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Abstract: This paper presents a spatial-spectral method for hyperspectral image classification in
the regularization framework of kernel sparse representation. First, two spatial-spectral constraint
terms are appended to the sparse recovery model of kernel sparse representation. The first one is
a graph-based spatially-smooth constraint which is utilized to describe the contextual information
of hyperspectral images. The second one is a spatial location constraint, which is exploited to
incorporate the prior knowledge of the location information of training pixels. Then, an efficient
alternating direction method of multipliers is developed to solve the corresponding minimization
problem. At last, the recovered sparse coefficient vectors are used to determine the labels of test
pixels. Experimental results carried out on three real hyperspectral images point out the effectiveness
of the proposed method.
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1. Introduction

Hyperspectral imaging sensors capture digital images in hundreds of narrow and contiguous
spectral bands spanning the visible to infrared spectrum. Each pixel of a hyperspectral image
can be represented by a vector whose entries correspond to various spectral-band responses.
Different materials usually reflect electromagnetic energy differently at specific wavelengths. The
wealth of spectral information of hyperspectral images promotes the development of many application
domains, such as military [1], agriculture [2], and mineralogy [3]. Among the information processing
procedures of these applications, classification is an important one, where pixels are assigned to
one of the available classes according to a set of given training pixels. Various classifiers have been
developed for hyperspectral image classification and have shown good performance. Some popular
classifiers include support vector machine (SVM) [4], multinomial logistic regression [5], and sparse
representation classification (SRC) [6].

Hyperspectral images usually have large homogeneous regions within which the neighboring
pixels consist of the same type of materials and have similar spectral characteristics. Previous works
have highlighted that hyperspectral image classification should not only focus on analyzing spectral
features, but also incorporate the information of spatially-adjacent pixels. For instance, the authors
in [7] incorporate the spectral and spatial information into SVM by taking advantage of the composite
kernel technique. In [5], the spatial information is incorporated into multinomial logistic regression
by some spatial feature extraction techniques. In [6], a joint sparsity model is introduced to SRC,
where the neighborhood pixels are assumed to have the same labels. Very recently, some deep models
(e.g., stacked autoencoder [8] and convolutional neural network [9–12]) have been proposed for
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the spatial-spectral classification of hyperspectral images and have shown good performance in terms
of accuracy and flexibility.

Among the aforementioned classifiers, SRC is an excellent one and can directly assign a class
label to a test pixel without a training process. Although SRC can achieve good performance in
hyperspectral image classification [6], it is hard to classify the data that is not linearly separable.
To overcome this drawback, kernel SRC (KSRC) is proposed in [13] to capture the nonlinear similarity
of features. In view of this, this paper considers using KSRC for the classification of hyperspectral
images. However, KSRC is also a pixel-wise classifier, which does not consider the spectral similarity
of spatially-adjacent pixels. In the literature, some methods have been proposed to incorporate the
spatial information into KSRC. In [13], a joint sparsity model is introduced to KSRC, which can be
seen as a kernel extension of [6]. In [14], the spatial-spectral information is incorporated into KSRC
by taking advantage of the neighboring filtering kernel technique. In [15], a centralized quadratic
constraint that describes the spectral similarity of spatially-adjacent pixels is appended to the sparse
recovery model of KSRC.

This paper considers incorporating the spatial-spectral information of hyperspectral images
in the regularization framework of KSRC. Different from the relevant methods, a spatial-spectral
graph is designed to describe the contextual information of hyperspectral images, where the spectral
similarity of spatially-adjacent pixels (i.e., nodes) is measured by the weight of the edge. In addition,
the acquisition of labeled pixels in most hyperspectral scenes is often an expensive procedure. Thus,
the number of training pixels that can be used for hyperspectral image classification is often very
limited. To deal with this problem, we assume that the training pixels are labeled by experts and
then exploit the wealth of these training pixels. In detail, a spatial location constraint is introduced to
capture the prior knowledge of the location information of training pixels and is thereby appended
to the sparse recovery model of KSRC. As for the final classification procedure, the sparse coefficient
vectors obtained by solving the corresponding regularization problem are used to determine the labels
of test pixels.

The remainder of this paper is organized as follows. Section 2 briefly reviews the formulations of
KSRC. In Section 3, we present the formulations of the proposed SSGL method and the corresponding
optimization algorithm. The effectiveness of the proposed method is demonstrated in Section 4 by
conducting experiments on three real hyperspectral images. Finally, Section 5 discusses and concludes
this paper.

2. KSRC

This section briefly introduces the notations of kernel sparse representation for hyperspectral
image classification. As with the assumption of SRC, KSRC also assumes that the features belonging to
the same class approximately lie in the same low-dimensional subspace [16,17]. Suppose the given
hyperspectral scene includes C classes, and that there exists a feature mapping function φ which
maps an L-band test pixel x ∈ RL and a J-sized training dictionary A = [a1, ..., aJ ] ∈ RL×J to the
high-dimensional feature space: x → φ(x), A → Φ(A) = [φ(a1), ..., φ(aJ)], where the columns of A
are composed of J training pixels from all classes. Then, for an unknown test pixel x ∈ RL, it can be
represented as follows:

φ(x) = Φ(A)s, (1)

where s ∈ RJ denotes an unknown sparse coefficient vector.
Suppose the dictionary A is given; the unknown sparse coefficient vector s can be obtained by

solving the following optimization problem:

min
s

1
2
||φ(x)−Φ(A)s||22 + λ||s||1, (2)
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where λ > 0 is used to control the sparsity of s. Then, the class label of x can be determined by
the following classification rule:

class(x) = arg min
c=1,...,C

||φ(x)−Φ(A)δc(s)||2, (3)

where δc(·) is the characteristic function that selects coefficients related with the c-th class and makes
the rest zero.

Since all φ mappings used in KSRC occur in the form of inner products, the kernel function K can
be defined for any two pixels xi ∈ RL and xj ∈ RL as follows:

K(xi, xj) =
〈
φ(xi), φ(xj)

〉
. (4)

Some commonly-used kernel functions are: linear kernel (K(xi, xj) =
〈
xi, xj

〉
), polynomial kernel

(K(xi, xj) = (
〈
xi, xj

〉
+ 1)d, d ∈ Z+), and Gaussian radial basis function (RBF) kernel (K(xi, xj) =

exp(−γ||xi − xj||22), γ ∈ R+). In this paper, only the RBF kernel is considered. After introducing (4)
into (2), the corresponding optimization problem can be rewritten as follows:

min
s

1
2

sTQs− sTp + λ||s||1 + Const, (5)

where Const = (1/2)K(x, x) is a constant that can be dropped in the optimization
problem (5), Q = 〈Φ(A), Φ(A)〉 is a J × J positive semi-definite matrix with entry Qij = K(ai, aj), and
p = [K(a1, x), ..., K(aJ , x)]T ∈ RJ . Analogously, the classification rule (3) can be rewritten as follows:

class(x) = arg min
c=1,...,C

δT
c (s)Qδc(s)− 2δT

c (s)p. (6)

3. Proposed Approach

3.1. Proposed Model

Suppose the observed hyperspectral image X consists of I pixels {xi ∈ RL}I
i=1; i.e.,

X = [x1, ..., xI ] ∈ RL×J . Then, the corresponding sparse recovery model of (2) for the observed
hyperspectral image X can be written as follows:

min
S

1
2
||Φ(X)−Φ(A)S||2F + λ||S||1,1, (7)

where || · ||F is the Frobenius norm, ||S||1,1 = ∑j,i |Sji|, Φ(X) = [φ(x1), ..., φ(xI)] denotes
the corresponding data of X under the mapping function φ and S = [s1, ..., sI ] ∈ RJ×I is the unknown
sparse coefficient matrix, with si ∈ RJ being the sparse coefficient vector of pixel xi. Similarly,
the corresponding sparse recovery model of (5) can be written as follows:

min
S

1
2

Tr(STQS)− Tr(STP) + λ||S||1,1, (8)

where the constant term is dropped and Tr(·) denotes the trace of a matrix,
P = 〈Φ(A), Φ(X)〉 = [p1, ..., pI ] ∈ RJ×I with entry Pij = K(ai, xj). The corresponding classification
rule of (6) can be written as follows:

class(xi) = arg min
c=1,...,C

δT
c (si)Qδc(si)− 2δT

c (si)pi, ∀i = 1, 2, · · · , I. (9)

The matrix X is not just a set of pixels; it is essentially a three-dimensional image; since for any i
in the complete set I = {1, 2, · · · , I}, si is the sparse coefficient vector of pixel xi. Then, the matrix S
can also be seen as a three-dimensional image. That is to say, the spatial relationship between every
two pixels xi and xj is also suitable for that of the sparse coefficient vectors si and sj. It is natural to
incorporate the spatial information of X by enforcing S. However, directly enforcing S is too strict; it
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does not consider the variation of training pixels within each class. In view of this, the summation
of sparse coefficients that belong to each class is considered. Specifically, the spatial information is
incorporated by enforcing TS, where T ∈ RC×I is defined as:

Tcj =

{
1 if class(aj) = c

0 else
, ∀c = 1, 2, · · · , C; j = 1, 2, · · · , J. (10)

Let us define a spatial-spectral graph as G = {V, E, W}, where V = [v1, ..., vI ] and E are the sets
of vertices and edges, respectively, and W ∈ RI×I is a weight matrix on the graph. In this paper,
every node vi is connected to its eight spatially-adjacent nodes (see Figure 1), and the weight between
vi and vi is defined as follows:

Wij =

{
exp(−β||x̄i − x̄j||2) + 10−6 if vi and vi are connected

0 else
, ∀i, j (11)

where β > 0 and x̄i and x̄j are the pixels of the first three principal components of the hyperspectral
image X. It is apparent that for any two similar nodes, a large weight will be given. In this paper,
the graph-based spatially-smooth constraint term is defined as follows:

S(TS) = Tr
(
(TS)L(TS)T

)
, (12)

where L = D−W is the graph Laplacian and D is a diagonal matrix whose entries are column sums of
W (i.e., Dii = ∑j Wij). After appending (12) to the sparse recovery model (8), we can get the following
optimization problem:

min
S

1
2

Tr(STQS)− Tr(STP) + λ||S||1,1 +
α

2
Tr
(
(TS)L(TS)T

)
, (13)

where α > 0. In order to effectively work with limited training pixels, the prior knowledge of
the location information of training pixels is included by a spatial location constraint term. The final
sparse recovery model can be written as follows:

min
S

1
2

Tr(STQS)− Tr(STP) + λ||S||1,1 +
α

2
Tr
(
(TS)L(TS)T

)
+ ι0(TSΛ − T), (14)

where Λ ⊂ I is a set with SΛ being the corresponding coefficient matrix of the labeled pixels A and
ι0(·) denotes the indicator function; i.e., ι0(·) is zero if the given matrix is equal to zero, and infinity
otherwise. By using the location information of training pixels in the model (14), these training pixels
can be treated as anchor samples whose coefficients are fixed throughout the classification process,
and the graph-based spatially-smooth constraint can spread their label information to their neighbors
until a global stable state is achieved on the whole data set.

Figure 1. Illustration of the spatially-adjacent nodes. The yellow one denotes the given node and the
black ones denote the eight spatially-adjacent nodes.
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3.2. Optimization Algorithm

By introducing two variables M ∈ RJ×I and N ∈ RC×I , the proposed optimization model (14)
can be rewritten as follows:

min
S,M,N

f (S, M, N)

s.t.M = S, N = TS.
(15)

where
f (S, M, N) =

1
2

Tr(STQS)− Tr(STP) + λ||M||1,1 +
α

2
Tr(NLNT) + ι0(NΛ − T). (16)

The optimization problem (15) accords with the framework of the alternating direction method of
multipliers (ADMM) [18,19]. The augmented Lagrangian function of (15) can be written as follows:

L(S, M, N, H, B) = f (S, M, N) +
µ

2
||S−M−H||2F +

µ

2
||TS−N− B||2F, (17)

where µ > 0 is the penalty parameter and H ∈ RJ×I and B ∈ RC×I are two auxiliary variables.
The corresponding iteration procedure can be written as follows:

St =arg min
S
L(S, Mt−1, Nt−1, Ht−1, Bt−1)

Mt=arg min
M
L(St, M, Nt−1, Ht−1, Bt−1)

Nt=arg min
N
L(St, Mt, N, Ht−1, Bt−1)

Ht=Ht−1 − (St −Mt)

Bt =Bt−1 − (TSt −Nt)

(18)

where t > 0 is the iteration number. The first step of (18) is to solve the S-subproblem, which can be
derived as:

St = (Q + µI + µTTT)−1(P + µ(Mt−1 + Ht−1) + µTT(Nt−1 + Bt−1)), (19)

where I is the identity matrix. The second step of (18) is to solve the M-subproblem, which is
the well-known soft threshold [20]:

Mt = soft(St −Ht−1, λ/µ), (20)

where soft(·, τ) denotes the component-wise application of the soft-threshold function
y = sign(y)max{|y| − τ, 0}. The third step of (18) is to solve a linear system, which can be written as:

min
N

1
2
‖N− (TSt − Bt−1)‖2

F +
α

2µ
Tr(NLNT) + ι0(NΛ − T). (21)

If removing the last term, the solution of this system can be written as:

Nt = (TSt − Bt−1)

(
α

µ
L + I

)−1
. (22)

Let Λ̄ be the complementary set of Λ under the complete set I . Then, the optimization problem (21)
can be rewritten as:

min
NΛ̄

1
2
‖[NΛNΛ̄]− (T[St

ΛSt
Λ̄]− [Bt−1

Λ Bt−1
Λ̄ ])‖2

F +
α

2µ
Tr

(
[NΛNΛ̄]

[
LΛΛ LΛΛ̄
LΛ̄Λ LΛ̄Λ̄

]
[NΛNΛ̄]

T

)
, (23)

where LΛΛ̄ = LT
Λ̄Λ ∈ RJ×(I−J) and NΛ = T. The solution of (23) can be derived as:

NΛ̄ =

(
TSt

Λ̄ − Bt−1
Λ̄ − α

µ
NΛLΛΛ̄

)(
α

µ
LΛ̄Λ̄ + I

)−1
. (24)
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For both (22) and (24), one has to solve a large linear system. Fortunately, L is a sparse and
diagonally dominant matrix, and one can take the Gauss–Seidel method to get approximate solutions
to these two systems. The last two steps of (18) are designed to update the auxiliary variables.
The procedure of the proposed algorithm is detailed as follows:

1. Input: A training dictionary A ∈ RL×J and a hyperspectral data matrix X ∈ RL×I .
2. Choose β, and compute the weight matrix W according to (11).
3. Select the γ parameter for the RBF kernel and compute the matrices Q and P.
4. Set t = 1; choose µ, λ, α, S1, M1, N1, H1, B1.
5. Repeat
6. Compute St, Mt, Nt, Ht, Bt using (18).
7. t = t + 1.
8. Until some stopping criterion is satisfied.
9. Output: The estimated label of xi using (6), i = 1, ..., I.

3.3. Analysis and Comparison

The proposed spatial-spectral graph regularization with location (SSGL) method is designed
by appending two spatial-spectral constraint terms to the sparse recovery model of KSRC. One is a
graph-based spatially-smooth constraint, and the other is a spatial location constraint. When using the
two terms, the following two issues should be mentioned.

1. The graph-based spatially-smooth constraint is proposed by measuring the spatial relationship
between every two spatially-adjacent pixels. If using this term, the test pixels should be arranged
in the form of images.

2. The spatial location constraint is exploited by integrating the location information of anchor
samples, which are assumed to be taken from the test area and labeled by experts.

As described in the introduction part, deep models attract a lot of attention and provide
competitive classification results very recently. Although the proposed SSGL method and the deep
learning methods belong to two distinct techniques, we show the difference between them considering
a further improvement of this work. In Table 1, we compare the proposed SSGL method and the
deep learning methods in the respects of parameter, training sample, computational cost, flexibility,
and accuracy.

Table 1. Difference between the proposed spatial-spectral graph regularization with location
information (SSGL) method and the deep learning methods.

Deep Learning Methods SSGL

No. of parameters Several parameters needed to
be trained.

Four model parameters: β,
γ, λ and α. One algorithm
parameter µ.

No. of training samples Abundant training samples
needed.

Moderate (or even limited)
training samples needed.

Computational cost Expensive Moderate

Flexibility Robust to the spectral
distortion.

Restricted to the test area.

Accuracy High Moderate
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4. Experimental Results

4.1. Datasets

To test the performance of the proposed method, three real hyperspectral images have been
considered.

(1) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Indian Pines: The first image in our
experiments deals with the standard AVIRIS image taken over northwest Indiana’s Indian Pine test
site in June 1992. There are 220 bands in the image, covering the wavelength range of 0.4–2.5 µm. The
spectral and spatial resolutions are 10 nm and 17 m, respectively. This image consists of 145 × 145
pixels and 16 ground truth classes ranging from 20–2468 pixels in size. The false color image and the
ground truth map are shown in Figure 2. We removed 20 noisy bands covering the region of water
absorption and worked with 200 spectral bands. In the experiments, about 5% of the labeled pixels
were randomly chosen for training, and the rest were used for testing, as shown in Table 2.

(a) (b)

Alfalfa

Corn−no till

Corn−min till

Corn

Grass/pasture

Grass/trees

Grass/pasture−mowed

Hay−windrowed

Oats

Soybeans−no till

Soybeans−min till

Soybean−clean till

Wheat

Woods

Bldg−grass−tree drives

Stone−steel towers

Figure 2. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Indian Pines data set. (a) RGB
composite image of three bands. (b) Ground-truth map.

Table 2. Sixteen ground-truth classes in the AVIRIS Indian Pines dataset and the number of training
and test pixels used in the experiments.

Class Set

No. Name Train Test

C01 Alfalfa 3 51
C02 Corn-no till 72 1362
C03 Corn-min till 42 792
C04 Corn 12 222
C05 Grass/pasture 25 472
C06 Grass/trees 38 709
C07 Grass/pasture-mowed 2 24
C08 Hay-windrowed 25 464
C09 Oats 2 18
C10 Soybeans-no till 49 919
C11 Soybeans-min till 124 2344
C12 Soybean-clean till 31 583
C13 Wheat 11 201
C14 Woods 65 1229
C15 Bldg-grass-tree drives 19 361
C16 Stone-steel towers 5 90

Total 525 9841



ISPRS Int. J. Geo-Inf. 2017, 6, 258 8 of 19

(2) Reflective Optics System Imaging Spectrometer (ROSIS) University of Pavia: This dataset is an
urban image acquired by the ROSIS sensor, with spectral coverage ranging from 0.43–0.86 µm. The
ROSIS sensor has a spatial resolution of 1.3 m per pixel, with 115 spectral bands. This image, with a
size of 610 × 340 pixels, contains 103 spectral bands after the removal of noisy bands. There are nine
ground truth classes of interest. The false color image and the ground truth map are shown in Figure 3.
In the experiments, we randomly chose 40 samples per class for training and used the rest for testing,
as shown in Table 3.

(a) (b)

Asphalt

Meadow

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadows

Figure 3. Reflective Optics System Imaging Spectrometer (ROSIS) University of Pavia dataset. (a) RGB
composite image of three bands. (b) Ground-truth map.

Table 3. Nine ground-truth classes in the ROSIS University of Pavia dataset and the number of training
and test pixels used in the experiments.

Class Set

No. Name Train Test

C1 Asphalt 40 6812
C2 Meadow 40 18,646
C3 Gravel 40 2167
C4 Trees 40 3396
C5 Metal sheets 40 1338
C6 Bare soil 40 5064
C7 Bitumen 40 1316
C8 Bricks 40 3838
C9 Shadows 40 986

Total 360 43,563

(3) AVIRIS Kennedy Space Center: This image was collected by the AVIRIS sensor over the
Kennedy Space Center, Florida, in March 1996. There are 224 bands in the image, covering the
wavelength range of 0.4–2.5 µm. The spectral and spatial resolutions are 10 nm and 18 m, respectively.
This image acquired over an area of 512 × 614 pixels contains 176 spectral bands after removing water
absorption and low signal-to-noise bands. Thirteen ground-truth classes ranging from 105–927 pixels
in size that occur in this scene are defined for this image. The false color image and the ground truth
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map are shown in Figure 4. In the experiments, 5% of the labeled pixels were randomly chosen for
training, and the rest were used for testing, as shown in Table 4.

(a) (b)

Scrub

Willow swamp

Cabbage palm hammock

Cabbage palm/oak hammock

Slash pine

Oak/broadleaf hammock

Hardwood swamp

Graminoid marsh

Spartina marsh

Cattail marsh

Salt marsh

Mud flats

Water

Figure 4. AVIRIS Kennedy Space Center dataset. (a) RGB composite image of three bands.
(b) Ground-truth map.

Table 4. Thirteen ground-truth classes in the AVIRIS Kennedy Space Center dataset and the number of
training and test pixels used in the experiments.

Class Set

No. Name Train Test

C01 Scrub 39 722
C02 Willow swamp 13 230
C03 Cabbage palm hammock 13 243
C04 Cabbage palm/oak hammock 13 239
C05 Slash pine 9 152
C06 Oak/broadleaf hammock 12 217
C07 Hardwood swamp 6 99
C08 Graminoid marsh 22 409
C09 Spartina marsh 26 494
C10 Cattail marsh 21 383
C11 Salt marsh 21 398
C12 Mud flats 26 477
C13 Water 47 880

Total 268 4943

4.2. Model Development and Experimental Setup

In the experiments, we compared the proposed SSGL method with four widely-used
spatial-spectral classification methods based on the KSRC classifier. The first one is the majority
voting (MV) method that performs a pixel-wise KSRC followed by majority voting within superpixel
regions [21,22], where the superpixel regions are obtained by the entropy rate superpixel (ERS)
algorithm [23]. The second one is the kernel joint SRC (KJSRC) method using kernel joint sparse
representation classification [13,24], where the superpixel-based adaptive neighborhoods are used
[24]. The third one is the condition random fields (CRF) method that combines pixel-wise KSRC
and superpixel segmentation by using condition random fields [25]. The last one is the composite
kernel with extended multi-attribute profile features (CKEMAP) method that integrates a composite
kernel [7] into KSRC for the incorporation of spatial-spectral information, where the spatial features
are extracted by EMAP [26,27]. In order to show the influence of the proposed two terms, we
included a degeneration version (i.e., SSG) of SSGL for comparison, where the location information
constraint term was dropped. Moreover, the pixel-wise KSRC [17] that only uses spectral features
was also included as a baseline classifier. The corresponding optimization problems of the compared
methods were all solved by ADMM. For the pixel-wise KSRC, the parameter γ for the RBF kernel was
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experimentally set to two for the AVIRIS Indian Pines dataset, 0.5 for the ROSIS University of Pavia
dataset, and 0.125 for the AVIRIS Kennedy Space Center dataset, and the parameters λ and µ were
empirically set to 10−4 and 10−3, respectively. For further details, one can refer to the existing literature
[14]. Considering that all compared methods are based on the KSRC classifier, their parameters
brought by KSRC were experimentally set to be the same as those of the pixel-wise KSRC. For MV,
the additional parameters brought by the ERS segmentation were carefully optimized by reference
to [28]. For both KJSRC and CRF, the parameters brought by the ERS segmentation were fixed
to be the same as those of MV, and the remaining parameters were obtained by cross-validation.
For CKEMAP, the EMAP features were extracted from the first three principal components of the
hyperspectral image, and the area and standard deviation attributes were considered to build EMAP,
as reported in [29]. More specifically, for the area attribute the following values were selected for
references: 49, 169, 361, 625, 961, 1369, 1849, and 2401. For the standard deviation, the EMAPs were
built according to the following reference values with respect to the mean of the individual features:
2.5%, 5%, 7.5%, and 10%. As for the weight parameter and the kernel parameters in the composite
kernel framework [7], they were obtained by cross-validation. For the proposed method, µ was set to
10−4, α was set to 1, and β was experimentally set to 50 for the AVIRIS Indian Pines dataset and 100 for
both the ROSIS University of Pavia dataset and the AVIRIS Kennedy Space Center dataset. As for SSG,
the same parameters were used as SSGL.

Before the following experiments, the original data were scaled in the range [0, 1]. The
classification accuracies are assessed with OA (overall accuracy), AA (average accuracy), and KA
(kappa coefficient of agreement). The quantitative measures were obtained by averaging ten runs to
avoid any bias induced by random sampling. All experiments were carried out in a 64-b quad-core
CPU 2.40-GHz processor with 8 GB of memory.

4.3. Numerical and Visual Comparisons

Table 5 summarizes the class-specific and global classification accuracies for the AVIRIS Indian
Pines dataset. The processing times in seconds are also included for reference. Figure 5 shows the
corresponding classification maps. From Table 5, it can be seen that all of the spatial-spectral methods
yielded higher classification accuracies when compared to the pixel-wise KSRC. SSGL gave the highest
global and most of the best class-specific accuracies, and CKEMAP performed the second highest.
For the proposed methods SSG and SSGL, the improvement of SSGL over SSG was significant. From
Figure 5, it can be seen that the maps of the spatial-spectral methods contain more homogeneous
regions when compared with the map of the pixel-wise KSRC. The misclassified regions of SSGL and
CKEMAP were smaller than those of the others.
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Table 5. Classification accuracies for the AVIRIS Indian Pines dataset using different classification
methods. The best results are highlighted in bold. AA: average accuracy; CKEMAP: composite kernel
with extended multi-attribute profile features; CRF: condition random fields; KA: kappa coefficient of
agreement; KSRC: kernel sparse representation classification; KJSRC: kernel joint SRC; MV: majority
voting; OA: overall accuracy; SSG: spatial-spectral graph regularization with location information;
SSGL: spatial-spectral graph regularization with location information.

Class Type KSRC MV KJSRC CRF CKEMAP SSG SSGL

C01 56.67 72.35 81.57 80.78 89.61 68.43 91.18
C02 78.33 85.27 87.22 88.84 91.24 79.90 95.01
C03 64.31 82.15 92.29 89.31 96.74 76.98 96.48
C04 52.07 90.86 87.88 91.98 84.91 69.37 85.68
C05 89.03 90.97 90.97 88.88 92.65 90.15 93.09
C06 96.46 96.11 96.33 99.31 98.70 98.58 98.77
C07 74.58 19.17 19.17 56.25 96.67 88.33 97.08
C08 98.75 99.78 99.57 99.66 99.70 99.44 99.48
C09 57.78 30.00 40.00 20.00 97.78 51.67 93.33
C10 72.87 86.74 85.91 86.59 90.48 84.41 92.76
C11 82.43 97.42 93.95 97.11 96.92 93.78 97.42
C12 76.74 97.75 95.61 97.99 91.36 90.03 96.72
C13 98.76 100 99.00 99.60 99.50 99.45 99.55
C14 95.30 99.78 97.99 98.53 99.06 98.49 99.29
C15 53.80 69.56 86.26 90.61 95.51 73.16 90.42
C16 88.56 91.89 96.78 96.33 93.78 87.89 88.67

OA(%) 81.33 91.92 92.39 93.83 95.17 88.97 96.16
AA(%) 77.28 81.86 84.41 86.36 94.66 84.38 94.68
KA(%) 78.66 90.75 91.34 92.96 94.50 87.39 95.62
Time(s) 17.03 17.33 17.31 18.48 23.48 34.69 36.16

The class-specific and global classification accuracies for the ROSIS University of Pavia dataset are
provided in Table 6, as well as the processing times. The corresponding classification maps are shown
in Figure 6. From the table, it is clear that SSGL performed best followed by SSG, and the performances
of the spatial-spectral methods were better than those of the pixel-wise method. The numerical
comparisons are confirmed by inspecting the classification maps. Table 7 shows the class-specific and
global classification accuracies and the processing times for the AVIRIS Kennedy Space Center dataset.
It can be seen that Table 7 reveals almost the same results as Table 5. The classification maps shown in
Figure 7 confirm the numerical comparisons further.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5. Classification maps and overall classification accuracies (in parentheses) obtained for the
AVIRIS Indian Pines dataset using different classification methods. (a) KSRC (81.49), (b) MV (90.93),
(c) KJSRC (92.79), (d) CRF (93.92), (e) CKEMAP (95.39), (f) SSG (88.30), (g) SSGL (96.44).

Table 6. Classification accuracies for the ROSIS University of Pavia dataset using different classification
methods. The best results are highlighted in bold.

Class Type KSRC MV KJSRC CRF CKEMAP SSG SSGL

C1 73.25 91.69 92.01 91.92 97.30 93.30 97.49
C2 83.24 93.23 95.25 94.77 94.94 97.01 98.48
C3 78.68 93.01 90.90 91.54 91.86 90.58 97.70
C4 91.65 86.39 89.32 91.58 95.58 94.44 94.90
C5 99.42 99.17 99.49 99.89 99.57 99.37 99.36
C6 84.77 98.20 99.26 99.53 96.85 98.70 98.90
C7 92.65 99.70 95.30 99.06 98.40 99.70 99.86
C8 77.99 98.00 70.73 94.72 95.52 96.11 99.00
C9 99.27 95.86 89.62 99.73 99.60 99.50 99.51
OA(%) 82.96 93.88 92.38 94.86 95.83 96.24 98.19
AA(%) 86.77 95.03 91.32 95.86 96.62 96.52 98.36
KA(%) 78.21 92.04 90.05 93.32 94.56 95.09 97.63
Time(s) 98.80 100.61 137.69 107.55 322.54 224.29 210.24
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Table 7. Classification accuracies for the AVIRIS Kennedy Space Center dataset using different
classification methods. The best results are highlighted in bold.

Class Type KSRC MV KJSRC CRF CKEMAP SSG SSGL

C01 95.69 100 100 100 99.03 99.18 99.04
C02 85.09 79.43 80.61 88.30 88.39 90.22 95.35
C03 90.62 97.94 97.94 98.31 97.08 98.02 98.27
C04 46.78 63.05 50.92 56.90 86.86 45.48 88.49
C05 61.64 82.76 82.63 82.30 87.63 80.13 92.57
C06 45.58 73.04 69.45 60.05 89.08 35.02 99.12
C07 83.54 92.83 100 98.99 89.29 99.09 100
C08 89.29 99.12 99.29 98.78 98.07 98.26 99.05
C09 96.01 98.42 98.42 98.42 98.54 98.34 98.34
C10 95.30 87.08 87.57 100 99.19 99.63 99.71
C11 94.30 86.83 90.65 98.94 97.74 96.71 97.14
C12 88.05 100 78.07 97.17 97.04 95.30 97.63
C13 99.84 100 100 100 100 100 100
OA(%) 88.45 93.01 90.70 94.35 96.63 92.15 98.01
AA(%) 82.44 89.27 87.35 90.63 94.46 87.34 97.29
KA(%) 87.12 92.19 89.60 93.69 96.25 91.22 97.78
Time(s) 111.68 116.40 576.78 153.00 626.01 192.24 198.11

In this set of experiments, it can be seen that SSGL performed best in all scenes. This demonstrates
the superiority of the spatial location constraint as well as the graph-based spatially-smooth constraint.
However, for SSG, it is more suitable to classify the ROSIS scene. This is because the spatial resolution
of the ROSIS scene is higher than those of the two AVIRIS scenes, and thus the spectral similarity of
the spatially-adjacent pixels of which is more suitable for SSG to measure.

4.4. Analysis of Parameters

Among the parameters of the proposed method, β was set experimentally and differently for
the three given datasets. In this set of experiments, we evaluated the influence of β by varying it from
10–200. Figure 8 shows the classification accuracies for both SSGL and SSG when applied to the three
given datasets. It can be seen that when β is small, the classification performance of SSG increases
monotonically as β increases; and the results typically saturate for large βs. When β is relatively large,
the accuracies of SSGL decrease slightly. In all cases, we can choose β in a wide optimal region. Thus,
the choice of β is robust.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6. Classification maps and overall classification accuracies (in parentheses) obtained for the
ROSIS University of Pavia dataset using different classification methods. (a) KSRC (83.44), (b) MV
(93.71), (c) KJSRC (94.55), (d) CRF (95.56), (e) CKEMAP (96.67), (f) SSG (97.57), (g) SSGL (98.28).
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7. Classification maps and overall classification accuracies (in parentheses) obtained for the
AVIRIS Kennedy Space Center dataset using different classification methods. (a) KSRC (89.86), (b) MV
(93.30), (c) KJSRC (92.96), (d) CRF (93.49), (e) CKEMAP (97.43), (f) SSG (92.98), (g) SSGL (98.56).
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Figure 8. OA as a function of β.

4.5. Influence of Anchor Samples

In SSGL, the spatial location constraint is built on the prior knowledge of the location information
of training samples. That is to say, all training samples are treated as anchor samples. In this set of
experiments, we built the spatial location constraint term by using different percentages of training
sample to show the influence of anchor samples. Figure 9 shows the classification accuracies for SSGL
when applied to the three given datasets. From the figure, we can see that the accuracies increase
monotonically as the percentage increases, but the accuracies reach the optimal values asymptotically
when a moderate number of anchor samples are used. Thus, we can build the spatial location term by
using a relatively small number of anchor samples.
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Figure 9. OA as a function of the number of anchor samples.

4.6. Different Numbers of Training Samples

In this set of experiments, we tested the performance of the compared classification methods
in an ill-posed scenario, where different numbers of training pixels are used. Specifically, for both
the AVIRIS Indian Pines dataset and the AVIRIS Kennedy Space Center dataset, we randomly chose
1–20% of the labeled pixels per class for training and the remaining pixels for testing. For the classes
with limited labeled pixels, at least two pixels were chosen for training. For the ROSIS University of
Pavia dataset, we built training sets by randomly choosing 10, 20, 40, 60, 80, and 100 training pixels
per class and used the rest as test sets. Figure 10 shows the mean value and standard deviation of
OA as a function of the number of training pixels for the three given datasets. From the figures, it
can be seen that the proposed SSGL outperformed the compared methods in almost all cases. As
expected, the performance of the spatial-spectral methods was better than that of the pixel-wise KSRC,
and the classification accuracies decreased when the number of training pixels was reduced. When
compared with the AVIRIS scene, SSG is more suitable for the ROSIS scene.
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Figure 10. OA as a function of the number of training samples for different classification methods
when applied to (a) the AVIRIS Indian Pines dataset, (b) the ROSIS University of Pavia data set, and (c)
the AVIRIS Kennedy Space Center dataset.

5. Discussion and Conclusions

A regularized kernel sparse representation method for spatial-spectral classification of
hyperspectral images has been presented in this paper, where the spatial-spectral information of
hyperspectral images is incorporated by appending two spatial-spectral constraint terms to the sparse
recovery model of KSRC. One is the graph-based spatially-smooth constraint, which is designed to
measure the spectral similarity of spatially-adjacent pixels. The other is the spatial location constraint,
which is used to exploit the wealth of training pixels and thereby to reduce the cost of acquiring
a large number of labeled pixels. By introducing the two constraints, the spatial and label information
of the hyperspectral pixels—especially that of the training pixels—can be spread to their neighbors,
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which is very useful for the discrimination of each class. Experiments conducted on three real
hyperspectral images have demonstrated that the proposed method can yield accurate classification
results. Although the results obtained by the proposed method are very encouraging in hyperspectral
image classification, further enhancements such as more robust constraint terms and more reasonable
regularization strategies should be pursued in future developments.
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Abbreviations

The following abbreviations are used in this manuscript:

SVM support vector machines
SRC sparse representation classification
KSRC kernel sparse representation classification
SSGL spatial-spectral graph regularization with location information
RBF Gaussian radial basis function
ADMM alternating direction method of multipliers
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
ROSIS Reflective Optics System Imaging Spectrometer
MV majority voting
KJSRC kernel joint sparse representation classification
CRF condition random fields
CKEMAP composite kernel with extended multi-attribute profile features
EMAP extended multi-attribute profile
ERS entropy rate superpixel
SSG spatial-spectral graph regularization
OA overall accuracy
AA average accuracy
KA kappa coefficient of agreement
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