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Abstract: With the rapid explosion of information based on location, spatial clustering plays an
increasingly significant role in this day and age as an important technique in geographical data
analysis. Most existing spatial clustering algorithms are limited by complicated spatial patterns,
which have difficulty in discovering clusters with arbitrary shapes and uneven density. In order to
overcome such limitations, we propose a novel clustering method called Spatial Clustering with
Multiple Density-Ordered Trees (SCMDOT). Motivated by the idea of the Density-Ordered Tree
(DOT), we firstly represent the original dataset by the means of constructing Multiple Density-Ordered
Trees (MDOT). In the constructing process, we impose additional constraints to control the growth of
each Density-Ordered Tree, ensuring that they all have high spatial similarity. Furthermore, a series
of MDOT can be successively generated from regions of sparse areas to the dense areas, where each
Density-Ordered Tree, also treated as a sub-tree, represents a cluster. In the merging process, the final
clusters are obtained by repeatedly merging a suitable pair of clusters until they satisfy the expected
clustering result. In addition, a heuristic strategy is applied during the process of our algorithm for
suitability for special applications. The experiments on synthetic and real-world spatial databases are
utilised to demonstrate the performance of our proposed method.

Keywords: spatial clustering; Multiple Density-Ordered Trees (MDOT); multi-density clustering;
agglomerative hierarchical clustering

1. Introduction

Spatial data mining has been emphasised for a decade in an effort to discover potential and
meaningful knowledge hidden in the intensely massive numbers of spatial objects. Spatial clustering is
one of the most significant branches of spatial data mining, which aims to classify numerous of spatial
objects with diverse spatial distribution into several groups (called clusters). Briefly, the principle of
spatial clustering is to ensure that spatial objects are sorted in the same cluster with a higher spatial
similarity compared to those belonging to other clusters. The natural spatial agglomeration patterns
from spatial objects can be completely revealed by analysis of spatial clustering. Spatial clustering
has been widely applied in various fields of real life, such as climate change, crime hotspot analysis,
disease surveillance, seismic investigation and so on [1–4].

Nowadays, with the sharp expansion and update of modern spatial databases, a growing number
of complicated and diverse spatial patterns are developed, which has posed a big challenge for
the existing spatial clustering techniques. Due to some drawbacks of traditional spatial clustering
algorithms as they are based upon relatively static models, they do not have the ability to effectively
handle the increasingly tricky problems, such as density problem, shape problem and touching
problem [5]. Specifically, spatial objects with mixed densities in addition to clusters with arbitrary
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shapes and diverse spatial relations may lead clustering method to obtain unqualified and unstable
results in some cases.

To the best of our knowledge, a large amount of existing clustering approaches have been proposed
in the literature [6,7], which can be roughly grouped into partitional clustering, hierarchical clustering,
density-based clustering, grid-based clustering, graph-based clustering and model-based clustering.
However, most of these approaches are vulnerable to the different cluster sizes, shapes and densities.
K-means [8], a widely employed partitional clustering method, is susceptible to noises and prefers
to detect clusters of spherical shape, which derives from its specific criterion of division. Density
Based Spatial Clustering of Applications with Noise (DBSCAN) [9] is the pioneer of the density-based
clustering method. Although it is able to discover clusters of arbitrary shapes, the uncertainty of
tuning the input parameters makes it unable to deal with unbalanced density of different clusters. The
affinity propagation algorithm (AP) [10] presents a simple and efficient way to find out the collection
of most suitable points representing clusters by repeatedly transmitting real-valued messages between
data points, although it is still limited in identifying the clusters with various shapes.

For the purpose of having an intuitive understanding of these challenges, some representative
spatial patterns are shown in Figure 1, which includes clusters with different shapes, sizes and densities.
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Figure 1. Examples of representative spatial patterns. (a–f) Spatial patterns include clusters with 
different shapes, sizes and densities.  
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Multiple Density-Ordered Trees (SCMDOT). This method is proposed to handle complex and 
inhomogeneous spatial patterns. SCMDOT unites the advantages of hierarchical clustering, density-
based clustering and graph-based clustering. Both the distance and density are simultaneously taken 
into account for clustering. In addition, a heuristic strategy is utilised to optimise the clustering results 
and be suitable for special applications, which runs through the process of our algorithm. While there 
are benefits from the mixed ideas of clustering, our method can be adapted to detect the variations 
in density in a hierarchical way and improve the accuracy of clustering by building graph models. 
This provides a useful fashion to not only discover clusters with arbitrary shapes, but also identify 
spatial objects with multi-densities. 

The main contributions of this paper can be summarised as follows: 

1. We propose an innovative method to represent a dataset by constructing a series of constrained 
Multiple Density-Ordered Trees (MDOT) in the proper order. During the process of generating 
MDOT, a high spatial similarity of each cluster can be ensured. In this way, our algorithm is 
capable of not only handling the problem of separating clusters with complex structures, but 
also increasing the robustness and reliability of the clustering result. 

2. Our method introduces a novel approach based on MDOT to identify noises and cluster centres. 
Noises which included in the inappropriate start points before constructing MDOT and can be 

Figure 1. Examples of representative spatial patterns. (a–f) Spatial patterns include clusters with
different shapes, sizes and densities.

Inspired by the idea of Spatial Clustering with Density-Ordered Tree (SCDOT) algorithm [11],
we put forward a novel clustering method in this paper, which is called Spatial Clustering with Multiple
Density-Ordered Trees (SCMDOT). This method is proposed to handle complex and inhomogeneous
spatial patterns. SCMDOT unites the advantages of hierarchical clustering, density-based clustering
and graph-based clustering. Both the distance and density are simultaneously taken into account for
clustering. In addition, a heuristic strategy is utilised to optimise the clustering results and be suitable
for special applications, which runs through the process of our algorithm. While there are benefits
from the mixed ideas of clustering, our method can be adapted to detect the variations in density in
a hierarchical way and improve the accuracy of clustering by building graph models. This provides
a useful fashion to not only discover clusters with arbitrary shapes, but also identify spatial objects
with multi-densities.

The main contributions of this paper can be summarised as follows:

1. We propose an innovative method to represent a dataset by constructing a series of constrained
Multiple Density-Ordered Trees (MDOT) in the proper order. During the process of generating
MDOT, a high spatial similarity of each cluster can be ensured. In this way, our algorithm is
capable of not only handling the problem of separating clusters with complex structures, but also
increasing the robustness and reliability of the clustering result.

2. Our method introduces a novel approach based on MDOT to identify noises and cluster centres.
Noises which included in the inappropriate start points before constructing MDOT and can be



ISPRS Int. J. Geo-Inf. 2017, 6, 217 3 of 22

further confirmed rely on the deviation from the final clusters. In addition, cluster centres can be
recognised as the roots of MDOT.

3. The proposed method can be adapted to the detection of clusters with different shapes and
uneven density, which has been especially proved effective in the case of adjacent clusters with
distinctly varied densities.

The rest of the paper is organised as follows. In Section 2, we will review the clustering with the
density peaks proposed recently, classical graph-based clustering methods and SCDOT algorithm. The
SCMDOT algorithm we propose will be described in detail in Section 3. The experiments on synthetic
and real databases are shown in Section 4. Finally, conclusions are made and future work is discussed
in Section 5.

2. Related Works

The goal of performing adaptive spatial clustering mainly depends on two essential requirements.
One is the ability to effectively and efficiently identify and handle the density variation in spatial
patterns, while the other one is discovering clusters with irregular structures under the precondition of
ensuring the similarity between spatial objects.

Most existing clustering methods hardly meet both the above requirements at the same time,
which are limited by their own fixed clustering schemes. Recently, a novel clustering approach,
which is called clustering by fast search and find of density peaks (CFSFDP) [12], was proposed by
Rodriguez and Laio, which creatively uses a combination of density and distance as the measure
in judging the similarity between data points. The algorithm has its basis in the assumptions that
cluster centres are characterised by a higher density than their neighbours and by a relatively large
distance from points with higher local densities. The local density of each data point (ρ) and the
distance from data point to its nearest neighbour with a higher density (δ) are calculated during the
process of CFSFDP. Based on a given cut-off distance (dc) employed to determine the local density of
data points and identify border points of each cluster, CFSFDP can quickly and simply find clusters
with varied densities and arbitrary shapes. Compared with DBSCAN, it provides an efficient way of
assigning data points to clusters by using the idea of density peaks, which can effectively distinguish
clusters and remove noises. Meanwhile, it requires less parameters and has a lower time complexity
for its non-iteration (with a time complexity of O(N), where N is the number of objects). However,
there are still some weaknesses of CFSFDP, which are as follows: (1) The calculation of dc, a major
limitation of CFSFDP, heavily depends on the prior knowledge, which is too difficult to estimate. The
sensitivity of choosing dc has a great effect on the final clustering results. (2) It is tough for users to
select suitable cluster centres by plotting a decision graph in some complicated cases. (3) If a cluster
contains more than one density peak, CFSFDP is unable to address the issue well. Aiming at improving
the defects mentioned above, Mehmood [13] presented a method called CFSFDP via heat diffusion
(CFSFDP-HD), which involves enhancement of the accuracy of densities of data points based on
the heat diffusion to reduce the demands of setting the sensitive cut-off parameter (dc). However,
it still requires users to subjectively choose cluster centres. Xu et al. [14] proposed a density peak
based hierarchical clustering method (DenPEHC), which generates clusters directly on each possible
clustering layer and introduces a grid granulation framework to enable DenPEHC to cluster large-scale
and high-dimensional (LSHD) datasets.

In addition, in order to express the relationship between data points in an intuitive way and
take it as the basis of similarity measurements, a graph is undoubtedly a useful method to reveal the
structure of a spatial dataset. Actually, graph-based clustering [15] takes advantage of graph concepts
to represent a dataset where the node is regarded as the data point and the edge is regarded as the
relationship among data points. The typical methods for clustering based upon the graph include graph
clustering using k nearest neighbours and minimum spanning tree (MST)-based clustering, which are
commonly used as the solid foundation of related research. CHAMELEON [16] is a representative
graph clustering algorithm using k nearest neighbours. The algorithm allows for analysis of the
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dataset in two phases. In the first phase, it effectively partitions the k nearest neighbours and graphs
into many small sub-clusters by minimizing the edge-cut. During the next phase, the agglomerative
hierarchical clustering algorithm is applied to merge these sub-clusters into final clusters. Both the
relative inter-connectivity and relative closeness are defined in the phase of merging. Therefore, it can
consider both the inter-connectivity and the intra-similarity of clusters, which provides a dynamic
model of merging clusters. Zahn [17] first proposed MST-based clustering. Due to MST-based
clustering methods representing a dataset by constructing the minimum spanning tree, its main idea is
in accordance with the principle of clustering to a great extent. The criteria for identifying different
clusters utilises the notion of a scale. While detecting clusters from a multi-scale, it is effective in
perceiving and discovering some inconsistent edges (e.g., edges corresponding to maximum weights),
which are abnormal compared to other edges in the same cluster. As a matter of fact, the separation of
clusters by removing these inconsistent edges is valid in some specific structures. However, traditional
MST-based clustering algorithms may not be useful when clustering in complex situations. Essentially,
in the case of the inhomogeneous distribution, the discernment of inconsistent edges is very difficult
and thus, it is unreliable to distinguish the separation of clusters. Some improved clustering algorithms
based on MST, such as two rounds of MST (2-MSTClus) [18] and minimum spanning tree based
split-and-merge method (SAM) [19], have been proposed in order to alleviate these deficiencies.
2-MSTClus divides the problem into two groups composed of separated cluster problems and touching
cluster problems, which are two relatively independent schemes that are mutually complemented to
solve tough clustering issues. SAM employs the split-and-merge strategy, which is intended to guide
the splitting and merging process so as to capture the intrinsic structure of a dataset. Nevertheless,
both of them have relatively static models and are not robust to noises.

Considering the superiority of the above spatial clustering theories, Cheng et al. [11] more
recently developed a new method to have a great combination of both the idea of density peaks
and the graph theory by the approach of constructing a Density-Ordered Tree (DOT). In the light
of ideas related to density peaks, SCDOT can not only take into account both distance and density
between data points but also efficiently obtain cluster centres and identify noises. In addition, inspired
by graph clustering, the algorithm fully absorbs the advantages of spanning tree in creating strong
links between the pairs of points contained in the graph. Similar to most effective hybrid strategies
adopted by some hierarchical clustering methods, such as the agglomerative-and-divisive method,
split-and-merge method and group-optimise method [20], SCDOT takes the split-and-merge strategy
used in Chameleon and SAM in order to make the clustering analysis more reliable. This is related to the
partition, hierarchical and density-based clustering principles. Indeed, SCDOT divides a whole DOT
into many sub-clusters by using the box-plot method to reduce the influence of subjectively choosing
cluster centres. Following this, SCDOT merges these sub-clusters by minimizing a measure. In the
procedure of splitting DOT, SCDOT is capable of identifying noises and cluster centres from points
contained in the inconsistent edges that were removed. Specifically, cluster centres are recognised as
the roots of sub-trees, while noises are regarded as anomalous leaves. In general, SCDOT, a novel
combinational clustering algorithm, provides an improved way to discover clusters with various
shapes and densities more effectively. However, similar to most MST-based clustering algorithms,
SCDOT unavoidably experiences the analogous dilemma, which is namely how to reasonably create
the separation of clusters in some complex cases to more effectively meet the requirements of adaptive
spatial clustering.

3. SCMDOT Algorithm

In this section, we will first list the limitations of the current study on SCDOT and explain the main
causes of these issues. On this basis, we will introduce our novel spatial clustering algorithm in detail,
which is called the Spatial Clustering with Multiple Density-Ordered Trees (SCMDOT). Furthermore,
we will propose a new concept of MDOT for improving the insurmountable problems of SCDOT. In the
implementation, SCMDOT is composed of three main stages as illustrated in Figure 2. In the first stage,
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the inappropriate start points are pruned to speed up the efficiency of the algorithm and improve the
following construction of MDOT. In the stage of constructing, MDOT representing the original dataset
are successively generated under certain constraints in order to guarantee a high spatial similarity for
each cluster. In the stage of merging, the final clusters with different shapes and densities are obtained
by comprehensive measurements of both the inter-connectivity and intra-similarity between clusters.
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Figure 2. The process of Spatial Clustering with Multiple Density-Ordered Trees (SCMDOT) consists of
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As mentioned in the previous section, SCDOT provides an effective and efficient way to facilitate
clustering analysis. Nevertheless, some problems still exist when facing some complex datasets. First
of all, when dealing with the adjacent clusters of varied densities, it is far from easy for SCDOT to
find and remove the inconsistent edges, which will have a significant impact on dividing a whole
Density-Ordered Tree into several sub-clusters. With regards to the above issue, it may result in
some meaningless and invalid partitions instead of completely distinguishing clusters of diverse
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densities. Secondly, the spatial similarity of each cluster cannot be guaranteed by cutting DOT with an
inflexible split strategy. Finally, the ignorance of the intra-similarity of clusters in the merging stage is
another troublesome restriction of SCDOT, which means that it is possible for clusters with distinct
similarities to be incorrectly merged into the same cluster. Thus, this could lead to unreasonable spatial
clustering results.

According to the shortcomings mentioned above, we proposed the following methods to overcome
these limitations for improving the quality of clustering results.

1. We introduce an innovative way of developing a dynamic agglomerative model to represent the
original dataset. Being different from the method employed by SCDOT, a series of clusters can be
successively generated from regions of sparse areas to the dense areas rather than partitioning a
whole DOT into several sub-clusters, which can circumvent the issues of splitting clusters.

2. With the goal of ensuring a high spatial similarity for each cluster, we adopt a new tactic to
control the growth of DOT in terms of edge growth and density change by imposing certain
restrictions. From another point of view, the spatial similarity of each cluster will be guaranteed
consistently during the procedure of construction.

3. An improved criterion of merging clusters is proposed in this paper. Due to the improvement
mentioned above providing an effective way to acquire internal proximity of each cluster, we are
able to use it as an important indicator to measure the intra-similarity of clusters in the merging
process so as to adapt to the change in local density among clusters.

3.1. Prune Inappropriate Start Points

Before the MDOT is constructed, the pruning stage of detecting and removing inappropriate start
points is the prerequisite of the constructing stage, which aims to accelerate the process of algorithm
and to minimise the impact on the following task. More specifically, too much time will be spent in
handling the number of noises that exist in the spatial dataset. On the other hand, inappropriate start
points have a negative effect on the growth of MDOT. Generally, it is a feasible choice to first remove
these sensitive data points and later make further identification to determine whether they are noises
or not.

In the process of the stage, we have to measure the dissimilarity between data points. Hence,
the dissimilarity between data point i and j, denoted by Dissimilarity(i, j), is defined in Equation (2).
With the assumption that o is the data point belonging to the set of inappropriate start points, the
identification criterion of an inappropriate start point is shown in Equation (3).

χij =


1 dis(i,j)

∑
t∈Nkc (j)

dis(j,t)/kc
> 1 + ε

0 dis(i,j)
∑

t∈Nkc (j)
dis(j,t)/kc

≤ 1 + ε
(1)

Dissimilarity(i, j) = ∑
j∈Nkc (i)

χij (2)

Inappropriate_Start_Point =
{

o
∣∣∣∣Dissimilarity(o, j)

kc
≥ 1

2

}
(3)

where dis(i , j) represents the distance between data point i and j; kc denotes the number of nearest
neighbours when constructing MDOT; Nkc(i) represents kc nearest neighbours of data point i; and ε

(a positive figure) is the threshold value for identification. A smaller value for ε means a more rigorous
identification. Accordingly, more data points may be recognised as the inappropriate start points.
In practice, ε is set to 1 by default in this paper.

For the sake of pruning inappropriate start points according to Equation (1), we attempt to seek
out the point, which is considerably far away from its kc nearest neighbours. At the same time, the
neighbours respectively have a relatively close distance to their kc nearest neighbours. In other words,
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when determining whether a data point is an inappropriate start point or not, there are two major
aspects of judgment. The one is the deviation between data point and its neighbours, while the other
one is the local density distribution of neighbours.

3.2. Construct Multiple Density-Ordered Trees (MDOT)

Let DB denote a spatial database of N spatial points and DB’ represent the pruned version of DB
(DB with the inappropriate start points removed). The goal of clustering is to partition the set DB
into K clusters C = {C1, C2, · · · , CK}, where Ci 6= ∅, Ci ∩ Cj = ∅, DB = C1 ∪ C2 · · · ∪ CK , i = 1:K,
j = 1:K, i 6= j. A graph G(V, E) is constructed, where V is the set of points (also called nodes) in DB
and E is the set of edges connecting pairs of vertices in V .

The local density of data point i is defined as the following equation:

ρi =
1

∑j∈Nkc (i)
dis(i, j)

(4)

Remark 1. When calculating the local density of the data point i in DB’, we do not consider the other data point
with the same spatial coordinates of i.

With the definition of local density mentioned above, the density order of data points can be
expressed as follows:

ρ1 ≤ ρ2 ≤ · · · ≤ ρn (5)

One of the constraining factors, the Density Change Factor (DCF), is used to limit the density
variation of the data point i in DB’ when constructing MDOT, which is represented as Equation (6).
The threshold value of DCF is denoted as ξDCF.

DCF(i)j:ρ(j)>ρ(i) =
ρ(j)− ρ(i)

ρ(i)
(6)

A graph of a sub-tree including n edges is denoted as ST; EST represents the set of the edges of ST,
EST =

{
e(1), e(2 ), · · · e(n)

}
; e(i) is the ith edge in E(ST) with

∣∣∣e(i)∣∣∣ representing the length of e(i); and
E(ST) is defined as the expected edge in ST, which is the average of the edges in ST. This is represented
as Equation (7).

E(ST) =

n
∑

i=1

∣∣∣e(i)∣∣∣
n

(7)

Another constraining factor, Edge Growth Factor (EGF), is utilised to limit the growth of edges
when constructing MDOT. Let ST represents a sub-tree including n edges. When adding a new edge
into ST, denoted by e(n+1), E(ST) will change. Therefore, the Edge Growth Factor of e(n+1) is denoted
by EGF(e(n+1)), which is represented as Equation (8). The threshold value of EGF is denoted as ξEGF.

EGF(e(n+1)) =

∣∣∣∣∣∣e(n+1)

∣∣∣− E(ST)
∣∣∣

E(ST)
(8)

Remark 2. During the process of constructing MDOT, if a sub-tree has not contained edges yet, we connect the
sub-tree’s start point to its nearest point with a higher density under the constraints of DCF in DB’. Note that
the point with the highest density is the start point in some exceptional cases. Essentially, if there are no points
to connect with it, we assign the point to its nearest sub-tree.
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Furthermore, the distance δi of point i is measured by computing the minimum distance between
the point i and any other point with the higher density under double constraints, which is denoted as
Equation (9). Based on the ξDCF and ξEGF, the threshold value of density variation of data point i is
represented as ρ(i), while the threshold value of edge growth of data point i is represented as e(i).

δi = minj:ρ(i)<ρ(j)<ρ(i),dis(i,j)<e(i)(dis(i, j)) (9)

Remark 3. When searching the next connection point of data point i (excluding the start point of sub-tree) in
DB’ during the constructing stage, we first find the suitable points under the constraints of the Density Change
Factor (DCF), regarding them as candidate points. Following this, determine the most suitable connection
point of data point i from these candidate points. Within the constraints of the Edge Growth Factor (EGF),
the connection point is the one that has the nearest distance from its previous point in ST.

Remark 4. For data point i, if the number of its next connection point(s) is more than one, we randomly choose
one to connect it with.

Remark 5. While the data point with the highest density is DB’, we conventionally take δi= maxj(dis(i, j)),
so we do not need to connect it to any other data point if it is not the start point of the sub-tree.

Remark 6. Each Density-Ordered Tree (DOT) has its unique density peak point (the point with the highest
local density of sub-tree). We regard these density peak points of sub-trees as cluster centres.

According to the above definitions, we can assign each data point in DB’ to its next connection
point and build a graph to link each pair of connection data points by making edges. The degree of
link(s) is denoted as the weight of edge (δi) in terms of Equation (9).

Furthermore, a heuristic strategy is adopted to choose critical parameters in this stage, which
offers an exploratory way for obtaining specific clustering results. Although this requires relatively
strict or loose conditions of clustering, the user can modify the threshold values of parameters to fit
with special applications. However, it is necessary for us to give the recommended threshold values
(ξDCF = 30%, ξEGF = 40%), which is reasonable in order to ensure the reliability and consistency of the
final cluster result.

Figure 3 intuitively shows a simple example to illustrate the procedure of constructing MDOT
(suppose that kc = 3 and point i is denoted as vi). It is clear to see that v26 and v27 have been previously
removed as the inappropriate start points. Since v1 has the lowest local density of dataset, we select it
as the initial start point. Based on the criteria of generating MDOT, we will successively connect v1

and v2; v2 and v3; v3 and v4; and stop at v4. Furthermore, we repeatedly choose the next suitable start
point to generate a sub-tree and ultimately complete the whole construction of MDOT, as shown in
Figure 3c. During the process of construction, MDOT grows constantly when adding in new members
from other sub-trees. For instance, from Figure 3b, DOT_2 including v7, v6 and v4 adds into DOT_1
due to the connection between v4 and v6. This means that DOT_1 and DOT_2 belong to the same
cluster. Moreover, it is noteworthy to show that the effect of double constraints was imposed to control
the growth of MDOT. In Figure 3c, although ρ18 > ρ17 and v18 is the nearest point from v17, we cannot
connect v17 to v18 when ρ18 > ρ17. Instead, v16 is the most suitable connection point of v17. Hence,
DCF is a crucial factor to identify points with diverse densities. Furthermore, as displayed in Figure 3c,
when ρ4 < ρ11 < ρ4 and dis(4, 11) > e(4), v4 cannot connect with v11. When limited by EGF, it is
impossible to fall into the dilemma of splitting clusters.
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3.3. Merge MDOT into Final Clusters

For enhancing the robust ability to find clusters of complex shapes and diverse densities, a great
number of established MDOT are supposed to be merged while the total number of these sub-trees
being larger than the target number (goal) of final expected clusters. In this phase, we introduce a new
measure of merging clusters.

The measure of merging clusters will in fact be application-specific in the sense that it will depend
on the intrinsic skeleton of the database being analysed. However, the vast majority of existing
agglomerative schemes, such as CURE [21] and ROCK [22], rarely have a good combination of both
inter-cluster similarity and intra-cluster closeness. In particular, the affinity between the data points
in the same cluster has had less attention during the process of merging, which may lead to the
incorrect merging of clusters in a similar way to the case in Figure 1e. On account of the relatively
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static agglomerative model of such schemes, it is subsequently impossible for the implementation of
flexible merging decisions.

To overcome the limitations mentioned above, we propose a new notion according to
Equations (10) and (11) to focus on measuring the intra-similarity of clusters with arbitrary shapes
and non-homogeneous density. By taking advantage of the exclusive characteristics of MDOT, we can
easily and effectively measure these.

For acquiring the internal proximity of each cluster, let E(C i) denote the set of edges within
Ci; |E(C i)| is the number of edges in E(C i); and e(j) belongs to E(C i), j = 1:|E(C i)|. The internal
proximity (IP) of Ci is defined as follows:

IP(Ci) =
∑e(j)∈E(Ci)

∣∣∣e(j)

∣∣∣
|E(Ci)|

(10)

Accordingly, the intra-similarity (IS) between Ci and Cj is given by:

IS(Ci, Cj) =
min(IP(Ci), IP(Cj))

max(IP(Ci), IP(Cj))
(11)

The above definition is the part of overall merge index to measure the intra-cluster similarity of
clusters. When there is a pair of clusters with a higher merge index, the internal proximity of these
clusters will be closer.

In addition, another merging strategy proposed by Jong-Seok Lee [23,24] should be introduced
in order to take the inter-connectivity between clusters into consideration. The criteria are required
for measuring using the principles of clustering, namely the cluster k-Nearest Neighbour consistency
(k-NN consistency) and the cluster k-Mutual Nearest-Neighbour consistency (k-MN consistency).
In detail, if point i and its neighbour point j respectively belong to different clusters, a penalty will be
imposed and the k-NN consistency of these clusters will reduce. Moreover, if point i also belongs to
the neighbour of point j, the same penalty will be imposed and the k-MN consistency between these
clusters will decrease. Motivated by this principle, a lower k-NN consistency and k-MN consistency of
clusters is equivalent to a higher possibility of clusters to be merged. Hence, making better use of the
principle will be conducive to the accurate measurement of inter-connectivity between clusters.

The overall merge index, called MergeValue, combines both the intra-similarity and
inter-connectivity of different clusters. The MergeValue between Ci and Cj is denoted by
MergeValue(Ci, Cj), which is defined as follows:

MergeValue(Ci, Cj) =
∑i∈Ci ∑j∈Cj

(b(1)ij + b(2)ij ) 1
dis(i,j)

|Ci|
∣∣Cj
∣∣ × IS(Ci, Cj) (12)

where b(1)ij =

{
1 if j ∈ Nkm(i)
0 otherwise

; b(2)ij =

{
1 if i ∈ Nkm(j)
0 otherwise

; km is the number of nearest neighbours

when merging MDOT; Nkm(i) represents km nearest neighbours of data point i; |C| denotes the number
of data points in C; and IS(C i, Cj

)
represents the intra-similarity between cluster i and cluster j.

Regarding the measure proposed above, it is observed that MergeValue takes inter-connectivity and
intra-similarity of clusters into account as a whole, while higher MergeValue between clusters implies
that the pair of these clusters are prioritised for merging. Similar to the method by Cheng et al. [11],
an iterative heuristic strategy is provided by automatically selecting parameters for obtaining the final
expected clustering result. However, one of the key differences from SCDOT when merging clusters is
that we use diverse parameters to define the number of nearest neighbours in the stage of constructing
MDOT (kc) and the merging stage (km). In comparison with SCDOT utilizing only one parameter (k)
to merge clusters in a heuristic way, there will be a lower computational cost due to avoiding the
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reconstruction of DOT. Furthermore, the intra-similarity of clusters has been particularly emphasised.
Throughout the merging process, it can be summarised in the following four steps.

Step 1: Given initial k nearest neighbours (km) in the merging stage, calculate the MergeValue
between clusters according to Equation (12).

Step 2: Find out the cluster merely owning few points and with an extremely low MergeValue
relative to all other clusters. This cluster is not allowed into the following merging process.

Step 3: Rank pairs of clusters by MergeValue and choose the best pair with the highest MergeValue
(MergeValue greater than 0) as the candidate to be merged for Step 4.

Step 4: Judge whether the number of clusters (K) is equal to the expected number of clusters
(goal). If K = goal, the merging process stops and the final clusters are obtained. Otherwise, merge the
pair of clusters selected in Step 3 and thus, the number of clusters decrease ( K ← K–1). Following this,
repeat Step 3 and Step 4.

It is worth to be noted that if the number of clusters does still not reach the target (goal) by
repeatedly merging, km will automatically update and then go through the merging process again in
an iterative heuristic way.

Remark 7. Considering that spatial databases are composed of the characteristics of the inhomogeneous
distribution, it may be possible to generate clusters including only few points during the merging process.
While some of these micro-clusters may have vastly lower MergeValues relative to all other clusters, this makes
it difficult to be merged. To alleviate the influence above, we find out these clusters and do not allow them
into merging. After the merging process has terminated, we respectively assign points contained in these
micro-clusters to the cluster centre nearest to them and then remove these micro-clusters.

After reaching the goal of the desired number of clusters, the inappropriate start points removed
previously in Section 3.1 are supposed to undergo further identification. The criterion of judgment
relies on the deviation between the inappropriate start point and its nearest neighbour point contained
in final clusters. In addition, with regards to a flexible cover range of final clusters, the internal
proximity of each final cluster is defined as the maximal internal proximity of sub-trees that it contains.
The inappropriate start point is recognised as noise only if the deviation is larger than the internal
proximity of the corresponding final cluster. Otherwise, it will be distributed to the final clusters.

3.4. Algorithm and Performance Analysis

From the description in the previous sections, it can be seen that our algorithm mainly consists of
three phases. The overall procedure of SCMDOT is summarised in Algorithm 1, while the stages of
constructing and merging MDOT are respectively described in Algorithm 2 and Algorithm 3.

In Step 1, the matrix of data points in the spatial dataset of k nearest neighbours will be efficiently
built by using the KD-tree [25], with the process only needing O(Nlog(N)) time complexity.

In Step 2, according to the established k nearest neighbours matrix, the inappropriate start points
can be quickly identified and pruned using Equations (1)–(3). This calculation needs O((kc + 1)N)
time complexity.

Steps 3–5 are the phase of construction. The time complexity of computing the local density
of data points is O(kcN), according to Equation (4). During the process of constructing, we need to
constantly find the suitable connection points in order to maintain the growth of MDOT. By using the
KD-tree searching tactic, the implementation of finding these connection points imposed by additional
constraints using Equations (6)–(9) requires approximately O(kcN1−1/kc ).

The merging stage includes Steps 6–8, MergeValue is calculated in O(NkmI2) time by
Equation (10)–(12), where I is the number of sub-clusters. The final clusters are obtained by repeatedly
merging the sub-clusters and choosing km in a heuristic way to automatically adjust the MergeValue.
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According to the above steps, the whole computation procedure of the SCMDOT algorithm
costs about O(Nlog(N) + (kc + 1)N + Nkm I2). Since I << N, kc << N and km << N, the computational
complexity is approximately O(Nlog(N)).

Algorithm 1. SCMDOT

Input: DB, kc, km, ε, ξEGF, ξDCF, goal.
Output: C = {C1, C2, · · · , CK}.

1. Initialize(kc, km, ε, ξEGF, ξDCF);

BuildKDTree(DB);

BuildKNNMatrix(DB);

cluId← 0;
2. // Prune Inappropriate Start Point

for each point i in DB do

mark i as unvisited;

i.cluId← cluId;

end for
for each point i in DB do

list_ISP.add(IdentifyInappropriateStartPoint(i, ε, kc)); // By Equations (1)–(3)

end for

DB′ ← DB;

for each ISP i in list_ISP do // ISP denotes Inappropriate Start Point

mark i as visited;

DB′. delete(i);

end for
3. for each point i in DB′ do

ComputeDensity(i); // By Equation (4)

end for
4. // Construct MDOT

list_CSP.add(SelectCandidateStartPoint(DB′));

while list_CSP is not empty

do

ASP← SelectAppropriateStartPoint(list_CSP);

// SelectAppropriateStartPoint() returns the unvisited point with minimum density

mark ASP as visited; // ASP denotes Appropriate Start Point

ASP.cluId← ++cluId;

ConstructSubTrees(ASP, DB′, kc, ξEGF, ξDCF); // Algorithm 2

list_CSP.clear();

list_CSP.add(SelectCandidateStartPoint (DB′));

end while
5. C←MergeClusters(DB′, km); // Algorithm 3
6. K← C.size();

if K > goal then

km ← km + 1;

goto Step 5;

end if
7. return C;



ISPRS Int. J. Geo-Inf. 2017, 6, 217 13 of 22

Algorithm 2. ConstructSubTrees(ASP, DB′, kc, ξEGF, ξDCF)

Input: ASP, DB′, kc, ξEGF, ξDCF.
Output: all points in DB′ marked with cluId.

list_CP.add(SearchConnectionPoint(ASP, DB′, kc, ξEGF, ξDCF)); // By Equations (6)–(9)
CP← SelectConnectionPoint(list_CP);
currentPoint← ASP;
while CP ! = NULL
do

if CP is unvisited then
mark CP as visited;
CP.cluId← currentPoint.cluId;
IdentifySubTree(currentPoint).AppendChild(CP);
// IdentifySubTree(i) returns the sub-tree containing point i
currentPoint← CP;
list_CP.clear();
list_CP.add(SearchConnectionPoint(currentPoint, DB′, kc, ξEGF, ξDCF));
CP← SelectConnectionPoint(list_CP);

else
established_subTree← IdentifySubTree(CP);
new_subTree← IdentifySubTree(currentPoint);
for each j in established_subTree do

j.cluId← currentPoint.cluId;
end for
Combine_SubTrees(established_subTree, new_subTree);
CP← NULL;

end if
end while

Algorithm 3. MergeClusters (DB′, km)

Input: DB′, km.
Output: C = {C1, C2, · · · , CK}.

C← FindClusters(DB′);
// FindClusters(DB′) returns clusters where points in each cluster with the same cluId

for each Cluster Ci in C do
for each Cluster Cj in C do

if CalculateMergeValue(Ci, Cj). MergeValue > 0 then // By Equations (10)–(12)
list_MergeValue < cluId1, cluId2, MergeValue >← CalculateMergeValue(Ci, Cj);

end if
end for

end for
K← C.size();

T← list_MergeValue.size();
while K > goal and T > 0
do

bestPairClusters← SelectBestMergeClusters(list_MergeValue);
MergeBestClusters(bestPairClusters);
list_MergeValue.delete(bestPairClusters);
K← K – 1;
T← T – 1;

end while
return C;
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4. Experiments and Results

In this section, the clustering performance of our proposed method is evaluated on six
two-dimensional synthetic datasets and a real-world spatial database. For comparison, both SCDOT
and DBSCAN are also applied to these databases, which allows us to discover the differences when
handling various spatial conditions.

4.1. Experiments on Synthetic Datasets

In this paper, the first three synthetic datasets, DS1, DS2 and DS3, are taken from the
literature [26–28], while the next three DS4, DS5 and DS6 are from another previous study [17]. These
datasets are illustrated in Figure 4 and Table 1, which are composed of clusters with diverse shapes
and densities.
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Table 1. Detailed description of datasets.

Data Set Data Size (N) Dimensionality (d) Number of Clusters (K)

DS1 240 2 2
DS2 373 2 2
DS3 312 2 3
DS4 142 2 2
DS5 83 2 2
DS6 97 2 2

To demonstrate the superiority of SCMDOT when coping with different spatial datasets in this
paper, SCDOT and DBSCAN are used for comparative analysis. With respect to the characteristics
of spatial datasets, six synthetic datasets are separated into two groups. In Experiment 1, the first
group including DS1–DS3 mostly focus on testing algorithms to examine whether they have the
ability to detect clusters with arbitrary shapes. Some traditional partitioning methods and hierarchical
algorithms, such as K-means and single-links, have difficulty in solving this problem. In comparison,
three synthetic datasets, DS4–DS6, are used in Experiment 2 to show how seriously spatial objects
with mixed densities can affect the accuracy of algorithms. This problem can be summarised in two
situations. One is that the densities of different clusters are totally distinct, as shown in Figure 4d.
The other one is that the density of cluster itself is unbalanced, as shown in Figure 4e. The two cases
mentioned above are the main obstacles in some classical density-based clustering methods, such
as DBSCAN and Ordering Points to Identify the Clustering Structure (OPTICS) [29], which makes
them unable to set appropriate parameters to discover clusters with uneven density. Furthermore, the
touching problems also include two types, which are taken into account in these datasets. One is the
adjacent problem, in which sparse clusters are adjacent to compact clusters, as shown in Figure 4d,f.
The other is the neck problem, as shown in Figure 4a,e.

The external clustering validity indices measure how close the clustering is to the predetermined
benchmark classes. Therefore, the Adjust Rand Index (ARI) [30] and Adjusted Mutual Information
(AMI) [31] are utilised to evaluate the quality of final clustering results in this section.

When comparing SCMDOT with SCDOT and DBSCAN, the setting of parameters was related
to the original paper. For the SCDOT and DBSCAN algorithms, the parameters are respectively set
as k = 4 (initial value) and MinPts = 4, which are based on the suggestions given in the methods.
The clustering results are illustrated in Figures 5 and 6.

The dataset DS1 is displayed in Figure 4a, which consists of a spherical cluster and a half
ring-shaped cluster. Both clusters have similar densities, but they are adjacent to each other. Although
all the algorithms can discover the expected clusters, it is difficult for DBSCAN to effectively handle
the adjacent clusters.

The dataset DS2 is shown in Figure 4b. It contains two clusters that are shaped like crescents.
These clusters are separate from each other and have relatively large differences in densities. Owning to
the strategy in tackling inappropriate start points, SCMDOT has less noise when compared with others.

In Figure 4c, the dataset DS3 is composed of three spiral clusters, which are separated from each
other at various distances. Additionally, each spiral cluster has an uneven density. All the three
algorithms work well.

DS4, depicted in Figure 4d, consists of two clusters with extremely diverse densities and one of
the clusters is surrounded by the other cluster. SCMDOT can easily distinguish the desired clusters
because of its merging method. On the contrary, SCDOT and DBSCAN perform much worse under
these conditions. For SCDOT algorithm, cutting off meaningless edges means that it is unable to find
the genuine clusters. For DBSCAN, the variability in densities of two clusters results in a lack of tuning
of suitable parameters.

DS5, as shown in Figure 4e, consists of two adjacent spherical clusters. The density of each
cluster itself is uneven. SCMDOT and SCDOT perform well, but DBSCAN has lower accuracy since its
clustering result contains too much noise.
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The dataset DS6, displayed in Figure 4f, is composed of two wave-shaped clusters, which focuses
on density rather than distance, which was labelled by Zahn as the density gradient. In contrast,
SCMDOT has good performance with DS6, while SCDOT and DBSCAN perform badly. Furthermore,
the problems encountered by the latter two methods are similar to DS4 above.
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4.2. Practical Applications of SCMDOT

For the purpose of illustrating the practicability of the SCMDOT algorithm, the real-world
application of earthquake clustering is utilised to discover the spatial distribution of active faults and
find out the underlying cause of earthquakes. The geographical data of earthquakes in this paper are
provided by the China Earthquake Data Centre (2009–2013; magnitude is greater than 3). The study
area covers mainland China at the national level. There are 1349 locations of epicentres and information
in the spatial database (the duplicate points are regarded as one point), which is shown in Figure 9.
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Research shows that the phenomenon of earthquakes is usually generated by the movement of
tectonic plates and has a close relevance to the trend of mountains, which indicates there is a strong
spatial correlation for the clustering distribution of earthquakes. To better understand the spatial
agglomeration patterns and characteristics of earthquakes in recent years, a multi-scale analysis of
spatial clustering is applied.

The clustering results of SCMDOT from macroscopic view is shown in Figure 10. It is obvious to
see that there are five main seismic zones (C1–C5) in China, which are Xinjiang, Northwest, Southwest,
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North and Taiwan regions, respectively. Some isolated earthquakes are recognised as noise. Similar to
Xinjiang and the Southwest seismic zone, most of Northwest China is located in the Qinghai–Tibet
plateau, which is influenced by the collision between the India and Eurasia plates. As a result, this
can set off devastating earthquakes. Furthermore, North and Taiwan seismic zones are located in
the junction of the Asia–Europe and Pacific plate, which may result in the formation of seismically
active faults.
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Moreover, by analysing earthquake clustering in a micro-perspective, more interesting
relationships between clustering results and faults can be further investigated, as shown in Figure 11.
The earthquake epicentres contained in relatively compact line-shaped clusters (C1–C4, C9–C11 and
C14) mostly occur along the trend of seismically active mountains, such as the Tianshan Mountains,
Qilian Mountains, Hengduan Mountains and Taiwan Mountains. The intense diastrophism of these
big and main mountains may contribute to surrounding earthquakes. Furthermore, the rest of the
clusters are relatively loose block-shaped clusters (C5–C8 and C12–C13). The cause of these clusters
lies in many active faults in these regions and their directions differ from each other, which makes the
distribution of earthquakes uneven and more complicated. According to the statistics of clusters, nearly
half of the earthquakes occurred in the Sichuan–Yunnan region in the last five years. The obtained
clustering results will be useful to provide reference for the research of the trends and movements of
earthquake faults.
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5. Discussion and Conclusions

In this paper, we introduce a novel clustering algorithm called SCMDOT, which is capable of
dealing with the tricky cases of clusters with arbitrary shapes and uneven density. Inspired by the
work of Cheng et al. [11], we provide a dynamic agglomerative model representing the original dataset
through constructing MDOT. This is conducted with an innovative perspective in order to cover the
shortages of coping with complex spatial structures. With the target of reinforcing spatial similarity for
each cluster, we impose the additional constraints to rigorously restrain the growth of each DOT for
ensuring that there is no dilemma in partitions, especially in some complicated situations. In addition,
it is useful to effectively separate dense areas from regions of sparse areas. Considering the diversity
of spatial patterns, our method adopts a heuristic strategy to be adaptive in selecting and exploring
suitable parameters so as to meet different requirements of practical applications. Furthermore, cluster
centres and noises can be easily identified based on MDOT. Essentially, cluster centres are regarded
as the root nodes of sub-trees and noises are identified from inappropriate start points (explained in
Section 3.3).

We conducted an extensive experimental study to evaluate our algorithm against SCDOT and
DBSCAN on representative spatial datasets. Both synthetic and real-world experiments demonstrate
that our proposed method is effective, more reliable and competitively robust with regards to varied
cluster sizes, shapes and densities. However, the chaining problem is still a challenge for our method,
which involves the noise or spatial object from one or more chains connecting two clusters. Our future
work will focus on improving the robustness of SCMDOT in this area.
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