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Abstract: Spatial discontinuity often causes poor accuracy when a single model is used for the
surface modeling of soil properties in complex geomorphic areas. Here we present a method for
adaptive surface modeling of combined secondary variables to improve prediction accuracy during
the interpolation of soil properties (ASM-SP). Using various secondary variables and multiple base
interpolation models, ASM-SP was used to interpolate soil K+ in a typical complex geomorphic area
(Qinghai Lake Basin, China). Five methods, including inverse distance weighting (IDW), ordinary
kriging (OK), and OK combined with different secondary variables (e.g., OK-Landuse, OK-Geology,
and OK-Soil), were used to validate the proposed method. The mean error (ME), mean absolute error
(MAE), root mean square error (RMSE), mean relative error (MRE), and accuracy (AC) were used
as evaluation indicators. Results showed that: (1) The OK interpolation result is spatially smooth
and has a weak bull's-eye effect, and the IDW has a stronger ‘bull’s-eye’ effect, relatively. They both
have obvious deficiencies in depicting spatial variability of soil K+. (2) The methods incorporating
combinations of different secondary variables (e.g., ASM-SP, OK-Landuse, OK-Geology, and OK-Soil)
were associated with lower estimation bias. Compared with IDW, OK, OK-Landuse, OK-Geology, and
OK-Soil, the accuracy of ASM-SP increased by 13.63%, 10.85%, 9.98%, 8.32%, and 7.66%, respectively.
Furthermore, ASM-SP was more stable, with lower MEs, MAEs, RMSEs, and MREs. (3) ASM-SP
presents more details than others in the abrupt boundary, which can render the result consistent with
the true secondary variables. In conclusion, ASM-SP can not only consider the nonlinear relationship
between secondary variables and soil properties, but can also adaptively combine the advantages of
multiple models, which contributes to making the spatial interpolation of soil K+ more reasonable.

Keywords: complex landform; adaptive surface modeling; spatial interpolation; geostatistics;
soil properties

1. Introduction

Scientific management and utilization of soil resources is predicated on correct understanding
of the continuous changes in regional soil properties. Spatial interpolation is the main method used
to evaluate continuous changes in soil properties [1], as well as being an important research tool in
the fields of ‘digital soil’ and ‘pedometrics’ mapping [2]. Current spatial interpolation methods
mainly originate from discrete modern mathematical theories (function theory and differential
geometry), and can be largely classified into three groups [3]: (1) deterministic or non-geostatistical
methods (e.g., inverse distance weighting, IDW), (2) geostatistical methods (e.g., ordinary kriging,
OK), and (3) combined methods (e.g., regression kriging). These methods are often data- or even

ISPRS Int. J. Geo-Inf. 2017, 6, 178; doi:10.3390/ijgi6060178 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi6060178
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2017, 6, 178 2 of 16

variable-specific and their performance depends on many factors. No consistent findings have been
acquired to identify the best interpolation method, and most are global models (i.e., the same model
is applied over the whole study area) [4,5]. However, in areas of landform complexity, the spatial
distribution of soil properties is affected by secondary variables such as soil type, land use type, and
landform type, and it is difficult to satisfy the basic assumptions of current models [6,7]. Further, owing
to various shortcomings, single interpolation models restrict the improvement of prediction accuracy.

In recent years, some machine learning methods have been applied to the fields of data mining
and spatial interpolation and have demonstrated their predictive accuracy; for example, artificial
neural networks (ANN), random forest (RF), and support vector machine (SVM). Furthermore, ANN
and SVM have been applied to daily minimum air temperature and rainfall data in some subjects [8,9].
However, all of these represent global interpolation models, which are difficult to adapt to landform
complexity areas. Utilizing the advantages of ensemble learning for regression, we combined a series of
interpolation models to carry out interpolation simulation of the spatial variation in soil properties and
verified the reliability of multi-model integration [10]. Despite this, issues still remain; for example, in
previous work, we only conducted a global regression integration of various interpolation models, with
limited consideration of discontinuous space and spatial variation problems. Furthermore, remaining
interpolation models need improvement and optimization before they can be integrated.

In addition, a range of studies have demonstrated that interpolation accuracy and mapping quality
can be effectively improved by the use of secondary variables as supplementary information [4,11–18].
Land use, soil type, grassland type, and geology type might be expected to play a significant auxiliary
role in controlling the spatial variation of soil properties. Previous work by Shi et al. [1] demonstrated
the effectiveness of incorporating land use type and soil type to improve interpolation simulation
of soil properties. In addition, many studies have identified topography as an important auxiliary
element [3,19], but previous research results suggest it is not a key factor in the study area [10].
Therefore, integration of secondary variables in this study should have an important influence on
interpolation accuracy.

In order to solve the global model and secondary variable problems that had long troubled the
interpolation method, this study aimed to address some of the outstanding issues, with an overall goal
of improving the prediction accuracy of the single interpolation model in areas with complex landforms,
using soil K+ as an example. We applied analysis of variance (ANOVA) to select secondary variables
closely related to the spatial variation of soil K+, integrated secondary variables, and constructed a
series of soil property interpolation models. To deal with the discontinuity and spatial variation of
soil properties in areas with complex landforms, error surfaces were constructed to enable adaptive
partitioning of interpolation surfaces for screening suitable base interpolation models. This paper
optimized the screened base interpolation models, and built and coordinated multi-model integration
interpolation methods (different combinations of interpolation models were selected for different
areas) to realize a high precision simulation of soil properties. We evaluated the performance of the
different spatial interpolation methods IDW, OK, OK-Landuse, OK-Geology, OK-Soil, and ASM-SP,
and analyzed their predictive capabilities in terms of soil K+ maps.

2. Method

2.1. Study Area and Datasets

The study area (36◦38′–37◦29′ N, 99◦52′–100◦50′ E) is located in the southeast part of the Qinghai
Lake Basin, on the Tibetan Plateau, China (Figure 1). The long-term combined action of geological
movement and external forces have formed a complicated and diverse array of geomorphic features
in the area. The study area covers a total of 2100 km2, with an altitude ranging between 3043 and
4516 m, and is characterized by complex landforms, including mountains, hills, tablelands, and plains.
Abundant agricultural and husbandry activities are carried out in the area.
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The study area is characterized by 6 soil types (Figure 2a); 12 geology types, including alluvial
terrace, denudate high terrace, and diluvial plain (Figure 2b); and 8 land use types, including cropland,
grassland, and potential arable land (Figure 2c). The grassland can be divided into 20 types, mainly
including Achnatherum splendens, leymus, and Blysmus sinocompressus (Figure 2d). We calculated
the statistical characteristics of soil K+ in secondary variables using 110 training samples (Table 1).

Figure 1. Location of the study area, showing sample sites (circles) and elevation (shading).

Figure 2. Characteristics of the study area: (a) soil types, from the 1: 1,000,000 soil map of the China
Soil Investigation Office; (b) geology types, from the 1:500,000 geologic map of the Bureau of Geological
Exploration and Development of Qinghai Province; (c) land use types; and (d) grassland types.
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Table 1. Descriptive statistical characteristics of soil K+ content in different secondary variables.

Secondary Variable Subtype Number Mean Standard Error Area/km2 Area Proportion/%

Soil

Alpine meadow soil 32 1.98 0.14 420.47 20.81
Chestnut soil 54 2.01 0.18 1360.14 67.31

Flow sandy soil 10 1.72 0.12 144.76 7.16
Meadow marsh soil 6 1.84 0.03 31.9 1.58

Semi-fixed sandy soil 8 1.50 0.07 63.4 3.14

Geology

Alluvial terrace 8 2.04 0.14 71.25 3.53
Denudate high terrace 10 2.15 0.07 266.73 13.22

Diluvial plain 13 2.10 0.13 515.24 25.53
Hilly 3 2.14 0.05 3.76 0.19

Lacustrine plain 20 1.94 0.17 333.33 16.52
Lake beach 5 1.84 0.09 143.99 7.14

Large rolling alpine 10 1.89 0.12 132.64 6.57
Middle rolling alpine 4 1.91 0.10 5.63 0.28

Sand dune 14 1.63 0.14 193.15 9.57
Small rolling alpine 14 2.05 0.12 287.08 14.23

Valley plain 9 1.96 0.08 65.22 3.23

Land use

Cropland 10 2.14 0.08 77.16 3.83
Grassland 41 1.99 0.13 1172.65 58.17

Meadowland 25 2.02 0.12 417.44 20.71
Potential arable land 16 1.88 0.14 229.32 11.38

Scrubland 0 1.91 0.22 1.18 0.05
Swamp meadowland 5 1.84 0.04 32.09 1.59

Unused land 13 1.64 0.09 86.43 4.29

Grassland

Achnatherum splendens 37 1.93 0.17 719.58 35.59
Artemisaarenariadc 2 1.49 0.07 31.83 1.57

Blysmus sinocompressus 5 1.93 0.14 30.00 1.48
Bush cinqefoil 18 2.06 0.14 517.19 25.58

Coarse beak carex 2 1.86 0.04 20.10 0.99
Elymus nutans 3 1.73 0.08 18.49 0.91

Ephedra 1 1.50 0 2.49 0.12
Gravel 4 1.68 0.10 135.38 6.70

Iris ensata thunb 1 1.96 0 34.47 1.70
Leymus 6 1.94 0.27 28.95 1.43

Kobresia humilis 4 2.02 0.08 28.30 1.40
Koeleria tibetica 4 1.80 0.10 24.45 1.21

Kobresia capillifolia 7 2.05 0.08 157.90 7.81
Kobresia myosuroides 3 2.16 0.06 82.99 4.11

Salix oritrepha 2 2.02 0.05 16.33 0.81
Serpent grass 2 1.94 0.08 4.29 0.21
Stipa krylovii 3 1.82 0.05 51.77 2.56

Stipa purpurea 5 2.14 0.07 111.51 5.52
Water bai zhi 1 2.08 0 5.64 0.28

Field sampling of surface soil (0–30 cm) at 110 sampling points was carried out in September
2013 to supplement map data. The mean distance between soil sampling locations was approximately
6.74 km. The sampling sites were designed to cover the whole area and include different landscapes.
In order to ensure rational distribution of the sampling points across the different geo-environments,
a spatially stratified sampling strategy was applied based on landscape types [20]. Supported by
the Qinghai Environmental Monitoring Center, we recorded information such as soil type, altitude,
geology, and land use for each sample location. Each position was sampled three times and the mean
was recorded as the sample value. Soil samples were taken back to the laboratory for analysis. After air
drying, grinding, and screening through a 2 mm sieve, soil K+ of the samples was measured using
sodium hydroxide melting analysis [21].

The secondary variables were compiled in ArcGIS 10.2, and converted to a resolution ratio of 30 m
through resampling. Since the study area covers a comparatively large range of landscape types, and
the number of samples was relatively small, the spatial distribution of samples was uneven (Figure 1)
and some landscape types with a relatively high degree of fragmentation are poorly represented. In the
study area, the subtypes of secondary variables not sampled anywhere covered only a very small area
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(i.e., scrubland; Figure 2c; Table 1). For this area, we directly used the nearest five-point surrounding
values for the subtype to calculate the mean value.

2.2. Methods for Spatial Interpolation

2.2.1. Inverse Distance Weighting

IDW is a deterministic method for multivariate interpolation using a known scattered set of points.
Values assigned to unknown points are calculated with a weighted average of the values available at
known points. Weights are usually inversely proportional to the power of distance [22], which, at an
unsampled location x, leads to an estimator:

Z∗(x) =
n

∑
i=1

λiZ(xi) =
n

∑
i=1

Z(xi)
1/dp

i
n
∑

i=1
1/dp

i

(1)

where Z*(x) is the predicted value, Z (xi) is the measured value, n is the number of closest points
(typically 10 to 30), p is a parameter (typically p = 2), and d is the cut-off distance.

2.2.2. Ordinary Kriging

Kriging interpolation is considered the best unbiased linear estimation method [23]. When the
mathematical expectation of the regionalized variable Z*(x) is unknown, it is termed ordinary kriging.
Z*(x), the estimated value of variables at point x, is obtained by the linear combination of n Z (xi)s, the
effective observed value, using the expression:

Z∗(x) =
n

∑
i=1

λiZ(xi) (2)

where λi is the weight given to the observed value Z(xi) and represents the contribution of each
observed value to the estimated value Z*(x). It can be calculated by the semi-variance function of
the variables on the condition that the estimated value is unbiased and optimal. The semi-variance
function can be expressed by the equation:

γ(h) =
1
2

N(h)×
N(h)

∑
i=1

[Z(xi)− Z(xi + h)]2 (3)

where γ(h) is the semi-variance, N(h) is the point group number at distance h, Z(xi) is the numerical
value at position xi, and Z(xi + h) is the numerical value at distance (xi + h).

2.2.3. Base Interpolation Models

As a kind of geostatistical model [24,25], each observation z(xmn,ymn) of a specific soil K+ at
location (x, y) in the n-th type of the m-th kind of secondary variable can be expressed as:

z(xmn, ymn) = m(Emn) + r(xmn, ymn) (4)

where m(Emn) is the mean value of z(xmn,ymn) in the n-th type of the m-th kind of secondary variable,
and r(xmn,ymn) is the residual computed by subtracting the mean value m(Emn) of the n-th type of
the relative m-th secondary variable from the measured value of soil K+. We assumed that m(Emn)
and r(xmn,ymn) are mutually independent and that variation of r(xmn,ymn) is homogeneous over the
entire study area. The residuals were then used to interpolate the surface of residuals over the whole
study area by OK. Finally, the interpolated residual values were summed to the soil K+ means of the
relevant secondary variable as the final interpolated values of OK with secondary variable for the soil
K+; that is, the mean was modified with surface modeling of residuals. See Section 3.3.1 for the specific
modeling process of base interpolation models (i.e., OK-Landuse, OK-Soil, OK-Geology).
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2.3. Method for Adaptive Partitioning

A series of interpolation surfaces of soil properties were generated from the base interpolation
models to calculate simulation errors for soil sampling points. The error surface, derived from linear
interpolation, was used to determine whether the error of each raster cell exceeded a threshold value.
Raster cells below the threshold value were clustered to determine the spatial range of applicability of
each interpolation model after multiple iterations. The individual steps are shown in Figure 3a and
detailed below.

Figure 3. Adaptive partitioning process (a) and clustering (b).

Step one: Raster cell simulation. For a specific soil property interpolation model (e.g., Mi), soil
properties are calculated for the whole study area at a specific resolution ratio C0 to give the raster
simulation value S0;

Step two: The soil property simulation error at each sampling point is calculated by subtracting
the simulation value from the measured value;

Step three: Error surface construction. The error surface is constructed using linear interpolation
based on the simulation error obtained in step two;

Step four: Calculate the simulation error of soil properties at each raster cell, based on the error
surfaces obtained in step three;

Step five: Determine whether ei (i=1, 2, . . . m), the error of each raster cell, satisfies | ei | < ε,
where ε is the error threshold. If it does, this raster cell is marked as a clustering cell;

Step six: Clustering. Areas that meet the accuracy threshold are clustered based on the spatial
locations clustering cells. Ri1, Ri2, and Rik, etc., are the cluster spaces of the interpolation model Mi
(Figure 3b);

Step seven: Repeat the above steps for each interpolation model to determine their applicable
spatial ranges.

2.4. Assessment of Performance

Independent validation was applied to assess interpolation accuracy. The soil K+ sample data
were randomly split into two groups, one of which was used for interpolation and the other for
validation. A total of 90 soil K+ sample points were used for interpolation and the remaining 20 were
used for validation.
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We assessed the accuracy of the different interpolation methods by comparing the mean error
(ME), mean absolute error (MAE), mean relative error (MRE), root mean square error (RMSE), and
accuracy (AC) of predicted and measured values. The specific equations used are as follows:

ME =
1
n

n

∑
i=1

(z(xi)− z∗(xi)) (5)

MAE =
1
n

n

∑
i=1
|z(xi)− z∗(xi)| (6)

MRE =
1
n

n

∑
i=1
|z(xi)− z∗(xi)/z(xi)| (7)

RMSE =

√√√√ 1
n

n

∑
i=1

(z(xi)− z∗(xi))
2

(8)

AC = 1− nRMSE2

PEV
(9)

PEV =
n

∑
j=1

[|z∗(xi)− o|+ |z(xi)− o|]
2

(10)

where n is the number of samples; PEV is the potential error variance (PEV); z(xi) and z∗(xi) are the
measured and predicted values, respectively; and o is the mean measured value. AC varies between 0
and 1, with larger values indicating a better predicted result. Smaller values of ME, MAE and RMSE,
indicate greater interpolation accuracy. MRE is dimensionless and smaller values indicate greater
interpolation accuracy.

3. Results

3.1. Parameter Specification and Selection of Secondary Variables

Based on fitted nugget, sill, and range values, the semi-variogram model was selected for analysis
of spatial correlation. Other models were considered, including exponential, spherical, Bessel, circular,
and Gaussian, while exponential and K-Bessel models were selected for the OK and base interpolation
models as they better fitted the data/residuals (Figure 4). To determine the number of kriging samples,
we chose the best samples from 5 to 30 at 5-step intervals.

The spatial correlation of residuals showed good performance after removal of the local mean
within the different secondary variables (Table 2). All of the semi-variograms of residuals tended to
show a smaller sill and a shorter range, indicating that drift had been removed [26]. The nugget/sill
ratio (N/S) of residuals was <0.3 for all models except OK-Geology, which indicates strong spatial
correlation of the residual data [27]; the spatial correlation increased after trend removal. This finding
suggests that the OK and base interpolation models were appropriate for the study area.

Table 2. Semi-variogram models.

Parameter Residue of
OK_Landuse

Residue of
OK_Soil

Residue of
OK_Geology OK

Model K-Bessel K-Bessel Exponential Exponential
Range/10 km 1.1984 1.2169 1.1984 2.5058

Nugget (N) 0.0204 0.03124 0.1866 0.2483
Sill (S) 0.4842 0.5043 0.4783 0.6012

N/S 0.0421 0.0619 0.3901 0.4130
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Figure 4. Semi-variograms of soil K+ residuals for: (a) OK-Soil; (b) OK-Geology; (c) OK-Landuse; and
(d) OK (original values).

The secondary variables used for each method were analyzed by ANOVA. The soil K+ data were
grouped into classes in order to compare soil K+ for the different secondary variables. For example, in
terms of soil type, the soil K+ data were grouped into five classes: alpine meadow soil, chestnut soil,
flow sandy soil, meadow marsh soil, and semi-fixed sandy soil, with 32, 54, 10, 6, and 8 samples in
each, respectively. The soil K+ variances between and within soil types were determined by ANOVA
using SPSS 21.0 for Windows.

3.2. ANOVA Analysis of Soil Properties for Different Secondary Variables

The ANOVA results comparing the influence of different secondary variables on Soil K+ are
shown in Table 3. Geology type, soil type, and land use type are strongly correlated with the spatial
variation in soil K+, with significance at the 0.01 level. However, grassland type is poorly correlated
with soil K+ (significance level of 0.2). This is mainly due to the larger degree of fragmentation of the
soil map of grassland types, and the limited number of sample points for some grassland, with some
subtypes of grassland having just 1 or 2 sampling points (Table 1). Hence, grassland type was not used
in the process of constructing the base interpolation and ASM-SP models.

Table 3. ANOVA analysis for testing the significance of secondary variables on soil K+ variance.

Geo-Factors Soil
Property

Sources of
Variance

Degree of
Freedom

Sum of
Variance

Mean
Variance F Value p Value

Geology
type Soil K+

In-group 9 1.033 0.115 2.856 0.005
Between groups 101 4.060 0.04

Total 110 5.093

Soil type Soil K+
In-group 4 0.722 0.181 4.378 0.003

Between groups 106 4.371 0.041
Total 110 5.093

Land use
type Soil K+

In-group 4 0.462 0.116 2.645 0.008
Between groups 106 4.631 0.044

Total 110 5.093

Grassland
type Soil K+

In-group 16 0.934 0.058 1.319 0.202
Between groups 94 4.159 0.044

Total 110 5.093
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3.3. ASM-SP

The ASM-SP was constructed in three steps: first, a number of base interpolation models were
produced (e.g., OK-Landuse, OK-Soil, and OK-Geology); second, the base interpolation models were
partitioned by an adaptive method; third, the base interpolation models were combined using a popular
combination scheme. The models OK-Landuse, OK-Soil, and OK-Geology were used as the base
interpolation models. Adaptive partitioning was conducted on the base interpolation models using the
method described in Section 2.3 to construct error surfaces; partitions that met the accuracy requirement
were screened and the ASM-SP was constructed based on raster cell optimization. The specific steps
were as follows.

3.3.1. Construction of Base Interpolation Models

Step one: Equation (4) was used to calculate mean soil K+ for each geological factor and obtain
mean surface m(Emn). The mean soil K+ was correlated to the secondary variables, based on measured
values of soil K+ (Figure 5).

Figure 5. Mean surface m(Emn) of soil K+ for different secondary variables: (a) land use; (b) geology;
(c) soil type.

Step two: The mean value of soil K+ was subtracted from the measured value to calculate
the residuals of soil K+. The residuals were then interpolated by OK to obtain the residual surface
r(xmn,ymn) (Figure 6).

Figure 6. Residual surfaces r(xmn,ymn) of soil K+ for different secondary variables: (a) land use;
(b) geology; (c) soil type.
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Step three: The mean (Figure 5) and residual surfaces (Figure 6) were added to give z(xmn,ymn),
the spatial interpolation result of soil K+ that integrates the secondary variables, which is the base
interpolation surface to be integrated.

3.3.2. Adaptive Partitioning of Interpolation Surfaces

Based on the method for constructing error surfaces outlined in Section 2.3, the local polynomial
interpolation was used to obtain error surfaces for the different interpolation models (Figure 7) and to
determine the spatial range of applicability for each interpolation model.

Figure 7. Error surfaces of base interpolation models: (a) land use; (b) geology; (c) soil type.

3.3.3. Integration of Interpolation Surfaces

On the basis of raster cell optimization, interpolation results of raster cells with the minimum error
were selected as the optimal raster cell to be integrated. Figure 8 displays the principle of the raster
cell optimization method, and Figure 9 shows the optimal partitions corresponding to the different
interpolation models.

Figure 8. The raster cell optimization process (‘a’ and ‘b’ are different models of raster interpolation,
‘c’ and ‘d’ are the interpolation error, ‘e’ is the optimal raster cell mosaic result).
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Figure 9. Regional distribution of optimized base interpolation models.

3.4. Comparison of Interpolation Performance

The accuracy of ASM-SP for simulating the spatial variation of soil K+ was evaluated by comparing
the simulation effectiveness of six interpolation methods, namely OK-Landuse, OK-Geology, OK-Soil,
IDW, OK, and ASM-SP. Five evaluation indexes, ME, MAE, RMSE, MRE, and AC, were used to
independently validate the models (Table 4). As indicated in Table 4, the ME of the interpolation
methods that combined secondary variables (i.e., OK-Landuse, OK-Geology, OK-Soil, and ASM-SP)
was closer to 0 than those of the conventional interpolation methods (i.e., IDW and OK). This implies
that interpolations that integrate secondary variables are less biased. The ASM-SP method had lower
ME, MAE, RMSE, and MRE values than the other interpolation methods, indicating better performance,
and this was reflected in its greater AC (0.9950). The interpolation accuracy of ASM-SP was higher
overall for two reasons. First, the method combines secondary variables so it more accurately depicts
soil K+ boundaries as they vary with the changing geo-environment. Second, based on given accuracy
thresholds, ASM-SP adaptively screens the optimal prediction area of multiple interpolation models
and regroups them in an optimized way. The other methods, OK-Landuse, OK-Geology, and OK-Soil,
only consider the influence of secondary variables on the spatial variance of soil K+, but do not
further screen and optimize the interpolation results. Thus, they are inferior to ASM-SP in terms of
interpolation accuracy.

Table 4. Comparison of the accuracy of OK, OK-Landuse, OK-Geology, OK-Soil, inverse distance
weighting (IDW), and ASM-SP interpolation.

Evaluation Index OK-Landuse OK-Geology OK-Soil IDW OK ASM-SP

ME 0.0030 −0.0037 0.0024 0.0072 0.0093 0.0017
MAE 0.0294 0.0301 0.0236 0.0362 0.0314 0.0072
RMSE 0.0742 0.0672 0.0815 0.1637 0.1067 0.0586
MRE 95.91% 96.57% 95.87% 96.04% 95.34% 89.69%
AC 0.9047 0.9186 0.9242 0.8756 0.8976 0.9903
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3.5. Comparison of Interpolated Maps

The predictive capabilities of the six interpolation methods in terms of the soil K+ maps are
compared in Figure 10. The IDW interpolation gives a good representation of the overall pattern
of soil K+ distribution, but the accuracy of small scale variations is low. Also, a relatively strong
‘bull’s-eye’ effect is created in areas with greater or fewer sampling points. The simulation surface of
OK is smoother and its interpolation range is at an intermediate level. Owing to the smoothing effect
of kriging, the range of variation in soil K+ is narrower than the true value, which is what has been
found in other studies [28–31]. The OK map also shows a weak ‘bull’s-eye’ effect. The OK-Landuse,
OK-Geology, and OK-Soil maps eliminate the smoothing effect of OK interpolation relatively well,
and their interpolation accuracy is slightly higher. The ASM-SP method is most effective in depicting
the pattern of spatial variation in soil K+ and has a moderate interpolation range (1.31–2.38), and can
give more details of soil K+ distribution in different secondary variables, especially in the abrupt
boundary. In contrast, soil K+ values of OK and IDW interpolation map did not have the discrete
information. The method has stronger adaptability to the spatial interpolation of soil properties in
areas with complex landforms, which allowed it to describe the patterns of spatial variation in soil
properties in the study area more accurately.

Figure 10. Comparison of soil K+ maps constructed using different interpolation methods:
(a) OK-Landuse, where OK is ordinary kriging; (b) OK-Geology; (c) OK-Soil; (d) inverse distance
weighting (IDW); (e) OK; and (f) ASM-SP.
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4. Discussion

4.1. Performance of Multi-Model Integration for Reducing Predictive Error

Unlike more traditional spatial interpolation methods (e.g., IDW and OK), which use one
interpolation model to train data sets, the ASM-SP method uses a series of base interpolation models
and constructs error surfaces to adaptively screen and regroup the interpolation models in an optimized
way. Its interpolation accuracy is usually higher than that of a single interpolation model [10]. Thus,
it has great advantages for conducting interpolation with multiple models. The systematic analysis
followed in this study indicates that the improved performance of the ASM-SP interpolation is mainly
due to the following reasons:

(1) The sample data used to predict soil properties cannot usually provide the complete information
for individual interpolation models, requiring assumptions to be made about different conditions.
In other words, it is difficult for a single interpolation model to accurately describe the spatial
variance of soil properties across the whole study area. For instance, using sampling data for
one soil property, a number of interpolation models might share similar interpolation accuracies,
with no optimal interpolation. The accuracy of spatial interpolation of soil properties can be well
improved by effectively combining the advantages of multiple base interpolation models.

(2) The sample data used to predict soil properties often cannot accurately express patterns of spatial
variation. However, the integration of multiple models is able to provide a better approximation
than use of a single model. For example, the patterns of spatial variance in soil K+ in dry farmland
differ greatly in areas with chernozem and clay soils. Therefore, if land use type is the only
secondary variable used in the spatial interpolation of soil K+ (e.g., in OK-Landuse), it is usually
impossible to achieve a relatively high prediction accuracy. An effective solution is to integrate a
series of spatial interpolation methods (e.g., OK-Landuse, OK-Soil, OK-Geology, etc.) to realize
simultaneous approximation.

Based on the above, it is clear that the interpolation results derived from the ASM-SP method
provide a better physical explanation of the spatial variation in soil properties. Also, the simulation
accuracy of ASM-SP is greatly enhanced compared with OK, OK-Landuse, OK-Soil, OK-Geology etc.
Thus, ASM-SP is a more suitable method for application in areas with complex landforms.

4.2. Effectiveness of Secondary Variables for Spatial Interpolation

Different land uses, soil types, and geology all influence the spatial variation of soil properties.
Previous research has also demonstrated that there is a relatively strong spatial correlation between
secondary variables and the spatial variation of soil properties [14,32–34]. Work by [35,36] explained
the correlation between the spatial variation of soil properties and secondary variables, and effectively
improved the prediction accuracy of soil properties using secondary variables as secondary variables.

In this study, we compared spatial interpolation models that integrate secondary variables as
the secondary variables (e.g., ASM-SP) and spatial interpolation models that do not incorporate
any secondary variables (e.g., IDW and OK). The results indicated that an appropriate integration
of secondary variables can effectively improve the spatial interpolation accuracy of soil properties.
This supports the conclusion of Goovaerts (1999) that CoKriging interpolation combining secondary
variables usually achieves a better simulation effect than OK. However, as pointed out by [24], the
Cokriging interpolation result is only better than OK when the correlation between secondary variables
and the sample data of soil properties is greater than 0.4. When the correlation is greater than 0.75,
the simulation accuracy of spatial interpolation methods that combine secondary variables is higher
than OK. Nevertheless, as shown by our previous research, the integration of secondary variables
does not always effectively increase the spatial interpolation accuracy, though there is a relatively
strong spatial correlation between secondary variables and the sample data of soil properties [10].
However, in general, an appropriate integration of geo-environmental factors as secondary variables
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is able to effectively depict soil property boundaries that abruptly change as the geo-environmental
factors change.

5. Conclusions

Affected by secondary variables, the spatial distribution of soil properties is subject to problems
such as spatial discontinuity and variability. It is difficult for a single global interpolation model
to fully explain the spatial instability of spatial variables of soil properties, especially in areas with
complex landforms. Using soil K+ as a case study, we proposed a kind of adaptive surface modeling
that combines secondary variables (ASM-SP). Compared with methods such as OK and OK-Landuse,
OK-Soil, and OK-Geology that also combine secondary variables, ASM-SP is able to depict the spatial
variation of soil properties in areas with complex landforms more accurately, and reduce simulation
errors more effectively, owing to its integration of multiple base interpolation models. In addition, since
ASM-SP combines secondary variables and its simulation surface better accords with geographical
laws, it provides detailed information about the spatial variation of soil properties that is more accurate
and reasonable. This provides greater opportunity for physical explanation of the spatial variance
characteristics of soil properties. However, ASM-SP is based on error minimization surfaces; therefore,
there is a risk of over-fitting, which will be addressed in future work.

The interpolation accuracy of soil properties in areas with complex landforms has two main
challenges. First, there is a non-linear relationship between the soil properties of sampling points
and the secondary variables, and the fitting precision of conventional linear models is rather limited.
Second, the selected interpolation model must have relatively high simulation accuracy and, preferably,
provide the optimal interpolation. However, in reality, every interpolation model has advantages
and disadvantages. Even though it is possible to find a global optimum interpolation model through
adequate data exploration and analysis, a simple global model is unable to explain the spatial instability
of soil property spatial variables. A feasible solution is to combine secondary variables to integrate
multiple models, so that different combinations of interpolation models can be selected for different
areas. Soil K+ is comparatively representative of soil properties that vary severely within a short
horizontal distance. The ASM-SP method would also be applicable to the interpolation of other soil
properties (e.g., soil P, PH, Ca, Mg, and Zn). Previously, we verified the advantages of an ensemble
learning algorithm in the serial integration of multiple models [10]. In future research, we plan to
comprehensively utilize the machine learning algorithm, combine secondary variables, and build and
coordinate adaptive multi-model integration interpolation methods to solve over-fitting problems and
to conduct high accuracy surface modeling of soil properties.
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