
coding strategies in the BOW model. The max-pooling can be formulated as:

zI
k = maxck,n({ck,n}, j ∈ I)

= ck,l , ck,l >= ck,n, l 6= n, l, n ∈ I
(7)

Max pooling takes the maximum coded weights of all input vectors in an images as the overall
activation degree and then completely ignores how many inputs are possibly activated. This study
proposes a hybrid aggregation (pooling) strategy of the sparse coded spectral vectors by integrating
not only the maximum magnitude, but also the response magnitude of the relatively large coded
coefficients of a specific spectral prototype. The resulting integration is named K-support pooling.
The proposed generalized aggregation approach firstly sorts the coefficient weight of the k-th codebook
vector of all inputs from large to small values in a processed image I as:

c′k,n = sort{ck,n},
with c′k,1 >= c′k,2 >= c′k,3 >= · · · >= c′k,NI

, n ∈ I
(8)

and then only retains the first L larger coefficient weights. The final activation degree of the processed
prototype is calculated by averaging the retained L-values, which is the mean of the selected L-support
locations (pixels), named as K-support pooling. It is formulated as the following:



ISPRS Int. J. Geo-Inf. 2017, 6, 175 9 of 19

zI
k =

1
L ∑ c′k,n (9)

For each codebook vector, we repeat the above procedure and produce the activation degrees
of all codebook vectors in a processed image. Finally, the L aggregated coefficient weights can be
obtained for representing the processed image.

3.3. SVM Classifier for Satellite Images

In this study, we use support vector machine (SVM) as the classifier for satellite images.
Support vector machines are supervised learning models with a set of training examples and their
corresponding labels. With the training samples, an SVM algorithm builds a classification model that
assigns new examples to one category or the other. More formally, a support vector machine constructs
a hyperplane or set of hyperplanes in a high-dimensional space, which can be used for classification,
regression and so on. The generally used SVM can be divided into two categories: linear and nonlinear
versions. In this study, we apply linear SVM as the classifier of satellite images. With the extracted
features (described in the above subsections) from the training images and the corresponding class
labels, we constructs multi-class SVM classification model using one-to-all strategy and then predict
the class label of the extracted feature from an unknown-label image.

4. Experiments

4.1. Datasets

We evaluate our proposed image representation strategy with the generalized aggregated vector
of the sparse coded multi-spectra on a benchmark database of satellite imagery classification, the
DeepSat dataset [29], and a Megasolar dataset [41]. The DeepSat dataset includes two subsets: SAT-4
and SAT-6, which were released in [29]. The images in this dataset are from the National Agriculture
Imagery Program (NAIP), and each is cropped to a 28 × 28 sub-region. There are four spectral
channels, red, green, blue and near-infrared (NIR), which means each pixel can be represented as a
four-dimensional vector. SAT-4 consists of a total of 500,000 images, of which 400,000 images were
chosen for training and the remaining 100,000 were used as the testing dataset. Four broad land cover
classes were considered: barren land, trees, grassland and a class that includes all land cover classes
other than the three. SAT-6 consists of a total of 405,000 images with 324,000 images as the training and
81,000 as the testing dataset. This dataset includes six land cover classes: barren land, trees, grassland,
roads, buildings and water bodies. The sample images representing different classes from SAT-4 and
SAT-6 are shown in Figure 4a,b, respectively. Several studies have been carried out to recognize the
land cover classes in the SAT-4 and SAT-6 datasets. There are two state-of-the-art studies of land use
recognition on SAT-4 and SAT-6. Motivated by the recent success of the deep learning framework,
Basu et al. proposed a DeepSat architecture, which firstly extracted different statistical features from
the input images and then fed them into a deep brief network for classification. Compared with several
deep learning architectures, i.e., deep belief network (DBN), deep convolutional network (DCN) and
stacked denoising autoencoder (SDE) via the raw image as the input, the proposed DeepSat could
achieve a much more accurate recognition performance. In addition, Ma et al. proposed integrating
the inception module from GoogleNet in the deep convolutional neural network to overcome the
multi-scale variance of the satellite images and achieved some improvement in terms of the recognition
performance for the SAT-4 and SAT-6 datasets. We compare the recognition performance using our
proposed spectral analysis framework and the state-of-the-art based on deep learning techniques in
the experimental results subsection.
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(a)

(b)

Figure 4. Some sample images. (a) Sample images from the SAT-4 dataset. Each row denotes a class of
images, and from top to bottom, the classes are barren land, trees, grassland and others, respectively.
(b) Sample images from the SAT-6 dataset. Each row denotes a class of images, and from top to bottom,
the classes are buildings, barren land, trees, grassland, roads and water bodies, respectively.

In addition, we also give the classification performance with our proposed method on a Megasolar
dataset [41], which was collected from 20 satellite images taken in Japan, 2015, by Landsat 8. The used
image have 7 channels corresponding to different wavelengths, where half correspond to the non-visible
infra-red spectrum, and their resolution is roughly 30 m per pixel. The satellite images are divided into
16× 16 cells; more than 20% of the pixels covered by a power plant are considered as positive samples,
while those without a single pixel belonging to a power plant are treated as negative samples. There
are 300 training positive samples augmenting to 4851 by rotation transformation and 2,247,428 training
negative samples. The positive samples in validation and test subset are 126, and the negative samples
are more than 860,000. In our experiments, we exploited the augmented 4851 positive samples and
randomly selected 4851 negative samples from training subset for training, and the 126 positive samples
in validation and test subsets and randomly selected 3000 negative samples are for the test.

4.2. Spectral Analysis

In our proposed strategy, we first need to learn the multi-spectral prototypes. In the implementation,
we randomly select 1000 images from each class of the training dataset (SAT-4 and SAT-6, respectively)
and generate the pixel-wise multi-spectral vectors from all of the selected images for learning the
multi-spectral prototypes. Based on the introduced codebook learning approach, the K multi-spectral
prototypes B = [b1, b2, · · · , bK] can be obtained. Figure 5 shows four multi-spectral prototypes of the
learned codebook (32) using the SAT-4 dataset. Figure 6a–d indicates the image statistics of the coefficient
weights corresponding to the considered prototypes (multi-spectral Prototype 1 (MSP1), MSP2, MSP3
and MSP4 from Figure 6a–d), where the horizontal and vertical axes denote the aggregated weight width
of the four multi-spectral prototypes and image frequencies of each land use class in the defined weight
regions, respectively. From Figure 6a, we can see that the second class (steel blue bar: trees) contains
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a greater number of images with large weights, whereas more than 90% of the images from the other
three classes exhibit very small weights (less than 0.025). This means that the multi-spectral prototype,
MSP1 in Figure 5, mainly represents the spectral data of trees material. Figure 6b confirms that the
first class (midnight blue bar: barren land) contains more images with large weights, whereas more
than 90% of the images from the other three classes manifest very small weights (less than 0.025). This
means that the multi-spectral prototype, MSP2 in Figure 5, mainly represents the spectral data of barren
land material. From Figure 6c,d, similarly as in Figure 6a,b, we can conclude that the multi-spectral
prototypes MSP3 and MSP4 in Figure 5 mainly denote the spectral signature of grassland and other
classes, respectively. Thus, the prototype vectors in the learned codebook would be accounted for in
the multi-spectral signatures of the pure material in our target image dataset and would be effective
for representing any multi-spectral vectors and display high discriminating ability for land use image
classification.

0
20
40
60
80
100
120
140
160
180
200

MSP1 MSP2 MSP3 MSP4

Figure 5. Plotted spectra of four learned multi-spectral prototypes (MSP) from the SAT-4 dataset,
named MSP1, MSP2, MSP3, MSP4, respectively.
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Figure 6. Image number statistics of the aggregated coefficients for different learned multi-spectral
prototypes and the SAT-4 training dataset. (a) The image frequency of different land use classes
between different aggregated coefficient regions of the MSP1 in Figure 5; (b) for the MSP2 in Figure 5;
(c) for the MSP3 in Figure 5; (d) for the MSP4 in Figure 5.

4.3. Experimental Results

In this section, we evaluate the recognition performance on the SAT-4, SAT-6 and Megasolar
datasets using our proposed multi-spectral analysis. With the aggregated coded spectral vector, we
simply use a linear SVM as the classifier, which learns the classification model with the images in the
training dataset and predicts the land use class label for the images of the test dataset. The recognition
performances on SAT-4 and SAT-6 using the VQ coding approach combined with the average pooling
strategy and different codebook sizes (K = 32, 64, 128, 256, 512) are shown in Figure 7. The results in
this figure confirm the recognition performance of approximately 95% on average for both the SAT-4
and SAT-6 datasets even with the codebook size of 32 only, whereas the accuracy of more than 99% is
achieved with the codebook size of 512. Next, we evaluate the recognition performances using the
LcSC coding approach with different pooling methods (average: LcSC_Ave, Max: LcSC_Max; and the
proposed generalized method: LcSC_L50, LcSC_L100 with the top 50 and 100 largest weights) and
different codebook sizes for both SAT-4 and SAT-6 datasets, as shown in Figure 8a,b. Figure 8 shows
that the proposed generalized pooling method can achieve a more accurate recognition performance
than the conventional average- and max-pooling strategies under different codebook sizes. Figure 9
provides a comparison of different coding strategies (VQ and LcSC) with the codebook size of 512
on the SAT-4 and SAT-6 datasets. These results confirm the improvement of the proposed coding
and pooling strategies. Table 1 contains the confusion matrix using the aggregated sparse coded
vector with the LcSC coding and the proposed generalized pooling strategies under the codebook
size of 512, where the recognition accuracies for all land use classes exceed 99%. Finally, the results of
the performance comparison with state-of-the-art methods in [29,30] are provided. The comparison
involved the application of different kinds of deep frameworks, DBN, DCN, SDE, the designed deep
architectures in [29], named as DeepSat, and DCNN in [30], which integrated the inception module for
taking into account the multi-scale variance in satellite images. Table 2 provides the compared average
recognition accuracies on both the SAT-4 and SAT-6 datasets and reveals that our proposed framework
achieves the best recognition performance.

In the following, the recognition performance on the Megasolar dataset with seven spectral
channels is provided. The experimental results using the LcSC coding approach with different pooling
methods (average: LcSC_Ave, Max: LcSC_Max; and the proposed generalized method: LcSC_L50,
LcSC_L100 with the top 50 and 100 largest weights) and different codebook sizes are given in Figure 10.
Since the unbalance test sample numbers for positive and negative, the average recognition accuracy of
the test positive and negative samples are computed, Figure 10 manifests that the proposed generalized
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pooling method can achieve a more accurate recognition performance than the conventional average-
and max-pooling strategies under different codebook sizes.

Table 1. Confusion matrix using locality-constraint sparse coding (LcSC) coding and the proposed
generalized pooling strategy with codebook size K = 512 for both SAT-4 and SAT-6 datasets.

(a) SAT-4

(%) Barren Land Trees Grassland Others

Barren land 99.404 0 0.554 0.042
Trees (linear) 0 99.97 0.035 0

Grassland 0.407 0.061 99.515 0.017
Others 0.034 0.003 0.003 99.961

(b) SAT-6

(%) Building Barren Land Trees Grassland Road Water

Building 100 0 0 0 0 0
Barren land 0 99.134 0 0.866 0 0

Trees 0 0 99.894 0.106 0 0
Grassland 0.008 0.802 0.143 99.047 0 0

Road 0 0 0 0 100 0
Water 0 0 0 0 0 100

Table 2. Compared overall accuracies on SAT-4 and SAT-6 datasets with DeepSat [29] and DCNN [30].

Methods SAT-4 SAT-6

DBN [29] 81.78 76.41
CNN [29] 86.83 79.06
SDAE [29] 79.98 78.43
Semi-supervised [29] 97.95 93.92
DCNN [30] 98.408 96.037
Ours 99.709 99.679

94 95 96 97 98 99 100

SAT-4

SAT-6

Recognition Accuracy (%)

K=512 K=256 K=128 K=64 K=32

Figure 7. Recognition accuracies of the proposed multi-spectral representation based on the vector
quantization (VQ) coding strategy under different codebook sizes (K = 32, 64, 128, 256, 512) for both
datasets SAT-4 and SAT-6.
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Figure 8. Recognition accuracies of the proposed multi-spectral representation based on LcSC coding
and different pooling strategies (LcSC_Max: Max pooling; LcSC_Ave: average pooling; LcSC_L50:
the proposed generalized pooling method with the top 50 coefficients; LcSC_L100: the proposed
generalized pooling method with the top 100 coefficients) under codebook sizes (K = 64, 128, 256, 512)
for both datasets: (a) SAT-4 and (b) SAT-6.
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Figure 9. Compared recognition accuracies based on VQ and LcSC coding strategies for codebook size:
K = 512 for both datasets SAT-4 and SAT-6.
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Figure 10. Recognition accuracies of the proposed multi-spectral representation based on LcSC
coding and different pooling strategies under codebook sizes (K = 32, 64, 128, 256, 512) for the
Megasolar dataset.

4.4. Computational Cost

We implemented the proposed multi-spectral analysis and satellite image recognition system on a
desktop computer with an Intel Core i5-6500 CPU. This subsection provides the processing times of
the four procedures in our proposed strategy: the codebook (spectral atoms) learning (denoted as CL),
SVM training (denoted as SVM-T), LcSC-based feature extraction (FE) and the label prediction with
the pre-constructed SVM model (denoted SVM-P). As we know, the CL and SVM-T procedures can
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be implemented off-line, where CL learns the spectral atoms while SVM-T constructs a classification
model with the extracted features from training images and their corresponding labels. Given any test
image with an unknown class label, we need only two on-line steps: feature extraction (FE) and class
label prediction with the pre-learned SVM model (SVM-P). Table 3 provides the computational times
of different procedures in our proposed strategy with atom numbers: K = 256, 512, for both SAT-4 and
SAT-6 datasets, where we randomly selected 500 images from each class for codebook learning. From
Table 3, it can be seen that the off-line procedures take about a few hundreds of seconds for codebook
learning and decades of minutes for SVM model learning, while the on-line feature extraction and
SVM prediction procedures for one 28× 28 image are much faster with decades of millisecond only
than the off-line procedure.

Table 3. Computational times of different procedures in our proposed strategy. CL, FE, SVM-T and
SVM-P denote codebook learning, feature extraction, SVM training and SVM prediction, respectively,
while ’s’ and ’m’ represent second and minute and CB size denotes codebook size, respectively.

CB Size Off-Line On-Line

CL (s) SVM-T (m) FE (s) SVM-P (s)

SAT-4 SAT-6 SAT-4 SAT-6 For one 28 × 28 image
Dict: 256 270.40 393.17 42.62 9.54 0.024 0.010
Dict:512 530.96 906.17 52.89 11.25 0.038 0.014

As the codebook learning for LcSC is an unsupervised procedure, it may not greatly affect the
recognition performance with different numbers of images. We implemented the multi-spectral analysis
strategy with the learned codebook using the randomly selected 10 images (denoted as INum10) only,
instead of 500 images (denoted as INum500, in the previous experiments) from each class, and provide
the compared results in Figure 11. From Figure 11, we can see that except the max-pooling-based
LcSC feature, there are no obvious differences in recognition performances with the learned codebook
using different image numbers, and thus, were can say that our proposed feature extraction strategy
is robust to the codebook learning procedure. The processing times for codebook learning with 10
and 500 images from each class, respectively for both SAT-4 and SAT-6 datasets, are shown in Table 4,
which manifests that the computational time can be greatly reduced for codebook learning with a small
number of images.
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Figure 11. Comparison of the recognition accuracies of the proposed multi-spectral representation
based on LcSC coding with the learned codebook using 10 and 500 images, respectively, from each class
for both the SAT-4 and SAT-6 datasets. The compared accuracies with (a) codebook size: K = 256 for
SAT-4, (b) codebook size: K = 512 for SAT-4, (c) codebook size: K = 256 for SAT-6 and (d) codebook size:
K = 512 for SAT-6.

Table 4. Processing time (s) for codebook learning with 10 and 500 images, respectively, for both SAT-4
and SAT-6 datasets.

Codebook Size SAT-4 SAT-6

INum10 INum500 INum10 INum500

K = 256 4.54 270.40 6.61 393.17
K = 512 7.37 530.96 12.57 906.17

5. Conclusions

This study proposed an effective and discriminative multi-spectral image representation for
satellite image recognition. Due to the low resolution of the available satellite images, it would
be unsuitable to conduct the spatial analysis for exploring the nearby pixel relation, and on the
other hand, because of the possible available multi-spectral bands, the recognition problem may
benefit from the spectral analysis. These motivated us to explore the widely-used BOW model,
which achieves impressive performance for some vision applications, using the available pixel-wise
multi-spectra instead of spatial analysis in the conventional method. The proposed multi-spectral
analysis firstly learns the multi-spectral prototypes (dictionary) for representing any pixel-wise spectral
data. Then, based on the learned dictionary, a sparse coded spectral vector for any pixel is generated
with locality-constrained sparse coding techniques, which can guarantee the smoothness between the
input spectral space and the coded vector space. Finally, we combined the set of coded spectral vectors
in a satellite scene image to form a same-dimensional feature vector as the image representation, which
we accomplished by using a generalized aggregation strategy. This strategy consisted of integrating
not only the maximum magnitude, but also the response magnitude of the relatively large coded
coefficients of a specific spectral prototype instead of using the conventional max- and average-pooling
approaches. Experiments on three satellite datasets validated that the recognition performance of
our proposed approach is comparable and impressive compared with the state-of-the-art methods for
satellite scene classification.
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