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Abstract: For the simulation of public transport, next to a schedule, knowledge of the public
transport routes is required. While the schedules are becoming available, the precise network routes
often remain unknown and must be reconstructed. For large-scale networks, however, a manual
reconstruction becomes unfeasible. This paper presents a route reconstruction algorithm, which
requires only the sequence and positions of the public transport stops and the street network. It uses
an abstract graph to calculate the least-cost path from a route’s first to its last stop, with the constraint
that the path must contain a so-called link candidate for every stop of the route’s stop sequence.
The proposed algorithm is implemented explicitly for large-scale, real life networks. The algorithm is
able to handle multiple lines and modes, to combine them at the same stop location (e.g., train and
bus lines coming together at a train station), to automatically reconstruct missing links in the network,
and to provide intelligent and efficient feedback if apparent errors occur. GPS or OSM tracks of the
lines can be used to improve results, if available. The open-source algorithm has been tested for
Zurich for mapping accuracy. In summary, the new algorithm and its MATSim-based implementation
is a powerful, tested tool to reconstruct public transport network routes for large-scale systems.
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1. Introduction

Public transit (PT) vehicles, such as buses, interact with private traffic. They can get stuck in
traffic, which leads to delays, or they can cause traffic jams if they stop at on-street public transit
stops. System-wide studies on these interactions and how they can be optimized is an increasingly
frequent subject of transportation studies (e.g., [1–4]). However, to observe such interaction effects
in system-wide transport simulations, precise routes of the public transit vehicles are required.
Additionally, correct network routes also improve the visualization and credibility of simulation
results. Usually, such network routes are not available from public transit data sources and have to
be generated. For instance, the schedule format HAFAS [5], which is a popular format in Central
Europe, provides only the stop sequence of a transit route. The worldwide more popular and newer
General Transit Feed Specification (GTFS) [6] provides optional specifications to store network routes
and/or geo-referenced tracks of PT vehicles. Until now, however, most feeds do not provide this data
(see Transitland [7]). In addition, depending on input data, precise stop locations are often unavailable.
In many schedules, multiple stop locations on different roads are combined into one parent stop with
the same name.

Transit route information provided by map-based data sources, for example Open Street Map [8]
(OSM), is readily available and keeps growing. However, these sources usually lack schedule
information. An additional difficulty in the special case of OSM—developing steadily into the standard
database for network creation in transport modeling—is that no guarantee is given for completeness
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and accuracy of the data. Therefore, at least up to now, OSM could be used for multimodal networks
only in combination with other data sources. Thus, today, an additional mapping step is almost always
required to create a multimodal transport supply model for transport simulations.

Some literature exists on how to map routes if GPS tracks are available [9,10]. As mentioned above,
however, such data is rarely available for all routes of a schedule and collecting this data for large
areas is expensive. A general solution for the creation of multimodal transport supply should therefore
work without GPS tracks, but incorporate them if they are available. In addition, the approaches used
for mapping GPS data points to a network are rarely applicable for public transit data. Point density is
vastly lower with each stop representing only one data point, whereas GPS data provides multiple
points even between two stops.

Literature on mapping public transit routes to a network without using GPS data is rather sparse.
Bösch and Ciari [11] provide such an algorithm; it looks for the closest node from a stop facility and
then the nearest outlink. This link is set as the reference link for this stop facility. Then, the shortest
path between all reference links is calculated. If there are no nodes within a given search radius, a new
node is created at the stop facility’s location and this node is connected with an artificial link to the
previous stop link’s end node. The artificial link is set as the stop facility’s reference link, ensuring that
all stop facilities can be accessed and a valid schedule can be created.

Ordonez and Erath [12] propose a semi-automatic procedure using only one link per stop, with an
automatic map-matching algorithm performed for a route. The algorithm goes through all stops and
identifies the shortest path from the previous stop’s link to the current stop’s link. If a stop does
not have a link referenced, a set of link candidates is created. The shortest path is calculated from
the previous stop link to each defined candidate. The shortest path algorithm includes travel time
and distance to the GPS points for link costs; the path with the lowest cost is part of the solution
and its last link is selected and assigned to the stop. The reference link for the first stop is identified
similarly. Once a link is referenced to a stop facility, all other transit routes using this stop must use
this link, which makes the order of the transit routes assignment crucial. The created path is verified
automatically and errors can be fixed manually using a GUI (Graphical User Interface).

Brosi [13] suggests some ideas about mapping public transit trajectories to a network—for
example, iteratively computing shortest paths between stops. Pursuing this approach, geops [14]
describe an algorithm consisting of the following four steps. Contrary to the problem definition
mentioned above, stops are referenced to nodes in the network instead of links.

1. Build a graph from rail or road geometries and insert stops from GTFS.
2. Look at every trip in the GTFS feed and calculate the shortest path between every two succeeding stops.
3. Check for plausibility.
4. Filter and compress shapes to avoid redundancy.

Even though geops [14] use GTFS as input data, the algorithm might be applied to all data formats
where the stop location and stop sequence of a transit route are given. During the first step, GTFS and
OSM data are combined to increase the accuracy of stop coordinates. Stop name or ID notation in both
formats do not follow any schema. The algorithm uses attributes like equality of station ID, distance
and similarity of station name to create a priority queue. The stop is referenced to the node with
the highest priority. To enable shortest path search in the second step, a predefined number of node
candidates are taken from the priority queue and connected with the best node, particularly important
for rail networks. The algorithm then calculates the least-cost path between two succeeding stop
nodes. The edge costs are calculated based on heuristics. Since node candidates have been connected,
the least-cost path algorithm is highly likely to find a path from each stop to the next. In a third step,
the calculated path from the first to last stop is checked for plausibility by comparing the route length
with the beeline distance. In the fourth step, filter and compression ensure that paths appearing in
multiple routes are stored only once.
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In contrast to the previously described approaches, the algorithm used in this paper looks not
only at pairs of stops to define the best link for each stop, but at the whole route. It is also possible
that more than one link can be found for a stop. The algorithm calculates the least-cost path from
the transit route’s first to its last stop, with the constraint that the path must contain a link candidate
for every stop. Li [15] proposed this algorithm for the precise identification of bus stops. In this
paper, the algorithm is presented and implemented for large-scale mapping problems with a focus on
transport simulation. As networks used for simulations already are an abstraction of the real network,
the presented version of the algorithm has to focus less on the precise location of the bus stops as
in Li [15], but must be able to deal with different modes (buses, trains, ships), handle different lines
and even different modes using the same transit stop, automatically reconstruct missing links and
give an intelligent and efficient feedback to the modeler when apparent errors occur. If GPS or OSM
tracks of PT network routes are available, suggestions are given on how the algorithm can use them
to improve the mapping results. The implementation is open-source [16]. In this sense, the paper’s
algorithm represents a substantial extension and real-world, big data application of the algorithm
proposed by Li [15].

In this paper, Section 2 defines the problem in more detail and then proposes an extended version
of the mapping algorithm by Li [15] to find the network path for a transit route, given its stop sequence.
The algorithm uses an abstract graph to calculate the least-cost path from the transit route’s first to its
last stop with the constraint that the path must contain a link candidate for every stop. The algorithm
has been tested on a data set for the Zurich, Switzerland area. These tests and results are presented in
Section 3 and discussed in Section 4. The paper concludes with Section 5.

2. Methodology

2.1. Problem Definition

An example setup for a multimodal network is shown in Figure 1. This network will be used to
illustrate the algorithm.

Figure 1. An example network containing three public transit lines: line 1 (dashed red), line 2 (dotted
blue) and line 3 (dashed yellow). Line 1 is used to illustrate the mapping algorithm in Section 2.2.
All transit lines have two transit routes, one going from the first to the last stop and one transit route
back. Stop C is used by all three transit lines.

There are two types of stops that can appear in a stop sequence: stop locations or parent stops.
Both are referenced with point coordinates. Figure 2 shows stop C of the example network (Figure 1)
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in more detail. The stop is located at an intersection and used by three bus lines. Each bus line has two
transit routes. The stop has four stop locations, where the buses pick up or drop off passengers.
In schedules, all four stop locations usually have the same name and are grouped to the same
parent stop.

Figure 2. Difference between parent stop and stop locations: stop C (see Figure 1) at an intersection is
passed by three bus transit lines with two transit routes each.

This leads to the following problem definition for finding a network path of a transit route.
A reference link for each stop, as well as the path between those referenced links must be identified.

It is assumed that a public transit vehicle can access a stop by passing a link referenced to the stop.
This means that a link cannot be assigned to two subsequent stops and that the network links must
therefore be sufficiently short. To generate the paths, the following input data is usually available for
each transit route:

• stop sequence,
• stops (either as stop locations or parent stops),
• a network as a directed graph.

The algorithm should work without using any additional GPS data.

2.2. Pseudo Routing Algorithm

The proposed version of the algorithm, the “Pseudo Routing” algorithm, requires only minimal
input. It requires a schedule in which: first, each transit route has a sequence of stops and, second,
each stop has coordinates. It is not required, but useful, if these stops represent stop locations instead
of (generalized) parent stops. This substantially facilitates the process because stop locations inherently
have only one link attached and because, usually, they have more precise coordinates closer to that link.
A network is not strictly required. If no network is available, the pseudo-routing algorithm simply
creates an artificial network for public transit.

The algorithm calculates the least-cost path from the transit route’s first to its last stop with the
constraint that the path must contain a link candidate for every stop of the stop sequence. For each
transit route, the algorithm consists of the following steps:



ISPRS Int. J. Geo-Inf. 2017, 6, 268 5 of 13

1. Identify all possible link candidates for each stop.
2. Create a pseudo graph using the link candidates as nodes. Add a dummy source and destination

node to the pseudo graph.
3. Calculate the least-cost path from every link candidate of a stop to every link candidate of the

following stop (so called link candidate pairs). This path is represented by an edge in the pseudo
graph, connecting two link candidate nodes. The edge’s weight is the path’s travel cost plus half
the travel cost of the two link candidates it connects. This assures that the link candidates’ travel
cost is considered too, but evenly distributed to the respective preceding and succeeding edge.

4. Calculate the pseudo least-cost path from the source node to the destination node in the pseudo
graph. The resulting least-cost path contains the best fit link candidate for each stop.

5. Create the link sequence. Each stop is referenced to a link, which is given by the link candidate
that is part of the pseudo least-cost path. The least-cost path on the real network between the
referenced links is used to create the network path for the transit route.

The following explains each step in more detail.
Identify link candidates: For each stop, a set of link candidates is gathered by selecting the

nearest n links from the stop’s coordinate. The link’s transport modes need to match the transport
mode used by the transit route. The value of n depends on the stop coordinate and network accuracy.
If both are very high (i.e., stop locations are close to the correct network link) using two link candidates,
one for each direction, is enough in theory. However, in practice, using up to 10 link candidates is
viable. Sometimes, no link candidates can be found because there are no links within the predefined
distance (e.g., because the network model is incorrect and/or incomplete). In this case, an artificial
loop link is created because all stop facilities need to be referenced to a link. This is done by adding a
node to the network at the coordinates of the stop. Then, a loop link that connects this node with itself
is added; this loop link is the stop’s only link candidate.

Create a pseudo graph: In the next step, the pseudo graph is initialized with each link candidate
represented by a node (Figure 3). Note that these nodes do not have any actual coordinates.
To efficiently calculate the least-cost path on the pseudo graph, dummy source and destination nodes
are needed. The source node is connected to all link candidate nodes of the first stop, the destination
node to all nodes of the last stop. All of these dummy edges have the same weight (e.g., 1).

Figure 3. Each link candidate (red) is represented as a node in the pseudo graph.

Calculate the least-cost path between each link candidate pair: in the previous step, a set of link
candidates for each stop was created. These link candidates are represented as nodes in the pseudo
graph. In this step, the edges of the pseudo graph are added. For each pair of link candidates of two
adjacent stops, the least-cost path in the network is calculated. This path is represented by an edge
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in the pseudo graph (Figure 4). The pseudo edge’s weight is the path travel cost plus half the travel
costs of the two link candidates the path connects. It is possible that two adjacent stops share a link
candidate. As this would effectively translate to the two succeeding stops having their stop location
at the same physical place, a selection of these two candidates should be prevented (see also Li [15]).
This is achieved by multiplying the cost between these two candidates by four.

The travel cost on a network link is normally length or travel time, but more complex travel cost
calculations are also possible. Following Ordonez and Erath [12], GPS point data or data from OSM
could be included to in- or decrease the travel cost accordingly.

If no path can be found between two link candidates (e.g., because the network model is incorrect
and/or incomplete), an artificial link is created and added as an edge to the pseudo graph (see Figure 4
between stops D and E). This ensures that a path can be found in the pseudo graph and thus also in
the network. Artificial links can also be created if the cost of a path is greater than a defined threshold.
This prevents paths with very high travel costs, which are probably incorrect. In these cases, it is
very likely that a link is missing in the network model. Artificial links are not a desired output of the
algorithm, but they can highlight inconsistencies in the mapping result. For this reason, an artificial
link connects two link candidates directly instead of using at least some intermediate network links.

Figure 4. The least-cost path in the network between two link candidates (top) is represented as one
edge on the pseudo graph (bottom): the pseudo edge’s weight is the travel cost of the network path.
Six paths and their corresponding edges on the pseudo graph are highlighted as examples.

Calculate the pseudo least-cost path: The shortest path in the pseudo graph from the source node
to the destination node is then calculated. Any shortest path algorithm can be used (here, a standard
Dijkstra algorithm was applied). The least-cost path gives a sequence of link candidates that describes
which link should be referenced to each stop of the transit route (see Figure 5).

Create the link sequence: After each stop has a link referenced, one can use the least-cost path
between each reference link pair to define the path (link sequence) the vehicle takes in the network
(Figure 5).
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Figure 5. Least-cost path from the source to the destination on the pseudo graph: The nodes of this
path represent the link candidates for the stops in the network.

2.3. Large-Scale Networks

If the algorithm is applied to large-scale networks, line intersections happen frequently.
An example for line intersections is stop C in Figure 1. The application of the algorithm to different
lines might result in different stop locations for the same parent stop. This is accentuated in the case of
different modes using the same parent stop (e.g., buses and ships at a harbor). This is not a mistake,
but rather a correct model of reality. In contrast to other algorithms like, for example, those by Bösch
and Ciari [11] or Ordonez and Erath [12], the proposed implementation of the algorithm explicitly
supports multiple stop locations across different modes for the same parent stop. This is also in
contrast to Li [15], as they focused on the precise identification of bus stops (see Section 1) and did not
discuss this aspect.

3. Analysis

The algorithm has been implemented for MATSim [17], a multi-agent transport simulation
framework, in the programming language Java. The source code is open-source (location: [16]),
and Poletti [18] provides a detailed documentation of implementation. The results achieved with
this algorithm implementation have been validated by testing mapping accuracy. It was also
checked whether a reasonable number of stop locations was created. As a reference, the mapping
implementation by Bösch and Ciari [11] was tested as well.

3.1. Reference Data

The tests were conducted with schedules based on a GTFS feed for the Zurich area [19]. The feed
is provided by the Zürcher Verkehrsverbund (ZVV, Zurich transport authority) and covers all bus,
tram, funicular and ferry routes of the Zurich area. There are two types of stops available: first, stop
locations that are used by trips and second, parent stops which also have point coordinates, but are
not accessed by any trips. Figure 6 shows an example from the feed for stop locations and parent
stops. The feed also contains the shapes of the trips, i.e., geo-referenced polylines representing the
PT vehicles’ routes. These shapes can be used as a source to validate the schedule created by the
pseudo routing algorithm. They are available in a text file and can be converted to polylines. The feed
has been converted to two unmapped MATSim transit schedules, one using stop locations as stop
facilities and one using the parent stops as stop facilities. Table 1 contains descriptive information
about the unmapped schedules. The unmapped schedules have been mapped to a multimodal network
created from OSM (downloaded on 4 August 2016). Contrary to most traffic simulations, the links
in the network were not simplified. For each stop, eight link candidates have been considered (see
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Section 2.2). However, links further than 80 m from a stop were not included. To see the differences
to a previous approach, both schedules have also been mapped using the algorithm implemented by
Bösch and Ciari [11]. Thus, four mapped schedules have been analyzed.

Table 1. Statistics on the unmapped schedules used for analysis.

Unmapped Schedule Unmapped Schedule
Stop Locations Parent Stops

Stop facilities 4777 2426
Transit lines 346 346

Transit routes 1928 1928

Figure 6. Example for the stop locations and parent stops available in the GTFS feed for the Zurich area.

3.2. Number of Created Stop Locations

The GTFS feed differentiates between parent stops and stop locations. Thus, by comparing the
original data with the mapping result, one can validate the creation of stop locations by the algorithm.
Figure 7 shows the histogram of stops by the number of stop locations for the original GTFS stop
locations and the artificially created stop locations.
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Figure 7. Histogram of the number of stop locations per parent stop; original data (blue) vs. algorithm
generated data (gray).
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3.3. Mapping Analysis

To test the mapping spatial validity and accuracy, generated paths from the algorithm are
compared with the shapes given in the GTFS feed. The mapped routes were converted to polylines,
which were compared to the trip polylines from the GTFS feed using standard Geographic Information
System (GIS) software. Only bus routes were compared, since train lines are not available from the
feed; tram, ferry and funicular routes are usually mapped with artificial straight links between stops.
Six transit routes have been removed because the GTFS shapes were incorrect (not covering the whole
trip, or straight lines from the first to the last stop). In total, 1922 transit routes were compared to their
corresponding GTFS shapes.

Maximal distance: A standard way to compare two geometries is the Hausdorff distance [20],
which represents the greatest of all distances from a point on one line to the closest point on the
other line. This single value represents the maximal distance between two lines. Figure 8 shows
the Hausdorff distance between the mapped path and the GTFS path for all four mapped schedules.
If the algorithm works as expected, the values should be concentrated on the left side of the graph
(small maximal distances). As Figure 8 shows, this is indeed the case here, although median and mean
distance values are relatively high for all of them. The new pseudo routing algorithm is performing
substantially better, however, with mean and median distances considerably lower than the Bösch and
Ciari [11] approach and also clearly reducing the long tail of very high distances.
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Figure 8. Histogram for Hausdorff distances between the mapped transit routes and GTFS shapes.
(a) pseudo routing with stop locations; (b) pseudo routing with parent stops; (c) implementation Bösch
and Ciari [11] with stop locations; (d) implementation Bösch and Ciari [11] with parent stops.

Accuracy score via buffer intersection: The Hausdorff distance does not actually quantify the
similarity of two lines but is used to find most similar lines. When comparing the mapping result to
the GTFS shapes, one is interested in how much of the mapped path is similar to its GTFS counterpart.
To further complicate the issue, even when the mapped path is perfect, differences are to be expected
because the mapping result is based on a network from OSM, which is different from the base map of
the GTFS shapes. Thus, a buffer intersection test was applied; each GTFS polyline was transformed
to a polygon with a buffer of 5 m or 10 m. The polyline from the mapped MATSim transit route was
intersected with this buffer. This intersection defines the parts of a transit route within the buffer
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distance of the corresponding GTFS polyline. The accuracy score of a route is defined by the ratio of
mapped path length within buffer and the total mapped path length. Figure 9 shows the score histograms
for buffers of 5 and 10 m. If the algorithm is accurately generating the routes, bars will be concentrated
on the right side of the graph (high overlap). In accordance with the Hausdorff results before, it is
apparent that the new implementation works substantially better than the older one. The test does
not clarify completely, however, if the version with stop locations or the one with parent stops is
performing better. As expected, if the buffer is larger, the percentage of a route corresponding to the
original path is higher.

Path length difference: If a mapped transit route takes short cuts, detours, or has loops, its length
will differ from the length of the GTFS line. The goal of this test is to compare the length of the GTFS
path to the mapped path. Figure 10 shows the histograms for the differences between mapped path
length and GTFS path length. Therefore, the more accurate the algorithm is in reproducing the original
lengths, the more bars will be located in the middle of the graph. Although both implementations
seem to produce fairly correct path lengths, it can again be confirmed that the new pseudo routing
approach is outperforming the Bösch and Ciari [11] approach by concentrating to the center more and
reducing the tail of large deviations.
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Figure 9. Histogram showing the number of transit routes for each accuracy score value. (a) schedule
with stop locations, buffer 5 m; (b) schedule with parent stops, buffer 5 m; (c) schedule with stop
locations, buffer 10 m; (d) schedule with parent stops, buffer 10 m.
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Figure 10. Histogram showing the number of transit routes for length differences in percent between
the mapped transit path length and length of the corresponding GTFS path. (a) mapping with stop
locations; (b) mapping with parent stops.
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4. Discussion

The test results in Section 3.2 show that the implemented pseudo routing algorithm does create
a realistic number of artificial stop locations per parent stop. The number of stop locations for each
parent stop is similar to the original GTFS data.

The mapping accuracy analysis (Section 3.3) shows that, overall, the majority of routes were
mapped very similarly to their corresponding GTFS shapes. The accuracy score for a buffer of 10 m for
both schedules (stop locations and parent stops) is satisfactory for an automatic algorithm. One should
note that the test is rather simple and does not directly compare both lines, but instead the mapped
path, with a general area where it should be. In addition, depending on the buffer distance, loops
within the buffer cannot be detected. Manual analysis of paths with a low score showed that some were
correctly mapped, but had an offset due to the different map data sources. The Hausdorff distances
for all four tested schedules are higher than expected. However, this distance represents the maximal
distance between two lines and the accuracy scores are relatively good. The length difference between
the mapped path and the GTFS shape is very small, again for both input schedules. The implemented
pseudo routing algorithm tends to give better results than the implementation by Bösch and Ciari [11]
for both stop locations and parent stops.

Mapping results were not satisfying for routes whose stops are farther apart (e.g., express lines
which skip some stops). If the network situation around a stop is complex (e.g., high number of links
within a small radius or links on multiple street levels), it is likely that not enough link candidates
are selected. This leads to incorrect paths because the right link candidates were not part of the
pseudo graph. In addition, implementation might lead to unexpected results if there are too many
stop facilities along a link, either because the density of stops is high or because the link is very long.
Since the algorithm tries not to use the same link candidate for subsequent stops, this might lead to an
invalid mapping. It should also be noted that the mapping quality largely depends on a consistent and
accurate network. If links are missing (especially bus lanes), the result is likely to be wrong.

Using travel time as travel costs for the routing algorithm tends to give better results than link
length. However, travel times might not work if the schedule data source uses time differences of zero
between two stops.

5. Conclusions

This paper proposes an algorithm to map a public transit schedule to a network. The pseudo
routing algorithm calculates the path on a network for a transit route, given its stop sequence.
It calculates the least-cost path from the first to the last stop with the constraint that the path must
contain a link candidate from every stop of the stop sequence. Test results show that the algorithm
leads to reasonable paths and that it is a viable way to automatically generate paths for public transit
vehicles in detailed large-scale models of transport networks.

The algorithm is a significant improvement over previous available algorithms of this kind. Since it
copes with life scale networks, it reduces substantially, albeit not completely cancels, the manual work
necessary to generate public transit networks for transportation models. This work does not have
direct policy relevance. However, it provides a tool for planners and policy makers that enhances
the capability of transportation models to deal in detail with public transit networks also for large
scale applications. This is important given the growing emphasis given by transportation planning
to multimodality; the recent success of shared mobility, its complementarity with public transit and
the necessity to model them with high spatial and temporal resolution; and the possible impact of
automation on public transit in the future.

There are two suggested points for future work to increase the quality of the mapping.
Most problems with routes (loops or simply wrong routes) come from the wrong selection of link
candidates. The proposed approach takes a number of links within a given radius. More complex link
candidate search functions are conceivable: for example, depending on the number of transit routes at
a stop, or on the type of stop. One could improve link candidate selection by including OSM data to



ISPRS Int. J. Geo-Inf. 2017, 6, 268 12 of 13

order link candidates. Links that are close to a stop location identified in OSM could get a higher score.
This does not even require the matching of data sets. A second improvement would be to develop
more complex routers, thus improving mapping without changing the basic algorithm. Two types of
link travel costs have been implemented: link length and travel time. Additional data like GPS could
be included to calculate the travel cost. Links with GPS points next to them could have decreased
travel costs. Again, OSM data could be included. For example, buses could have lower travel costs if
they travel on links tagged as bus routes in OSM. In addition, the implemented network routers allow
U-turns, which should lead to a travel cost increase in further development steps.
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Abbreviations

The following abbreviations are used in this manuscript:

GIS Geographic information system
GPS Global positioning system
GTFS General transit feed specification
GUI Graphical user interface
HAFAS HaCon Fahrplan-Auskunfts-System
ID Identifier
MATSim Multi-agent transport simulation
OSM Open street map
PS Parent stop
PT Public transit
SL Stop location
ZVV Zürcher Verkehrsverbund (Zurich transport authority)
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