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Abstract: The commonly used methods in digital cartography are based on the minimum dimensions
of black and white objects. This article presents a solution in which both the colour of the symbols
and the background on which they are presented are relevant in the context of setting the minimum
dimensions of the objects on a map. To achieve this, the authors have developed a perception
coefficient that is an extension of the formal definitions of minimum object dimensions. In support of
the presented solutions, the authors offer several cartographic examples. The article also contains
experimental research that examines the impact of colour on the recognition of objects by means
of specially prepared surveys. These results are compared against the theoretical values of the
perception coefficient. The research objective was achieved by developing new solutions that could
be used in the cartographic production processes of any national map agency.
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1. Introduction

There are no ideal maps. This controversial statement contained in the thesis [1] was the
author’s motivation during this research. From a cartographic point of view, there is much truth in it,
because even the most thorough map is only a model—an approximation of the real world. The way
in which we perceive this model is an individual matter that is determined by a wide range of factors,
including the psychophysical disposal of the map reader. Therefore, two different people can perceive
the same map very differently. Thus, how can a fragment of reality be translated into an image on a
map to meet the requirements of a wide audience? In other words, how can a map be developed that
will remain readable for most people in a range of usage conditions?

Seeking answers to these questions, cartographers have developed a series of principles that
perform the role of symbol posts during the graphic design of map elements based on the assumptions
of behavioural and cognitive psychology and semiotics [2–6]. However, among the many rules
that govern cartographic visualisation [7,8], it is difficult to find any unambiguous solution that can
comprehensively describe how to select a colour palette for map symbols. One approach concerns the
graphic design of a map based on Rudolf Arnheim’s rule of order [9,10]. The author claims that proper
alignment, establishing relationships between objects, and pre-processing will allow symbols, colours,
or patterns to match the capabilities of a viewer’s perception and cognition of the map. This method
can be considered as a general step-by-step guide to designing perceptually customised maps.

However, the influence of colour on the dimensions of elementary map components
(i.e., single objects) has not yet been formalised. Perception of achromatic figures is different from the
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perception of those in colour, so it is worth considering whether the principles set out for symbols
in black and white are relevant for their chromatic representation, as most maps are produced in
colour. These issues may lead to a change in the understanding of geovisualisation as a whole; digital
cartographic generalisation, the fundamental assumption (unambiguity) of which is based on rigidly
set standards, is appropriate only for achromatic drawing.

Following the Introduction, Section 2 addresses the common issues related to visual perception
of colour objects on maps. The authors’ thesis is presented in Section 3, along with pre-processing
methods. Section 4 contains a definition of a perception coefficient that is dedicated to the minimum
dimensions of colour objects on a map. Section 5 deals with some practical examples of line
simplification and design of map symbols. The experimental evidence of the proposed solutions
using questionnaires is shown in Section 6. Section 7 contains a statistical summary of the results.
Finally, discussion and conclusions are summarised respectively in Sections 8 and 9.

2. Visual Perception of Colour Objects on Maps

Perception is a relative term and many complex cognitive processes are involved, including sight,
which is an extremely complex process of receiving sensory impressions. Pyka [11] argues that the
Human Visual System is not fully understood, despite many studies, especially in the case of the
perception of stimuli. The processes that accompany visual perception become clearer if we assume
that the key function of the human visual system is to extract and correctly recognise (distinguish)
objects’ properties in the surrounding world [12]. The extraction and reduction of information in
the context of visual perception and the experience of map users was empirically investigated by
Bektas et al. [13], where the authors tested the possibilities of gaze-contingent displays (GCDs) by
testing different HVS models, including models of contrast sensitivity, colour perception and depth
of field.

As is explained by Fiser et al. [14], visual perception is a process that interprets spatiotemporal
changes of light reaching the retina, where descriptions of shapes, surface characteristics, and the
location of objects are formed. This definition is consistent with the physiology of eyesight,
which engages the intellectual capacity of the recipient.

The aforementioned definitions are consistent with [15], where it was noted that the human visual
system requires concurrent operation of the eyes and brain; the human visual system acts as an image
processing system, equipped with a mechanism for extracting and interpreting separated information.

Besides physical conditions, the level of information interpretation ability depends on
the individual characteristics of a person, i.e., individual visual capabilities, psychological
factors, motivation, intelligence, and general health [16]. Moreover, as shown in the work by
Patterson et al. [17], another important factor influencing the way we understand the map is the
approach to geographic education, e.g., hypsometric tins reading, which differs in Europe and North
America. Therefore, visual perception is a highly controversial issue in contemporary science [18].
The author agrees with this statement, while stressing that this opinion is correct for studies of
perception in general.

Thus far, analysis has related only to various aspects of the reception of visual stimuli; however,
as Pastuszak writes, “Certainly it should be something physical in the process of viewing between
the object and the eye (and that something is light)” [19]. He also stresses that the mystery of
visual perception is even further intensified by colour. This statement seems to have been proven
by the latest methods of visual perception measurement, where the readability of cartographic
products is empirically assessed using EyeTracking [20]. An example of such study is the article
by Brychtová et al. [21] where the authors examined the relationship between colour distance and font
size on map readability. Moreover, as it was shown in article by Çöltekin et al. [22], the EyeTracker
could be also used to assess the perceptual complexity of soil-landscape maps. Furthermore, three main
visual variables (colour hue, size and frequency) in the context of visual perception of animated traffic
maps were tested using the EyeTracking method [23].
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Considering these findings and the practical dimension of research on visual perception [24,25],
it can be seen that colour and the way we perceive coloured stimuli are key factors in the quality
of vision.

This fact prompted the author’s reflections on the perception of colour objects on maps, which is
a principal part of this work. This issue is particularly important in the context of cartographic
generalisation, because it affects the automated design methods by which the subjectivity of the
cartographer can be minimised [26,27]. Therefore, the question of how the perception of maps in
colour (after graphic design) differs from the raw data in a database (Digital Landscape Model) needs
an answer. The literature still leaves the design rules of colour maps undefined. Ostrowski [28] states,
“Not much attention has been paid to the formulation of the practical rules and principles of graphic
design of maps, except for the use of colour scales in cartography”.

Cartography manuals contain guidelines on colour as a collection of generalities or “best practices”
in which there is no quantitative guidance, which is quite important in the context of automatic
generalisation. An interesting example is the book [29], in which the authors collect and precisely
define the minimum dimensions specific to each type of symbol and the content of topographic
maps. In the context of colour objects, the authors only mention that the proposed dimensions are
only suitable for the colour black; in the case of brighter colours, the dimensions must be increased
proportionally (no information is given about the proportions, colour, or background; only one
example is given of a green point whose dimensions were enlarged by 100%). Ostrowski [28] citing
Kelnhofer [30] states that, if the minimum thickness of a black line is 0.05 mm, in the case of a colour
line (red or blue), it should be increased to 0.1 mm. These rules are not specified for other colours and
the impact of background colour is excluded. It should be noted that these dimensions were obtained
empirically after many years of work and the authors’ extensive experience. Robinson [31] emphasises
that graphic symbols do not necessarily go hand-in-hand with a sense of art, but must be supported by
experience gained empirically.

The author of this work does not undermine the rules described above, nor deny the importance
of knowledge and skills resulting from long-term practice or analysis of existing solutions. The aim of
these considerations is to determine a quantitative coefficient of the perception of colour symbols that
complements the knowledge contained in these studies. The presented solutions could also be linked
to the minimum dimensions specified for symbols in black and white (e.g., [29,32,33]).

3. The Issue and Thesis

The theory concerning minimum dimensions of map objects is well known and is based on
the limits of visual perception that determine the physical limitations of normal map reading.
Studies to determine the minimum dimensions have been conducted (e.g., [29,34–36]). Furthermore,
despite considering the impact of line width on the readability of maps, the authors of these works
do not mention the effect of colour and background colour. In each of the aforementioned studies,
these minimum dimensions are specified for the greatest possible contrast between white and black.
The influence of colour graphic design on perception has not yet been determined. Perception of
achromatic figures is different from that of colour symbols; therefore, commonly known minimum
dimensions cannot be used directly in cartographic generalisation. The consequences of this approach
are revealed in the following four aspects:

• A decrease in map readability that affects the aesthetics of the final product and visualisation;
• A loss of unambiguity of the generalisation process, as, when the correction of object dimensions

performed (e.g., during graphic conflict resolution) is based on unspecified and unformalised
guidelines, it is non-deterministic;

• The lack of automation of cartographic generalisation, which so far requires manual human
intervention; and
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• Not taking into account the impact of background colour on the readability of map symbols
(how much does the perception of a blue river change when the canvas on which it is presented
changes colour from white to green?).

The aforementioned circumstances led the authors to determine a quantitative measure that
defines the level of map legibility decline due to the use of colour symbols. Based on the relationship
between the function of visual acuity and colour contrast, the authors proposes that the colour contrast
calculated between any map object and its background makes it possible to develop a perception
coefficient of colour map objects that formally and unambiguously is an extension of the widely used
minimum dimensions on digital maps.

3.1. Selected Factors Affecting Human Perception

The process of distinguishing details by sight comprises factors determining the performance of
the human visual system, the characteristics of the observed detail, its size, colour, and the background
on which it is located. Werner [37] demonstrates that observation time, which may vary depending on
the level of contrast (for contrast definition, see Section 3.2), has a symbolic impact on the quality of
vision. In the case of the visual system, the critical components are the ambient luminance and the
observer’s position in relation to the observed object [15]. Additionally, analysis of the characteristics
of the observed object and object-background contrast has shown that increasing the contrast between
a visual task and its background increases the accuracy of its perception, which can also be expressed
by the value of Threshold Visual Performance that was defined by Blackwell [38]. This value presents
accurate perception as the probability of correct identification of an object depicted against a solid
background. The value of the Threshold Visual Performance depends on the luminance contrast of the
object and its background [15].

The contrast at which 50% of details are identified is called Threshold Luminance Contrast.
Blackwell [39] shows that Threshold Luminance Contrast depends on the age of the observer. In the
context of visual perception definitions, Wolska [16] characterises the parameters of the visual reaction:
“to even see the visual task, it must be illuminated to a minimum level, and also must have a sufficiently
large minimum size and a minimum contrast with the background. It was assumed that the visual
response depends on two parameters: the size of the detail and the detail contrast with the background”.
If we exclude the physiological factors of the viewer, as well as the time and angle of the observation,
it leads to the conclusion that the contrast between the observed object and its background has a great
influence on the accuracy of the recognised details.

These concepts affect the relations between the physical parameters of visual perception and light
stimuli; however, transforming them into rules for the optimal clarity of digital maps is not possible due
to the ambiguity of values that correspond to them. For example, how can the percentage of recognised
details of an object at a given contrast be translated into a change in its size? When considering only
the size of the object, or rather its influence on visual perception, we can assume that it is the same as
the minimum dimensions [29,36]. However, assigning colour attributes to objects should adapt them
to the perceptive abilities of the recipient.

3.2. Contrast

Recognizing the sum of object details at a certain time is defined by Blackwell [39] as useful vision.
The authors argues that an essential element of useful vision is contrast, which allows for a subjective
estimation of the difference between the two parts of the field of view that are observed simultaneously
or sequentially.

There are several definitions of contrast [15,40,41]; therefore, it is necessary to choose them
correctly to avoid ambiguity. Some bypass perceptual experiences and concern the physical aspects
of visual stimuli (differences in physical values such as luminance), which are closely related to
colourimetry. Therefore, it is necessary to distinguish the concept of contrast as a difference in physical
values (luminance contrast) from contrast as the impression of visual perception, which should be
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explained in terms such as a difference in perceived colour or a difference in perceived brightness
(for black and white characters). The difference in perceived colour that makes it possible to translate
physical to perceptual attributes can be expressed in the simplest terms by Equation (3) (the authors
are aware of further modifications to the ∆E formula; nonetheless, for the purpose of these studies,
it is assumed that the aforementioned version is sufficient), defined by the CIE [42,43]:

∆E = ((L∗2 − L∗1 )2 + (u∗2 − u∗1 )2 + (v∗2 − v∗1 )2 )
1
2 (1)

where (L∗1 , u∗1 , v∗1) and (L∗2 , u∗2 , v∗2) represent two colours in L*u*v* space.
The authors decided to use CIELUV due to its perceptual character (this colour space is also

designed for digital photography and images rendered on monitors (light emitting devices), which is
very important in the context of the presented issues). Colour contrast, expressed by the colour
difference (Equation (3)), also determines the difference in brightness, which can be defined as the ratio
of the brightness of the object to the brightness of white. However, brightness is dependent on physical
luminance (which should be understood as an analogy for luminance contrast), colour difference,
and saturation. Considering the fact that the discussion concerns coloured map objects, this choice
appears to be legitimate. Moreover, brightness is based on perceptual attributes, which are determined
based on the value of physical stimuli for a standard colourimetric observer (the average eye of the
average observer and its mechanisms of perception).

The importance of contrast in the process of identifying details of objects is described by Bąk [40],
who stated, “due to contrast, the visualisation of object details or a general outline of the object occurs”.
We see not only because of light, but also because of contrast.

4. The Perception Coefficient of Colour Objects on Maps

With reference to the theory quoted above, there is a need to capture the effect of reducing
contrast on the ability to recognise details (e.g., the shape of map objects at a given scale). Such events
can be expressed with the visual acuity function, which is defined as the ability to separate objects
that are close to each other. Quantitatively, visual acuity can be expressed as the minimum angle
of discernment, i.e., angular distance, for which a unit is a minute of an arc [40]. This is usually
the angular size of the smallest detail that the eye can recognise [16,44,45]. It may be practically
assumed that visual acuity increases in proportion to background luminance (luminance of light in
the case of monitors/screens), size (shape) of the object, and the contrast between the object and its
background [40]. This simplification allows the visual acuity function to be used during the process of
graphic map design and, more specifically, to determine the rules of sufficient visibility of topographic
symbols on digital maps.

The above statement has support in the literature; for example, Ostrowski [28] writes that visual
acuity determines the minimum angle at which a map object is recognisable, as it sets its threshold
for visibility. Furthermore, Robinson [46] in the publication Elements of Cartography found that the
visibility threshold is determined by the minimum discriminate angle of 2′ equals 50 cm of observation
distance, which gives a minimum object size of 0.3 mm. Nonetheless, this minimum object size was
developed for analogue maps. Its adaptation for use in digital technology requires modification
based on the monitor resolution and pixel size. A similar solution for digital maps is used by the
Swiss NMA [29], where the minimum dimensions are based on the minimum number of pixels for
certain symbols. In addition, Ostrowski states that visual acuity is only an average value that has
only theoretical importance in the context of the different characteristics of map symbols. The author
agrees with this point only partially. The value of visual acuity itself does not actually have a practical
dimension, but linking it to minimum dimensions will allow us to determine how to change their
visual perception after the graphic design/editing process (how much should I increase the size of
the object so that after its change of colour it remains readable?). These ideas are consistent with the
information given in [29], in which visual acuity is distinguished as a determinant of the minimum
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dimensions of topographic maps. These dimensions were determined assuming good contrast between
an object and its background. Under less ideal conditions, the authors recommend a proportional
increase in dimensions, without specifying the size ratio. Therefore, it was necessary to determine the
effect of contrast (background-object) on visual acuity.

The relationship between visual acuity and contrast was proposed by Golik [47]. For low contrast
values, a small increase in the luminance contrast is accompanied by large changes in the relative field
of view.

Studies on the impact of contrast and background luminance on visual acuity have also been
conducted by the authors of [48], who support their solutions by the equation proposed by Kaneko [49].
Moreover, a function was proposed using empirical data [50] that describes the dependence of visual
acuity on luminance contrast and background luminance. This equation has the following form:

Va = k ∗ LP
b ∗ Cq

% (2)

where Va is the visual acuity (rcmin−1), k = 0.06298, p = 0.21310, q = 0.53158, Lb is the background
luminance, and C% is the contrast (%).

The above equation was used to determine the perception coefficient of colour map objects, which
is indicated with the symbol Pc.

Pc =

(
Vac100%

Va

)
(3)

where Pc is the perception coefficient of colour map objects, Va is the visual acuity (arcmin−1) and
Vac100% is the reference visual acuity for the contrast C% = 100 (arcmin−1).

After bringing the above equation to the form:

Pc =

(
k ∗ Lp

b ∗ Cq
100%

k ∗ Lp
b ∗ Cq

%

)
(4)

We can simplify it thus:

Pc =

(
Cq

100%

Cq
%

)
(5)

Example coefficient values are shown in Table 1. An eightfold increase of minimum size (at a
contrast of 2%) is a result of the threshold values of the eye when distinguishing contrast. Some studies
indicate that this threshold is 1%. Such a low contrast visual system is able to recognise objects only of
considerable size.

Table 1. Example coefficient values for map objects in grayscale.

Contrast (%) Pc

2 8.00
5 4.91

10 3.40
20 2.35
30 1.90
40 1.63
50 1.45
60 1.31
70 1.21
80 1.12
90 1.06
100 1.00
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The reference luminance contrast is 100% contrast, for which both Speiss [29] and Chrobak [51]
assigned the minimum dimensions for topographic map objects. However, it should be emphasised
that their considerations were related only to monochrome images, for which fluctuations of Weber’s
contrast between a map object and its background clearly indicate the level of map perception disorder.
Therefore, Equation (7) only makes sense for maps which use grayscale. In the case of chromatic
map objects, further modifications are required to take into account the colour contrast of map
symbols (the difference between two colours—see Equation (3)). In the context of these considerations,
the necessary condition is to link the visual acuity function to the colour contrast.

Post, Constanza and Lippert [48,52] indicate the relationship between luminance contrast
(monochrome) and colour contrast. The authors showed that the correlation between colour contrast
(represented by three independent components of the adopted colour space (L*u*v*)) and monochrome
contrast greatly simplifies the graphic design of efficient colour images viewed on a monitor that are
adapted to the perceptive capabilities of the recipient.

As for CIELUV, the relationship between luminance contrast and colour contrast is expressed by
the following formula:

C2
m = 0.226 + 3.9778(∆L∗2) + 0.1350(∆u∗2) + 0.0650(∆v∗2) (6)

where Cm is the luminance contrast expressed as the function of colour contrast; and ∆L∗, ∆u∗, and ∆v∗

are the differences between two colour components in L*u*v* colour space.
The above relation makes it possible to bind the colour contrast to the function of visual acuity (4)

that was used to determine the perception coefficient (7).
Assuming the contrast between black and white is the reference contrast for which minimum

dimensions were defined, the perception coefficient of colour map objects takes the following form:

Pc =

(
C100%

m

C%
m

)0.5q

(7)

where C100%
m is the reference contrast (the difference between black and white), C%

m is the contrast
between any two colours in relation to the background, and q = 0.53158.

Example values of the perception coefficient for the selected pairs of colours are shown in Table 2.

Table 2. Example values of the perception coefficient for the selected pairs of colours from L*u*v*
colour space.

Colour L* u* v* ∆L*2 ∆u*2 ∆v*2 ∆E Cm Pc

White 100 0 0
10,000.00 0.00 0.00 100.00 199.44 -

Black 0 0 0

Light blue 76.6 −16.11 −29.67
522.12 2357.10 4028.44 83.11 51.55 1.43

Strong brown 53.75 32.44 33.8

Light green 68.76 −9.76 24.04
636.55 137.59 5440.54 78.83 53.89 1.41

Blue 43.53 −21.49 −49.72

Greenish grey 63.47 1.71 0.36
816.24 2454.21 1030.41 65.58 60.37 1.37

Strong brown 34.9 51.25 32.46

Red 53.23 175.02 37.75
2833.43 30,632.00 1425.06 186.79 124.49 1.13

Black 0 0 0

Yellow 97.13 7.7 106.78
8.23 59.29 11,401.97 107.09 27.96 1.68

White 100 0 0
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The above form of perception coefficient Pc is based on a perceptual difference between two
colours in relation to the background and is related to the visual acuity function. This approach
makes it possible to specify the impact of significance of the colour on the recipient’s (observer’s)
perception. (In the context of the minimum dimensions of paper maps, a significant phenomenon
is colour assimilation. For very small objects occurring close to each other (minor points, thin lines),
the colours of these objects and of their backgrounds begin to resemble each other. This phenomenon
is used in offset printing (in which dots are sufficiently small that there is not only subtractive
colour mixing, but also additive mixing of waves of the reflected colour stimuli). Therefore, we are
dealing with the impression of a reduction of contrast). In other words, the perception coefficient can
unambiguously answer the question: how much should the minimum dimensions be increased if the
objects (map symbols/symbols) are in colour?

The proposed solution has a universal character; therefore, the perception coefficient can be
used both with the minimum dimensions specified in the book [29], and with the recognition norms
suggested by Chrobak [31,33,51]. Table 3 shows example recommendations for colour map symbols
(based on the perception coefficient) for which the monochrome counterparts (left side of the table) were
proposed in [29] as minimum dimensions. Visual assessment of the contrast leads to the conclusion
that point features have the highest contrast value (this observation coincides with the values of Pc).

Table 3. On the left are minimum dimensions of achromatic objects proposed by the Swiss Cartographic
Society [29], while on the right are colour components of L*u*v* colour space for the map symbol and
its background, calculated perception coefficient and representation of the colour map symbol of colour
on a 1:1 scale.

Monochromatic Object Dimensions Example Dimensions for Colour Objects

Scale 4:1 Scale 1:1 Minimum Dimensions
Object Background Pc Scale 1:1

L* u* v* L* u* v*
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5. Practical Examples  

Minimum dimensions of objects also include the distance between two adjacent lines and a 
minimum length thereof whose maintenance makes the identification of its details possible. The 
norms governing these dimensions were proposed by Chrobak [34] using elementary triangles. 

In order to illustrate these principles in practice, a comparative analysis of two lines generated 
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results of the simplification are presented in Table 4. 

The values listed in Table 4 illustrate the quantitative differences between the results of the 
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recipient. In addition to reducing the number of vertices, we can observe an increase of the average 
segment length that results in more easily identifiable details. The visual comparative analysis of the 
lines shown in Figure 1 demonstrates that the perception of the line simplified using the Pc coefficient 
(Figure 1) increases. This is manifested, among other things, by reducing the number of details that 
are unreadable due to colour symbols. When comparing these lines, it should be remembered that 
they were created because of the simplification. Furthermore, their perceptual level of detail was 
reduced to a minimum. 
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scale 4:1 scale 1:1 Minimum dimensions object background Pc scale 1:1 

L* u* v* L* u* v*  

  0.80 mm 87.73 83.00 107.40 79.71 -19.80 45.98 1.49  

  1.20 mm 63.50 -38.73 -86.96 88.72 -49.13 -18.97 1.42  

  0.70 mm 76.97 0.00 0.00 46.44 41.28 46.48 1.35  

  0.30 mm 47.41 -21.92 -126.06 77.10 -21.00 -33.45 1.35  

0.80 mm 87.73 83.00 107.40 79.71 −19.80 45.98 1.49 + ×
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5. Practical Examples

Minimum dimensions of objects also include the distance between two adjacent lines and a
minimum length thereof whose maintenance makes the identification of its details possible. The norms
governing these dimensions were proposed by Chrobak [34] using elementary triangles.

In order to illustrate these principles in practice, a comparative analysis of two lines generated
using Chrobak’s [51] simplification algorithm was conducted. The adopted operational scale was
1:250,000. In the case of the first line (Figure 1, top image), it was simplified with recognition norms
(minimum dimensions) for monochrome objects. In the line below, the input parameters of the
algorithm were modified in order to adapt them to their colour form (including Pc). The numeric
results of the simplification are presented in Table 4.

The values listed in Table 4 illustrate the quantitative differences between the results of the
simplification monochrome and colour line simplification. The experiment included an adaptation
of the line dimensions to its coloured background and therefore to the perceptual possibilities of the
recipient. In addition to reducing the number of vertices, we can observe an increase of the average
segment length that results in more easily identifiable details. The visual comparative analysis of the
lines shown in Figure 1 demonstrates that the perception of the line simplified using the Pc coefficient
(Figure 1) increases. This is manifested, among other things, by reducing the number of details that are
unreadable due to colour symbols. When comparing these lines, it should be remembered that they
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Figure 1. Line feature simplified to 1:250,000 scale: (Top) simplification without Pc; and (bottom) including
Pc = 1.48. Windows on the right have 2× zoom to 1:125,000 scale.

Table 4. Comparison of the vertices and segments of the lines simplified with and without perception
coefficient Pc.

Scale: 1:250,000; the Number of Vertices before Simplification: 11,716; Line Width: 0.1 mm

Without Pc With Pc

The number of
vertices after
simplification

The number of
new vertices

Average length
of line

segments (m)

The number of
vertices after
simplification

The number of
new vertices

Average length
of line

segments (m)

784 26 225.23 559 13 167.40

Therefore, the perception coefficient of colour map objects should be understood as a determinant
of the minimum level of detail to which the minimum dimensions should be adjusted. Moreover,
this adaptation should be done while ensuring that the result is an appropriate Digital Cartographic
Model and taking into account the impact of the background colour (which was previously neglected
in all studies).

Figures 2–4 illustrate the discussed conclusion. Figure 2 contains point features (trees) whose
size is consistent with the classic minimum dimensions (monochromatic). Figure 3 demonstrates the
decrease in perception (and the drawbacks of monochromatic dimensions) that occurs because of the
colour assignment to the features. The application of the perception coefficient (Pc = 1.62) can be seen
in Figure 4, where the size of features has been adapted to the applied colours.

The difference between monochrome and minimum colour dimensions should be subtle and not
disturb the geometry of objects (Figures 3 and 4). An endorsement of the approach presented in this
paper can be found in the publication by Speiss et al. [29], in which the authors state that the minimum
dimensions are at the absolute minimum of perception and therefore should be increased as much
as possible.
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Figure 4. Point features (trees) represented with minimum colour dimensions using perception
coefficient (Pc = 1.64).

However, because differences in perception and readability may be difficult to assess, the authors
decided to conduct additional research to prove the validity of their claims.

6. Empirical Tests

Experimental surveys were conducted to verify the validity of the presented theses and the
empirical examination of the suggested Pc perception coefficient formula. Fifteen respondents
completed a questionnaire examining the differences in the recognisability of polyline shapes according
to the colour contrast on a map. The survey was prepared as an interactive SVG graphic (Figure 5).
SVG files were viewed and filled on an Iiyama 22 inch ProLite e2207WS monitor.
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The survey included five colour cards. The colours were chosen according to the directive of the
Polish Minister of Interior and Administration of 17 November 2011 on the database of topographic
objects and databases of general geographic objects, as well as standard cartographic works.
This directive defines colours in the CMYK colour space. To apply these colours in an SVG file
displayed on a monitor screen, they were converted to RGB colour space using the CMYK ISO Coated
v2 (ECI) and sRGB IEC61966-2.1 (Table 5) colour profiles.

Table 5. Colours in the CMYK, RGB and CIELUV colour space used in the survey.

Card 0-BW Card-K2 Card-K3 Card-K4 Card-K5

Black
Line

White
Background Building Settlement Isobath Water Contour

Level Forest Park
Border Orchard

C 0 0 20 4 65 18 0 14 76 17
M 0 0 45 14 15 0 0 2 7 2
Y 0 0 70 24 0 0 0 31 90 73
K 100 0 0 0 0 0 45 0 0 0
R 0 255 208 247 105 221 163 236 63 234
G 0 255 149 225 178 240 164 242 175 230
B 0 255 90 201 220 250 164 199 66 100
L 0 100 66.2 90.7 69.5 93.7 67.3 94.1 63.4 89.4
u 0 0 45.2 14.7 −32.3 −10.7 −0.6 −1.3 −49.1 8.3
v 0 0 44.6 20.5 −42.9 −10.1 −0.1 30.1 62.4 78.1

On each colour card, there were 360 boxes containing a 0.1 mm wide line break with a 0.05 mm
increment (Figure 6). The line break was made up of a triangle whose height and base were
0.15–1.00 mm and 0.05–1.00 mm, respectively.
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row 18 and column 20; dimensions are given for all cells.

The respondents’ task was to mark the shapes they recognised as line breaks, which is equivalent
to recognizing the “light” of the line triangle [33]. On all cards, the layout and dimensions of the
triangles in the corresponding fields were the same, and the variables were only the colours of the
symbol and the background, and thus the colour contrast. Thanks to this assumption, it was possible
to check whether the theoretical value of perception of Pc was reflected in practice by comparing
respondents’ answers on colour cards (K2–K5) and black and white (BW) cards.

The idea of interpreting the results on individual questionnaires was based on three assumptions:

1. The triangular refraction of the smallest dimension is undoubtedly unrecognisable
by respondents.

2. The triangular refraction of the lines of greatest dimensions is certainly recognised
by respondents.

3. Among the remaining cells on the card, some cards contain shapes with dimensions that allow
them to be recognisable; some of these shapes remain unrecognisable.

The respondents indicated the cells they considered recognisable in each row. The selection
was made by clicking the button in the cell (Figure 7). All cells to the left of the marked one are
automatically marked unrecognisable.
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Figure 8. Sample responses in a single respondent survey.

Based on the questionnaire, regression models were made showing the triangular shape of the
broken line depending on its height and width.

Respondents were student volunteers with a background in geomatics. These were eight women
and seven men aged 20–30.

7. Results

Based on the questionnaire, regression models (Figure 9) were made showing the recognisability
of the triangular shape of the polyline depending on its height and width. According to the theoretical
assumptions contained in the publication by Seber et al. [53], a nonlinear regression model was
constructed using the power model (Equation (10)) and the least squares method.

Y = b0 ∗ Xb1 (8)

where b0 and b1 are the model coefficients, Y is the dependent variable-visibility of signs, and X is the
independent variable-visibility of signs.

As a result, 15 models for single questionnaires were collected for five types of questionnaire.
The boundary lines separate the area where characters are not recognisable (below the curve) and
above, where they are recognisable.

Based on the survey conducted, it was found that the results of three respondents differed from
the others. For this reason, two regression models were used: the first included all respondents
R(15r) —regression model of 15 responses, while the second excluded rejected respondents 3, 4, and 10,
R(12r)—regression model of 15 responses.
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Figure 9. Regression models for single card types (BW and K2-K5). (a) Models BM; (b) Models K2;
(c) Models K3; (d) Models K4; (e) Models K5.

A measure of the R2 determinant was used to evaluate the quality of the resulting models by
evaluating the value of the explained variation of the original data. In addition, the Mean Absolute
Percentage Error linear correlation was calculated by comparing the theoretical models obtained.
All calculated models are statistically significant at p = 0.05 (see Table 6).

Table 6. Statistical summary for each card in two variants (models).

Measure Model BW K2 K3 K4 K5

b0
R(15r) 0.41 0.46 0.46 0.45 0.46
R(12r) 0.40 0.47 0.47 0.46 0.46

b1
R(15r) −0.39 −0.37 −0.37 −0.41 −0.35
R(12r) −0.47 −0.41 −0.39 −0.42 −0.41

R2 R(15r) 0.27 0.28 0.28 0.40 0.26
R(12r) 0.38 0.36 0.33 0.46 0.34

MAPE
R(15r) 4.38 18.9 28.6 11.7 30.2
R(12r) 7.79 15.4 26.2 8.1 27.4
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Figures 10 and 11 show the comparison of the curves for each model (BW and K2–K5) and the
theoretical curve. The theoretical curve contains values calculated from the perception coefficient
formula Pc (Equation (9)). In other words, these graphs represent a comparison between the minimum
size of colour symbols that were readable by respondents and those calculated theoretically.
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Models that do not take into account the three surveys R(12r) show a better resemblance to the
theoretical curve (Table 6, and Figures 10 and 11). The biggest difference between the theoretical
curve and the models is for surveys K3 and K5. However, even for these surveys, the shape of the
model is preserved and the quality of the fit is better for the R(12r) models. For the remaining models,
the theoretical and regression models show a good similarity that can be observed in the graphs and
the table.

A summary of all curves for the R(12r) model with theoretical values is shown in Figure 12.
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Figure 12. Comparison of performed regression models in all variants (BW and K2–K5, dashed line)
with theoretical curves.

Matching the theoretical line with multiple regression using the least squares method is the
most commonly used method of modelling real data [54,55]. The advantage of multiple regression
is the relationship between the height and width of the triangle and their influence on respondents’
perception. The survey models are characterised by a relatively low value of the determination
coefficient R2, which is related to individual differences in perceiving colours and shapes (see Table 6),
and the high variability of the information about the visibility of the characters included in the surveys.
The value of the determination coefficient does not exceed 0.46 for colour model (K4) and 0.38 for
black and white (BW). The calculated MAPE (Mean Absolute Percentage Error) value for models
does not exceed 30% and for individual models is less than 10% (models K4 and BW). This means
the models match the survey data quite well, despite the calculated R2 value. The correctness of the
multiple regression models can also be proven by the high correlation of data, which is close to 1.0 for
all models with questionnaire data and the theoretical model presented above. Comparison of BW
models based on surveys R(12r) and R(15r) and the theoretical model shows their similarity and a
slight error between them (Figure 11). Moreover, for one of the colour models, the similarity between
the theoretical and regression models is also high (model K4, Figure 10). A good fit for the two BW
models and K4 indicates the correct direction of the research. Further research will require a larger
number of surveys to improve the multiple regression models.
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8. Discussion

The solutions presented in the article are universal in that different NMAs in different countries
apply different standards in terms of the minimum dimensions of objects. What connects these
standards is the definition for black and white and the lack of consideration for the reduced readability
of cartographic symbols presented on coloured backgrounds. Therefore, the perception coefficient
can be applied in the process of automatic generalisation; more specifically, it can be applied in the
automation of graphic design of maps.

The examples presented in section four are related to point symbols. Nevertheless, the same
principle would apply, for example, to the spacing between lines or buildings, because these spacings
were also determined based on the perceptive capabilities of the user. Literature examples include
solutions based solely on the greatest possible contrast between white and black, and thus the situation
in which a user best distinguishes details.

Section 5 presents GIS examples of simplified linear objects in which a river is presented on a
green background. Another example illustrates the differences between the perception of black and
white objects and the classic DLM, in which colours are automatically assigned to objects and do not
cover layer themes. The use of the perception factor has definitely increased the readability of point
objects (in the case of poor map content (several layers)).

Section 6 presents the results of experimental research carried out on the respondents. In Figure 12,
the results show the convergence of theoretical considerations and the black-and-white survey
questionnaires. In the results for specific colour cards (Figure 11, K2–K5), we observe a similar
constant difference between the theoretical values and the survey results. This difference (the distance
between the curves) should be treated as an error. This error consists of factors that were skipped
during the design of the perception factor: observation time, intellectual ability, eye defects, ergonomics,
environment, and type of monitor. Consequently, the minimum size of objects, which is increased
by the perception coefficient, should be understood as the optimal size that takes into account the
aforementioned factors. In other words, the difference between the theoretical and empirical values
will be less if we take into account the individual characteristics of the receiver and the parameters
of the device. In the case of human characteristics, this is impossible, because, when creating a map,
we want it to be legible for everyone. As for the parameters of the device, this will be part of the further
research by the authors.

The intention of the authors of the article is not to develop a finite set of minimum measures taking
into account colour, but to give general principles for the convention of increasing the recognisability of
a map. In this way, an experiment was prepared in which the relative differences in the recognisability
of the shapes on the map were examined. The experiment did not check recognition of a specific
value of the minimum dimension, but rather a set of 360 pairs of such dimensions for the four colour
composition and a monochrome one. Such an approach, in the opinion of the authors, will allow at
least partial generalisation of the results of the experiment.

Future research includes further studies of the perception coefficient in order to clarify it and
reduce errors. The CIECAM02 model will be tested, which takes into account the conditions of
observation. Moreover, the authors plan new research using a colourimeter to see and assess the true
colours on a computer screen. The authors also assume that the presented solutions will be expanded
by a factor that changes the Pc value depending on the type of object (e.g., different for a point on a
uniform background or for lines and the minimum distance of line spacing).

9. Conclusions

The issues presented in this study include the multi-faceted visual perception of digital maps
and its role in the context of geovisualisation and automation of cartographic generalisation.
Automatic map production methods minimise subjectivity, which was previously the cartographer’s
domain. Cartography handbooks consider issues related to colour only from the context of tools,
disregarding its impact on the legibility of the information provided by the map.
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In the context of the aforementioned subjectivity, we can observe a certain paradox. On the one
hand, modern cartography aims to automate the generalisation process fully. On the other hand,
there is little reflection on the substitution of the subjective factor (the cartographer), which affects
the final appearance of maps. Therefore, the task faced by the authors was to develop restrictions
(conditions) that could be used as input parameters to simulate the cartographer’s decision processes.
Therefore, a perception factor (Pc) was developed, which allows for better mimicry of the subjective
decision of the cartographer, increasing the degree of readability of the symbols. This coefficient is a
universal modifier for the set of minimum dimensions used in different NMAs. Further, this solution
is a quantitative and qualitative answer, indicating how much the readability of each symbol locally
decreases when it is presented on a specific colour background. The theoretical considerations of the
authors were supported by empirical research, based on the author’s own method of map symbols
readability testing. In the case of shapes of a simplified line with limited recognisability, the study
showed a decrease in perception and readability of the symbols, depending on the contrast. Moreover,
the existence of correlation between the observed results and the presented solutions was also noted.
Therefore, the solutions presented may be universal, and further research by the authors will show
whether they can be applied to all types of symbols in connection with generalisation operators on
digital maps. These conditions, in the form of minimum dimensions, play a batch role in restrictive
modelling, thus determining the manner and process of generalisation. Furthermore, they indicate
how the readability of the map changes when the database objects are identified with the target
colour or symbols (the perception coefficient). Therefore, restriction generalisation models, which are
methodologically the most advanced, are able to control the visual quality of the final product.
This control, which already occurs at the level of creating and editing object geometry, will greatly
simplify the post-processing stage, which usually involved the manual corrections of cartographers.
The implementation of solutions that satisfactorily enable the automation of the whole process of map
production will be part of a further study by the author.
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