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Abstract: This study proposes an innovative integrated method for evaluating the evacuation and
rescue capabilities of open spaces through a case study in Wuhan, China. A dual-scenario network
analysis model was set up to calculate travel time among communities, open spaces, and rescue
facilities during peak and non-peak hours. The distribution of traffic flow was derived on the basis of
a gravity model and used to construct supply-demand indexes (SDIs). SDIs such as evacuation (ESDI),
rescue (RSDI), and comprehensive SDIs (CSDI) were used to evaluate the suitability of open space
locations. This study drew five major findings as follows: (1) ESDI, RSDI, and CSDI can effectively
evaluate the spatial suitability of open spaces when these SDIs are integrated with the gravity model;
(2) The quadrant distribution analysis of ESDI can be an effective method for determining the reasons
for the change in values in the two traffic scenarios and for helping planners in adjusting their policies
to enhance the capability of an area; (3) The impact of the different β values on SDIs can show
positive, negative, and inconspicuous correlations with large, moderate, and minimal variations,
respectively; (4) The analysis of the supply-demand relationship of open spaces in Wuhan indicates a
spatial mismatch in comprehensive evacuation and rescue capacities; (5) Traffic congestion can be a
significant impact factor on evacuation and rescue capabilities but not on comprehensive capability.

Keywords: evacuation; rescue; open space; gravity model; supply-demand index; dual-traffic
scenario; China

1. Introduction

Cities have been facing threats from natural (e.g., floods, earthquakes, and tsunamis) and
man-made (e.g., accidental fires) disasters. These threats may lead to huge losses for densely populated
and poorly equipped cities in the developing world. China is among these countries, which are stricken
by natural disasters. For example, the 2008 Wenchuan Earthquake hit the densely populated Sichuan
Province in China and caused more than 370,000 casualties [1]. The Great Tangshan Earthquake wiped
out Tangshan City, claimed 242,000 lives, and caused an overall loss of 5.4 billion yuan in 1976 [2].
The blast of a dangerous chemical warehouse in the Tianjin Binhai New Development Zone was a
man-made disaster that led to 159 casualties and 6.866 billion yuan in losses in 2015 [3]. Therefore,
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a good understanding of disaster emergency responses can provide important practical value and help
to reduce the losses caused by disasters.

Disaster emergency responses involving evacuees, rescuers, government institutions, and social
organizations can be divided into two processes; evacuation and rescue (Figure 1). For the evacuation
process, studies have focused on evacuation simulation and behavior. Simulation models such as
agent-based models [4,5] and least cost distance models [6] help to find the appropriate evacuation
route and calculate the evacuation time and costs. Meanwhile, studies on evacuation behavior have
concentrated on the responses of individuals during disasters and have examined departure time,
vehicle usage, and destination choice. Gravity-based methods and surveys have been widely used in
studying the distribution and destination choices of evacuees. Modali [7] and Wilmot [8] implemented
improvements in simulating evacuation distribution based on a gravity model. Behavioral science
surveys have investigated the changes in the types of destinations and compliance under different
conditions. Previous studies have revealed that the proportion of evacuees to the homes of relatives or
friends is the largest (54–70.2%), followed by hotels/motels (15.7–29%) and shelters (1–43%) [9–13].
Public shelter is one of the most important destination types in the evacuation process. Compliance
during different disasters varies from 11.7% to 97% [14–19].
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disaster responses. 

For the rescue process, which is another essential aspect of disaster response, researchers have 
emphasized searching for or locating evacuees, optimizing networks and routes, and organizing 
rescue efforts. Many models such as the multi-criteria decision-making method [20], RescueMe [21], 
and RoboCup Rescue [22] are set up to assist in searching for evacuees. Moreover, scholars have 
contributed to the methodology for mobilizing resources and selecting safe and efficient routes to 
disaster areas. For example, Barbarosoglu and Arda [23] used a two-stage stochastic programming 
model to devise a plan for transporting commodities to disaster areas. Gharakhlou et al. [20] 
investigated different physical and semi-physical patterns to increase access to different districts. Hu 
and Sheng [24] adopted a multi-agent system to simulate, assess, and analyze the impact of disasters 
and rescue time. Wei et al. considered unexpected accidents and used a modified Dijkstra algorithm 
to obtain the real-time shortest rescue route in a road network [25]. 

D’Agostino et al. [26], Khamis et al. [27], and Barsky et al. [28] provided significant contributions 
in the field of rescue management. The design of the rescue capabilities of shelters, including efforts 
for reducing travel time or distance and enhancing the efficiency of rescue work before disasters 
occur, has been insufficiently studied, although the important role of rescuing capability during 
disasters is reflected in these papers. 

In addition to conventional measures for controlling hazards, recent studies explore the role of 
land use planning in reducing exposure to and alleviating the influence of disaster [29,30]. The 
Chinese government has been requiring all shelters to be sites that can serve general civil purposes 
and disaster relief efforts, denoting the construction of open spaces, green land, and squares that meet 

Figure 1. Schematic of evacuation and rescue factors. The evacuation process includes a residential
area, shelters, and an evacuation route. The rescue process includes shelters, a rescue route, and
rescue facilities for medical purposes, security, or goods supply. Evacuation and rescue constitute
disaster responses.

For the rescue process, which is another essential aspect of disaster response, researchers have
emphasized searching for or locating evacuees, optimizing networks and routes, and organizing rescue
efforts. Many models such as the multi-criteria decision-making method [20], RescueMe [21], and
RoboCup Rescue [22] are set up to assist in searching for evacuees. Moreover, scholars have contributed
to the methodology for mobilizing resources and selecting safe and efficient routes to disaster areas.
For example, Barbarosoglu and Arda [23] used a two-stage stochastic programming model to devise
a plan for transporting commodities to disaster areas. Gharakhlou et al. [20] investigated different
physical and semi-physical patterns to increase access to different districts. Hu and Sheng [24] adopted
a multi-agent system to simulate, assess, and analyze the impact of disasters and rescue time. Wei et al.
considered unexpected accidents and used a modified Dijkstra algorithm to obtain the real-time
shortest rescue route in a road network [25].

D’Agostino et al. [26], Khamis et al. [27], and Barsky et al. [28] provided significant contributions
in the field of rescue management. The design of the rescue capabilities of shelters, including efforts
for reducing travel time or distance and enhancing the efficiency of rescue work before disasters occur,
has been insufficiently studied, although the important role of rescuing capability during disasters is
reflected in these papers.

In addition to conventional measures for controlling hazards, recent studies explore the role of
land use planning in reducing exposure to and alleviating the influence of disaster [29,30]. The Chinese
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government has been requiring all shelters to be sites that can serve general civil purposes and disaster
relief efforts, denoting the construction of open spaces, green land, and squares that meet standards
of safety and capability into shelters to maximize land use. This study selected open spaces in urban
areas as shelter sites. According to the definition used in previous studies, urban open spaces are safe,
well-managed areas, including green spaces (e.g., residential, neighborhood, quarter, district, and city
greens and urban forests), sports fields, civic squares, and schools, that can be accessed by the public
freely [31–36]. Furthermore, emergency shelters can only provide temporary refuge, medical care,
goods, information, and other survival necessities [37]. According to the field survey conducted by
this study in Hongshan Square, the first national-level emergency shelter in Wuhan, rescue workers
or goods (e.g., food, medicine, and medical equipment) were unavailable in the shelter during a
non-emergency period.

Existing studies have been limited on several fronts, despite the progress in understanding
disaster emergency responses. First, early studies mainly focused on evacuation and rescue alone,
thereby leaving a gap in the quantitative model combining evacuation and rescue to assess public
shelter capability, particularly from a land use perspective. Second, scholars adopt evacuation time
and the population size of the evacuees to reach a safe place within a certain time as indicators for
measuring the evacuation capability of a city. However, the spatial distribution of shelters and the
balance between resource availability and demand should be considered. An index that denotes the
relationship between supply and demand should also be established.

Therefore, this study aims to provide a theoretical and comprehensive supply-demand index
(CSDI) to evaluate the quantity and spatial layout of open spaces to indicate disaster evacuation and
rescue capabilities at the city level. The remainder of this paper is organized as follows. Section 2
describes the study area and data sources. Section 3 discusses the methods used. Then, Section 4
provides the results and interpretations. Section 5 presents the discussion. Finally, Section 6 delivers a
summary and suggests potential directions for future research.

2. Materials

2.1. Study Area

City disaster defense management had become a crucial issue in China since the 2008 Wenchuan
Earthquake occurred. The Standards of Earthquake Emergency Shelter and Related Facilities [38] were
published, and many cities started to conduct disaster defense planning. Wuhan is one of these cities.
Five major disasters, including floods, geological disasters, fires, explosions, and industrial disasters,
were identified. Simultaneously, the planning of a comprehensive disaster prevention method and
shelter in the Wuhan Urban Development Area was established [39]. However, a quantitative
measurement of whether open spaces are reasonably distributed as disaster shelters is still lacking.

Wuhan is the capital of Hubei Province and is an important hub for the water, land, and air
transportation of Central China as depicted in Figure 2. Wuhan is a rapidly growing city, and many
people are attracted to residing in this city. In 2012, the main urban area of Wuhan, which is our study
area, covered a total area of 960.09 km2 and recorded a population of 4.96 million. The suburban
area of Wuhan is excluded from this study because of its rural landscape and land use and low
population density.

The Yangtze and Han Rivers split the main urban area of Wuhan into three parts; Wu Chang, Han
Kou, and Han Yang. Three ring roads were built to link the three parts and aimed at easing traffic jams
similar to other metropolises in China. Three traffic ring roads divide the entire city into four ring
areas. Ring areas 1 to 4, including inner and outer areas, were denoted as the core (RA1), the inner ring
(RA2), the outer ring (RA3), and the urban fringe areas (RA4).

The adoption of each ring area as a unit to compare the values of the supply-demand indexes
(SDIs) is reasonable because the population, road densities, and the number or size of the open spaces
vary significantly among the ring areas, as illustrated in Figures 3 and 4.
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in an urban area, which has six levels in the order of province, city, county, township, community, 
and group [40]. One community generally contains 1000 to 3000 households [41]. A community tract 
refers to a community administrative region projected onto the map. Land use data include the 
location and types of open spaces, facilities, and roadway networks. A series of data preprocessing 
was conducted to obtain the fundamental data of this research, considering suitability, safety, 
acquirable data, and accuracy. 
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2.2. Data

Land use data and community boundaries in 2012 were obtained from the Wuhan Urban Planning
Bureau. In this study, community refers to the fifth level of the administrative region unit in an
urban area, which has six levels in the order of province, city, county, township, community, and
group [40]. One community generally contains 1000 to 3000 households [41]. A community tract
refers to a community administrative region projected onto the map. Land use data include the
location and types of open spaces, facilities, and roadway networks. A series of data preprocessing was
conducted to obtain the fundamental data of this research, considering suitability, safety, acquirable
data, and accuracy.
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The suitability and security of all open spaces in Wuhan were assessed on the basis of the
Chinese standards for selecting emergency shelter sites [38]. The following criteria were selected as
the principles of safety assessment:

1. The total area of the open space should be larger than 1 km2.
2. The effective area of the open space, that is, the area of the open space that excludes the land

covered by buildings and large plants or other unsuitable areas for evacuees to live in and that is
determined via field survey, should be larger than 2000 m2.

3. The open space should not be a flood-prone area.
4. The open space should not be in urban geological disaster areas.
5. The internal slope of the open space should not be greater than 7◦.
6. The open space should have at least one road of more than 12 m in length.
7. The shortest distance between open spaces and surrounding high-rise buildings should not be

less than the buildings’ height(s).
8. Refueling stations, gas facilities, and hazardous chemical enterprises should not be located within

a 1 km range of the alternative plot.

A total of 414 urban open spaces were considered suitable refugee shelters, with a total area of
39.51 km2 and an effective shelter area of 18.60 km2. The distribution of open spaces is illustrated in
Figure 5a.

The public service facilities related to disaster rescue included 183 medical rescue, 75 public
security maintenance, and 43 goods supply facilities. The capabilities of the medical rescue and public
security maintenance facilities, excluding the capability of the goods supply facilities of the city in
2012, which was obtained from the Wuhan Urban Planning Bureau, were measured on the basis of
published standards for many megacities in China [42–46] (Table 1).

Table 1. Service Capacity Standard for Public Rescue Facilities.

Rescue Facilities Service Capacity (in Persons)

Medical rescue facility
Comprehensive hospital 120,000

Specialized hospital 60,000
Community hospital 20,000

Security maintenance facility 120,000
Goods supply facility 80,000
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Figure 5. Spatial data utilized in the analysis. (a) Screened open spaces adopted and the distribution
of public security, medical rescue, and goods supply facilities; (b) A total of 1071 communities with
their population densities; (c) Road speeds during non-peak hours. The road levels represent different
hierarchies; Level 4 denotes a paved road, Level 3 a branch road, Level 2 the general road, and
Level 1 the main road; (d) Road speeds during peak hours. I represents blocked roads. II represents
unobstructed roads. Road levels represent different hierarchies; Level 4 denotes paved roads, Level 3
branch roads, Level 2 the general road, and Level 1 the main road.

A reasonable speed was assigned to each road segment at different times according to a 50-week
transportation survey conducted by the Wuhan Institute of City Traffic Development and Strategy
Research in 2011 and 2012 [47]. During non-peak hours, the speed of vehicles was assigned the design
speed of the road in the area excluded by the survey or the actual average driving speed in the area
covered by the survey. During peak hours, the speed of vehicles on congested roads was assigned the
actual average speed, whereas the speed of vehicles on uncongested roads was assigned the actual
average driving speed in the same road hierarchy. The walking speed of pedestrians was the same
value in the two traffic background levels (Table 2).

Table 2. Road Types with Their Widths and Speed Limits (unit: km/h).

Hierarchy Effective Width (m) Segments
Vehicle Speed

Walking Speed
Non-Peak Hours Peak Hours

Main Road >15 1569 50 25.5 5
General Road 12–15 753 40 20.8 5
Branch Road 8–12 3976 30 15 5
Paved Road <8 4134 20 10 5
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The population data of the 1071 communities based on the 2010 census were obtained from the
Wuhan Census Bureau. This study adopted communities as the evacuation origins because community
was the smallest unit for which population data were available as illustrated in Figure 5b.

Wuhan comprises 12,369 road segments. A road segment refers to a section of road between two
junctions. This study adopted the method of Zhang et al. to differentiate between the possible security
roads, considering the probable building collapses that might occur during a disaster [48]. A total of
10,433 were selected (Figure 5c,d) and classified into different hierarchies based on different effective
road widths (Table 2).

3. Methods

3.1. Dual-Scenario Network Analysis Model

Two traffic scenarios were designed, and a dual-scenario network analysis model was established
to calculate the evacuation and rescue traffic time from the community (or rescue facilities) to open
spaces during peak and non-peak hours.

In the post-disaster response, the traffic subjects, which are subjects that are required to be moved
or transported on the road, in the evacuation process were the pedestrians and vehicles. Cars are
generally used as the main carriers for delivering aid, workers, and supplies. Therefore, vehicles were
adopted as the principal traffic subjects in the rescue process. The network analysis modules in ArcGIS
10.2 were used to find the path that consumes the minimum traffic time COi Dj between an origin and
a destination.

The points used to represent the origin and destination influence the results of accessibility
calculation and should be carefully considered [49]. Higgs et al. adopted boundary points, access
points, and centroids as representatives of green space polygons. Boone et al. proposed that the
centroids of a polygon can represent small parks and that access points can represent large parks [50].
They also suggested that any point along the perimeter can serve as a representative for a large park.
In this study, the open spaces without fences were represented by the nearest Euclidean point on the
boundary. The nearest access points denote the locations of open spaces with fences [49]. Communities
and rescue facilities were represented by geometric centroids.

Distance is the main index used to measure spatial segregation. It is usually expressed in two
ways, Euclidean and network distances, in urban areas. In evaluating the accessibility of open spaces in
the urban context, La Rosa indicated that network distance is more precise than Euclidean distance [51].
This study applies the gravity model to calculate the traffic flow between each origin to each destination,
considering the possibility mentioned by Kincses and Toth [52]. The present study specifically adopted
the time consumed on the road network as a decay parameter, the evacuation and rescue capabilities
of open spaces or facilities as public products, and the evacuees or rescuers as customers to determine
the travel methods of evacuees and rescuers after a disaster.

This study proposed a dual-scenario network analysis model expressed as:

COi Dj = min ∑ z
k=1lk/vk (1)

where COi Dj is the minimum time consumed traveling from the origin Oi to the destination Dj, lk is the
length of path k in the network, and vk is the speed of various traffic subjects under different traffic
situations on path k (e.g., person or vehicle speed on each road level during peak or non-peak hours).

This study focused on measuring the spatial relationship between origins and destinations.
The accurate simulation of the evacuation rescue process is beyond the scope of this study.

3.2. Gravity Model Based on Evacuation and Rescue Flow Distribution

The gravity model is confirmed by the “first law of geography”; things that are close to one
another in space are more related [52]. Spatial flow analysis is one of the basic areas of applying gravity
models; this approach calculates the probability of the generated flow between two sites [53] and is
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widely used in assessing public facility accessibility [54–57]. For the movement between origin i and
destination j, denoted as Zij, the simplest form of the gravity model is expressed as:

Zij = CiPj f
(
dij, β

)
(2)

where Pj and Ci represent the observed origin and destination based factors, respectively, and f
(
dij, β

)
describes the interaction between i and j as a decreasing function of distance dij, parameterized by β.

The three basic factors in the equation are attraction, distance, and damping coefficients.
Attraction is determined by area, facility size, or population. Significant attraction equates to a

strong relationship between two sites. Large open spaces likely include additional facilities and large
service areas and are likely to be a destination for evacuees. Each open space within certain reachable
areas can be selected as an evacuation or rescue destination. Inversely, one public rescue facility can
serve multiple open spaces within the surrounding area. The principal attraction factors considered in
the gravity model are the capacity of an open space to accommodate evacuees, the number of evacuees
in the community, and the service capability of rescue facilities.

The calculation model presented in the subsections was implemented in MATLAB 2012
(MathWorks, Inc., Natick, MA, USA).

3.2.1. Formula of the Gravity Model

Gij = Ni Mj/COi Dj
β (3)

Mj = Ai/
(
aj + VcVa/Vp

)
(4)

where Gij represents the interaction between points i and j and the probability of the function flow
between these points. Ni is the residential population or the service capability of the ith community or
public rescue facilities. This study used the compliance value of 97%.

Equation (4) calculates the number of evacuees that can be accommodated in jth open space.
Mj is the number of evacuees that can be accommodated in the jth open space. Ai denotes the size
of the jth open space that the evacuees or rescuers reach. The denominator calculates the average
area per person or per vehicle. Va is the average area occupied by each vehicle and is 15 m2. Vc

denotes the percentage of evacuees who may select riding a vehicle based on the car ownership
ratio, which is 15.5%. This study considers that 62% of citizens would ride a vehicle to the shelter.
Vp denotes the number of persons each car could carry. This study assumes that each car has four
people. ai is the refuge area, set at 2 m2, required for each evacuee [38]. β represents the distance
damping coefficient that can be expressed by a different mathematical expression. The β value is
widely discussed [54,55,58,59]. The variation range of the SDIs of different β values was determined
to be (1, 3) (interval of 0.2) to further illustrate the influence of geospatial and transport facilities on
the model results and to clearly show multiple results. The SDIs of β = 2 were clarified particularly in
Section 4, and the effect of β value variation was discussed in Section 5.

3.2.2. Evaluation Formula for Evacuation Traffic Flow

The model aggregated the generated traffic function flow between two points into each open
space. Then, this flow was used as the supply (demand) value of each point. Evacuation and rescue
procedures comprised different supply and demand objects.

In the evacuation process, the demand or supply was the community or open space as expressed
in Equations (5) and (6), respectively:

EDj =
t

∑
θ=1

Sij × Rθ (5)



ISPRS Int. J. Geo-Inf. 2017, 6, 227 9 of 20

ESj = Mj (6)

where EDj represents the demand for accommodation based on the number of evacuees; Sij is the
value of Gij after maximum difference normalization transformation; Rθ is the residential population
of the θth community; and ESj is the number of evacuees that the jth open space can accommodate.

3.2.3. Evaluation Flow for Rescue Traffic Flow

By contrast, the demand and supply sides in the rescue process were the urban open space and
public rescue facilities as expressed in Equation (7).

RSj =
w

∑
δ=1

Sij × Fδ (7)

where RSj is the number of evacuees who could receive rescue services in the jth open space, Sij is the
maximum difference standardized value of Gij, and Fδ is the supply capability of the wth rescue facility.

According to the number of citizens who can reach the jth open space within or beyond its
capacity, RDi performs different functions as expressed in Equation (9):

RSj =
w

∑
δ=1

Sij × Fδ (8)

RDj =


Mj, (EDj > Mj)

t
∑

θ=1
Sij × Rθ , (EDj < Mj)

(9)

where RDj pertains to the demand of refuge seekers in the jth open space.

3.2.4. SDI

Evacuation supply-demand index (ESDI), rescue supply-demand index (RSDI), and CSDI were
established based on traffic flow. SDIs can be measured by utilizing the following equations:

ESDIj = ESj/EDj (10)

or
RSDIj = RSj/RDj (11)

CSDIj = wejESDIj + wrjRSDIj (12)

where ESDIj or RSDIj is the ESDI or RSDI of the jth open space, CSDIj represents the CSDI of the jth
open space, wej refers to the weight value of ESDIj, and wrj refers to the weight value of RSDIj. CSDI is
a comprehensive index that can reflect the evacuation and rescue capabilities of open spaces, including
their accessibility, supply, and demand.

4. Results

4.1. ESDI

The spatial distribution of the ESDI of the open spaces presented a ring variation tendency under
peak and non-peak hours of traffic conditions (Figure 6). The value increased from the core urban area
to the urban fringe. The average values of the ESDI of open spaces in RA1–RA4 distinctly varied by
distance increasing from the urban center under the two conditions (Figure 6). The average value of
open spaces in the RA1 was 0.99 during peak hours, whereas several high values emerged during
non-peak hours, which were marked by red spots, with an average value of 2.6. In Figure 7, the average
value of each RA is higher during non-peak hours than during peak hours. This phenomenon was
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significant in RA1 and RA2, reaching 2.63 and 1.6 times, respectively, indicating that RA1 and RA2
were the areas most severely influenced by the traffic background level. The ESDI maximum value
appeared in RA4 in each condition. Two possible reasons can be attributed to this scenario: First,
the large supply and insufficient demand for open spaces were in the region of RA4. Second, RA4
is distant from the densely populated areas RA1 and RA2 (Figure 3); thus, RA4 only requires a few
external evacuees to be received. In contrast to the case for peak hours, a minimum value of 2.28
during non-peak hours was observed in RA3. It is observed in the model that the open spaces located
in RA3 accept more evacuees during non-peak hours than during peak hours. These evacuees could
only seek shelter in RA1 and RA2, usually blocked by traffic congestion during peak hours. More
than half of the ESDIs are larger than one, according to the normal distribution curve (Figure 8). The
non-peak curve is slightly smoother than the peak curves, implying that citizens appreciate equality in
shelter resources. The peak curve (µ = 0.17) becomes closer to the line (x = 0) than the non-peak curves
(µ = 0.24), indicating that the value is generally lower during peak hours than during non-peak hours.
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the great pressure of supply and demand and the weak evacuation capacity. Level 7 has the strongest
evacuation capability, whereas Level 1 has the weakest evacuation capability as supply totally falls
short of demand.
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The number of open spaces with an ESDI value less than one, which is a perfect condition that
signifies equal supply and demand, was calculated. The number of overloaded open spaces during
peak hours was 169, which comprises 40.92% of the total. By contrast, the number of overloaded
open spaces during non-peak hours was 156, which represents 37.77% of the total. The dynamic
traffic conditions and the attraction of communities toward open spaces significantly influenced the
evacuation capability of the city.

An interesting phenomenon was identified; certain open spaces had preferable ESDI during peak
hours compared to non-peak hours. This finding contradicts the previous findings that ESDIs during
non-peak hours were preferable to those during peak hours. A scatter diagram (Figures 9 and 10)
was adopted to illustrate the values of the two traffic scenarios. The horizontal axis is the index value
during peak hours, and the vertical axis is the index value during non-peak hours. The origin of the
coordinate is 1. The index shown in the figures only ranges from 0 to 2.

The first quadrant represents the supply that can satisfy the demand. The second quadrant
indicates that open spaces are sufficiently supplied during non-peak hours but insufficiently supplied
during peak hours. These points can be referred to as Type 1 error points. In the third quadrant,
the supply capacity of the shelter cannot satisfy the evacuation demand in the two traffic background
levels. The points in the fourth quadrant are Type 2 error points because they have low values during
non-peak hours but have values higher than one during peak hours.
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The points located in Quadrants I and III comprise a large proportion of the total; 55.56% and
34.3%, respectively. Among the points in Quadrant I, RA4 occupies 60% (the most) and RA1 occupies
0.08% (the least). In Quadrant III, RA3 accounts for 61.27% (the most) and RA4 accounts for 4.93%
(the least). Quadrants II and IV are nearly completely occupied by the points located in RA3 and RA2.
In Quadrant II, RA3 accounts for 48.15%, followed by 29.63% in RA2. In Quadrant IV, RA3 accounts
for 71.43%, followed by 28.57% in RA2 (Table 3). A possible reason for the dramatic change in the line
in RA3 during non-peak hours is depicted in Figure 8.

Table 3. Proportion of Open Space belonging to Each Quadrant in the Ring Area.

Total Quadrant I Quadrant II Quadrant III Quadrant IV

Total 414 230 55.56% 27 6.52% 142 34.30% 14 3.62%
RA1 17 2 11.76% 1 5.88% 15 88.24% 0 –
RA2 48 3 6.25% 8 16.67% 33 68.75% 4 8.33%
RA3 199 87 43.72% 13 6.53% 87 43.72% 10 6.03%
RA4 150 138 92.00% 5 3.33% 7 4.67% 0 –

4.2. RSDI

The analytic hierarchy process method [60] was used to determine the weights of the rescue
factors, which were 0.5006, 0.2746, and 0.2248 for medical rescue, public security maintenance, and
goods supply facilities, respectively.

RSDI exhibited a nearly diametrically opposite distribution when compared with ESDI. The value
decreases while the distance increases from the inner city to the fringe, as illustrated in Figure 11. Each
value of RSDI in the two traffic scenarios was greater than 1, indicating that Wuhan City possesses
sufficient rescue capabilities. Figure 12 depicts a RSDI average value that is highest at 13.38 and 12.82
in RA2 during peak and non-peak hours, respectively, followed by RA1 and RA3. RA4 demonstrates
the lowest RSDI average value. Figure 13 illustrates that the non-peak hour curve (µ = 0.62) is closer to
the line (x = 0) than the peak hour curve (µ = 0.71), indicating that Wuhan has sufficient rescue capacity
even during peak hours.
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Among the three specific types of rescue facilities (Table 4), the RSDIs were greater in medical
rescue facilities, at 18.57 and 17.65 during peak and non-peak hours, respectively, than in goods supply
and public security facilities. Goods supply facilities were under the most pressure in Wuhan, because
their values were less than 1. No noteworthy distinction between peak and non-peak hours of goods
supply capability was observed. Similar to RSDI, the open spaces located in RA2 performed the best,
followed by RA1, RA3, and RA4.

Table 4. Rescue Supply-Demand Index (RSDI) of Each Type of Rescue Facility.

Public Security Facility Goods Supply Facility Medical Rescue Facility

Peak hours Non-peak hours Peak hours Non-peak hours Peak hours Non-peak hours

RA1 0.29 0.28 3.77 3.49 24.28 23.15
RA2 0.44 0.45 4.56 4.24 24.52 23.37
RA3 0.19 0.18 2.64 2.46 16.71 15.76
RA4 0.07 0.08 1.02 0.93 8.77 8.21

4.3. CSDI

The weights of ESDI and RSDI calculated through the analytic hierarchy process method were
0.5498 and 0.4501, respectively [60]. A significant difference could be noted in Figures 6, 11 and 14.
The CSDI spatial distribution trend was insignificant and is generally homogeneous only with several
spatial agglomerations.
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RA2 was the safest area in Wuhan, possessing the highest CSDI (CSDI = 7.13 and 7.48 during 
peak and non-peak hours, respectively), followed by RA1 at 6.43 and 7.03 during peak and non-peak 
hours, respectively, and then RA3. Although the average CSDI was slightly larger in RA4 than in 
RA3 during non-peak hours, the CSDI of RA4 during peak hours had the lowest value among all ring 
areas, making RA4 the weakest area for disaster response (Figure 15). Improvements in road network 
building or traffic management could be helpful in enhancing security in RA4 because of the area’s 
sensitivity to the traffic background level. During peak hours, the entire city was interspersed with 
high-value points and one prominent cluster in RA3. During non-peak hours, a new high-value 

Figure 14. Comprehensive supply–demand index (CSDI) distribution. (a,b) CSDI during peak and
non-peak hours, respectively. Level 1: CSDI value range (0–1); Level 2: CSDI value range (1.01–3);
Level 3: CSDI value range (3.01–6); Level 4: CSDI value range (6.01–9); Level 5: CSDI value range
(9.01–12); Level 6: CSDI value range (12.01–15); and Level 7: CSDI value greater than 15. CSDI
gradually increased from Levels 1 to 7, representing greater evacuation and rescue capabilities. Level 1
represents the weakest capability, whereas Level 7 represents the strongest capability.

RA2 was the safest area in Wuhan, possessing the highest CSDI (CSDI = 7.13 and 7.48 during
peak and non-peak hours, respectively), followed by RA1 at 6.43 and 7.03 during peak and non-peak
hours, respectively, and then RA3. Although the average CSDI was slightly larger in RA4 than in
RA3 during non-peak hours, the CSDI of RA4 during peak hours had the lowest value among all ring
areas, making RA4 the weakest area for disaster response (Figure 15). Improvements in road network
building or traffic management could be helpful in enhancing security in RA4 because of the area’s
sensitivity to the traffic background level. During peak hours, the entire city was interspersed with
high-value points and one prominent cluster in RA3. During non-peak hours, a new high-value cluster
was observed around the first ring road. Virtually all CSDIs were larger than 1 because the normal
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distribution curves of peak and non-peak hours were on the right side of the line (x = 0). However, no
theatrical variation was observed between the two traffic background levels (Figure 16).

ISPRS Int. J. Geo-Inf. 2017, 6, 227  15 of 20 

cluster was observed around the first ring road. Virtually all CSDIs were larger than 1 because the 
normal distribution curves of peak and non-peak hours were on the right side of the line (x = 0). 
However, no theatrical variation was observed between the two traffic background levels (Figure 16).  

 
Figure 15. Average CSDI of the ring area. 

 
Figure 16. Normal distribution curve of CSDI. 

5. Discussions 

Different β values exhibited different influence directions and degrees of SDI, as illustrated in 
Figure 17. The results could probably be divided into three categories, as follows. (1) Positive 
correlation with a large variation: this phenomenon mainly occurred in evacuation and rescue 
resource-rich areas such as RA4/RA3, with large open spaces in the evacuation process, and 
RA1/RA2, with considerable resources in the rescue process. A large β value implied that evacuees 
or rescuers were discouraged by long travel times in seeking open spaces and proceeded instead to 
open spaces nearby. (2) Negative correlation with a moderate variation: the noteworthy areas, which 
were only partially self-sufficient and relied on external resources to supply the requirements of the 
region, were RA2 and RA3 in the evacuation and rescue processes, respectively. Therefore, the 
increase in traffic resistance could affect the delivery of supply, resulting in a decline in the supply 
and demand ratio. (3) Inconspicuous correlation with a small variation: the representative areas were 
RA1 and RA4 in the evacuation and rescue processes, respectively. These regions were supplied 
deficiently and were far from the supplying resource-rich areas. Therefore, the impact on SDIs was 
not as significant as in other regions, although traffic resistance increased. 

 

Figure 15. Average CSDI of the ring area.

ISPRS Int. J. Geo-Inf. 2017, 6, 227  15 of 20 

cluster was observed around the first ring road. Virtually all CSDIs were larger than 1 because the 
normal distribution curves of peak and non-peak hours were on the right side of the line (x = 0). 
However, no theatrical variation was observed between the two traffic background levels (Figure 16).  

 
Figure 15. Average CSDI of the ring area. 

 
Figure 16. Normal distribution curve of CSDI. 

5. Discussions 

Different β values exhibited different influence directions and degrees of SDI, as illustrated in 
Figure 17. The results could probably be divided into three categories, as follows. (1) Positive 
correlation with a large variation: this phenomenon mainly occurred in evacuation and rescue 
resource-rich areas such as RA4/RA3, with large open spaces in the evacuation process, and 
RA1/RA2, with considerable resources in the rescue process. A large β value implied that evacuees 
or rescuers were discouraged by long travel times in seeking open spaces and proceeded instead to 
open spaces nearby. (2) Negative correlation with a moderate variation: the noteworthy areas, which 
were only partially self-sufficient and relied on external resources to supply the requirements of the 
region, were RA2 and RA3 in the evacuation and rescue processes, respectively. Therefore, the 
increase in traffic resistance could affect the delivery of supply, resulting in a decline in the supply 
and demand ratio. (3) Inconspicuous correlation with a small variation: the representative areas were 
RA1 and RA4 in the evacuation and rescue processes, respectively. These regions were supplied 
deficiently and were far from the supplying resource-rich areas. Therefore, the impact on SDIs was 
not as significant as in other regions, although traffic resistance increased. 

 

Figure 16. Normal distribution curve of CSDI.

5. Discussions

Different β values exhibited different influence directions and degrees of SDI, as illustrated in
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correlation with a large variation: this phenomenon mainly occurred in evacuation and rescue
resource-rich areas such as RA4/RA3, with large open spaces in the evacuation process, and RA1/RA2,
with considerable resources in the rescue process. A large β value implied that evacuees or rescuers
were discouraged by long travel times in seeking open spaces and proceeded instead to open spaces
nearby; (2) Negative correlation with a moderate variation: the noteworthy areas, which were only
partially self-sufficient and relied on external resources to supply the requirements of the region, were
RA2 and RA3 in the evacuation and rescue processes, respectively. Therefore, the increase in traffic
resistance could affect the delivery of supply, resulting in a decline in the supply and demand ratio;
(3) Inconspicuous correlation with a small variation: the representative areas were RA1 and RA4 in
the evacuation and rescue processes, respectively. These regions were supplied deficiently and were
far from the supplying resource-rich areas. Therefore, the impact on SDIs was not as significant as in
other regions, although traffic resistance increased.
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ring areas.

The ESDI average value of RA4 was the maximum and most variable among all β values of the
two traffic background levels in the four ring areas. The variation of the β value demonstrated a greater
effect on the mean value of the ESDI of RA3 during non-peak hours than during peak hours. The ESDI
mean value of RA2 showed a slight downward tendency. The ESDI mean value of RA1 exhibited no
noteworthy change in any case of β. The increasing β value resulted in the largest increase in the RSDI
mean value in RA1, followed by RA2. The RSDI mean value of RA3 decreased with the increase in the
β value. No obvious variation of the RSDI mean value of RA4 was observed.

Disaster management generally consists of four stages; disaster prevention, emergency response,
recovery, and mitigation [61]. This research contributed to the first two stages by calculating the
provision of shelter and rescue capabilities in megacities. Future urban planners and disaster managers
could use the methods as a guide for disaster management, road network design, urban planning, and
the improvement of disaster response capabilities.

This study attempted to develop SDIs to represent the supply and demand relationship of open
spaces with a shelter function. This index was primarily characterized by the spatial interaction
relationships of open spaces and the sites of evacuee or rescue facilities. It also reflected the space
configuration for evacuation and rescue resources. The method presented in this study could help to
identify weak areas and provide guidance for optimizing these areas. An ideal SDI value of 1 could be
selected as a standard to evaluate the utilization of resources. Combined with the quadrant scatter
plot figure and the spatial quadrant distribution map based on the ESDI values in the two traffic
scenarios, the influence of traffic-restricive factors on the effective utilization of each open space could
be illustrated clearly. The two figures also helped in understanding the weak or strong areas in a city
through the spatial clusters that emerged in the two figures.

Traffic jams should be cleared in the areas around the open spaces with high SDI values
to contribute to sufficient usage of open spaces by accepting additional evacuees from distant
communities. The transformation of subpar open spaces into suitable shelters around open spaces with
low SDI values could be helpful in enhancing the security of nearby areas. In addition, considering
various types of transportation (e.g., walking, riding the bus [62], or using special vehicles arranged by
the government) for evacuation should be encouraged.

This study has several shortcomings that can be addressed in future works.
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First, additional attraction factors should be included in addition to population, area, and service
capabilities, used in this study, such as the preference of evacuees, the saturation of open spaces,
or special demand from the disabled, the aged, or children.

Second, an accurate traffic simulation model should be further considered. Simulation models
such as MATSim [63] could make this model realistic.

Third, the lack of real data to validate the reality and accuracy of the model makes this model
theoretical; thus, further tests are required in the future.

6. Conclusions

This study measured the suitability of the spatial distribution of open spaces when they are used
as post-disaster shelters, given that the Chinese government places increasing importance to urban
safety. A CSDI based on the gravity model was constructed to evaluate the supply and demand
relationship. The city of Wuhan in China was selected as the study area, and ESDI, RSDI, and CSDI
were implemented to evaluate the evacuation and rescue capabilities of open spaces during peak and
non-peak hours.

The following major conclusions are drawn from the analysis.
First, ESDI, RSDI, and CSDI can effectively evaluate the spatial suitability of open spaces when

these models are integrated with the gravity model. The evaluation covers the travel time, capacity of
open spaces, and service capability of rescue facilities. The effects of the distance-decaying function
play an important role in the evaluation. Open spaces situated far from high-density communities or
near the rescue facilities show a high ESDI or RSDI value.

Second, the quadrant distribution analysis of ESDI can be an effective method for revealing the
reasons for the change in values in the two traffic scenarios and for helping planners to adjust their
policies to enhance the capability of an area. The open spaces located in Quadrant I are sufficient to
provide shelters. The open spaces located in Quadrants II and IV are affected by traffic conditions;
thus, planners should aim to relieve traffic pressure around these areas. Considerable attention should
be focused on the open spaces located in Quadrant III for monitoring and improving because these
shelters are insufficient quantitatively. The indexes and the quadrant distribution analysis provided in
this study can help planners to implement spatial layout evaluations of public facilities and support
decision-making during facility optimization in urban planning.

Third, the impact of the different β values on SDIs shows positive, negative, and inconspicuous
correlations with large, moderate, and minimal variations, respectively.

Fourth, the analysis of the supply–demand relationship of open spaces in Wuhan suggests a
spatial mismatch in comprehensive evacuation and rescue capabilities. Open spaces in the central
city were lacking in evacuation capability, whereas open spaces in the urban fringe could not obtain
sufficient rescue opportunities. Several low values for the comprehensive evacuation and rescue
capabilities of open spaces are scattered throughout the city.

Finally, traffic congestion can be a significant impact factor for evacuation and rescue capabilities
but not on the comprehensive capability. This finding indicates that the integrated rational distribution
of evacuation and rescue facilities can partially mitigate the impact of traffic congestion on the efficiency
of disaster response. For shelter planning, measuring the suitable spatial supply–demand relationship
is important.
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