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Abstract: Anomalous taxi trajectories are those chosen by a small number of drivers that are different
from the regular choices of other drivers. These anomalous driving trajectories provide us an
opportunity to extract driver or passenger behaviors and monitor adverse urban traffic events.
Because various trajectory clustering methods have previously proven to be an effective means
to analyze similarities and anomalies within taxi GPS trajectory data, we focus on the problem of
detecting anomalous taxi trajectories, and we develop our trajectory clustering method based on
the edit distance and hierarchical clustering. To achieve this objective, first, we obtain all the taxi
trajectories crossing the same source–destination pairs from taxi trajectories and take these trajectories
as clustering objects. Second, an edit distance algorithm is modified to measure the similarity of
the trajectories. Then, we distinguish regular trajectories and anomalous trajectories by applying
adaptive hierarchical clustering based on an optimal number of clusters. Moreover, we further
analyze these anomalous trajectories and discover four anomalous behavior patterns to speculate on
the cause of an anomaly based on statistical indicators of time and length. The experimental results
show that the proposed method can effectively detect anomalous trajectories and can be used to infer
clearly fraudulent driving routes and the occurrence of adverse traffic events.

Keywords: trajectory clustering; trajectory anomalies; edit distance; hierarchical clustering; anomalous
behavior pattern

1. Introduction

As a part of urban public transport, taxi service has played a positive role in promoting urban
economic development and convenience in our daily lives [1]. Meanwhile, it is associated with
problems such as traffic congestion, taxi fraud and detours, refusal to take passengers, etc. Especially in
China, the irrational taxi phenomenon is particularly prominent in those cities with a large area and
population and a sophisticated road network. A traditional means of addressing this problem would
require regular random sampling, which would require significant human resources and economic
costs. At present, an increasing number of vehicles are equipped with GPS navigation equipment [2].
Thousands of taxis periodically report their positions, directions, and speed as pervasive sensors of
the road network each day, thereby creating a massive amount of trajectory data over time [3], which
contain interesting and unexpected information about urban traffic systems [4]. Fortunately, based on
this information, we can hopefully detect the aggregation or isolation trajectories in time and space [5].
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Most previous studies have proposed anomaly detection using trajectory data, which can be
analyzed in two ways. One approach is the study of anomalous traffic. Relevant research works
regard trajectories as a traffic flow and consider anomalous traffic to be those areas or roads where the
values of corresponding traffic indicators deviate from the expected value [6–10]. Through analysis
of anomalous traffic, anomalous events occurring in urban traffic can be detected, and large-scale
traffic conditions can be monitored [6–9]. This analysis also provides the possibility to explore the root
cause of an anomalous trajectory [10]. The second approach is the study of anomalous trajectories.
Relevant researchers study the attribute information of trajectory data and aim to distinguish between
the minority choices and majority choices of drivers. The anomalous trajectories are the minority
choices of drivers. Several data mining methods have been proposed to achieve the goals of monitoring
the behavior of taxi drivers, especially fraudulent driver behavior, and recommending dynamic routes
based on road conditions or destinations [5,10–12].

Our research focuses on anomalous trajectory detection. The data used in these relevant works include
GPS data, social data, video data, etc. [13–16]. The relevant methods can be classified as the statistical method,
distance-based method, clustering-based method, or classification-based method [12,17]. This research
uses the clustering-based method and taxi GPS trajectory data. Two challenges remain in anomalous
trajectory detection research [18]. The first challenge is calculating the similarity of trajectories with
a true GPS location. Because trajectory data are time series data, many similar methods for time series
can be improved and adopted. In addition, according to the different purposes of the application,
a trajectory can be divided into sub-trajectories, or one can express a trajectory in another form to
replace a coordinate pair calculation, which includes a dividing grid or expression of the road network.
The second challenge is selecting a suitable clustering algorithm without prior knowledge to make the
method appropriate for trajectory data. The clustering method unavoidably uses parameters have
been selected based on experience or multiple attempts. Moreover, different clustering numbers will
produce different results. The method of clustering number determination needs to be improved based
on the features of the line segment.

In this paper, a trajectory clustering method based on edit distance and hierarchical clustering is
proposed to detect anomalous trajectories. The editing distance algorithm can be used to calculate the
similarity of trajectory data. It is necessary to identify the operating cost of the edit distance based
on the characteristics of GPS trajectories. The hierarchical clustering method can cluster trajectories
into groups, and it is necessary to determine the clustering number. Sum-of-squares-based indices
show promising properties in terms of determining the number of clusters and can be improved to be
suitable for the evaluation of trajectory clusters. Experimental data collected from Wuhan city taxis are
used to detect anomalous trajectories. The dataset provides an extensive amount of taxi trajectory data,
recording the taxi number, time, velocity, geo-location, and other attribute information. The results
show that the proposed method can effectively detect anomalous trajectories. In addition, we further
analyze the anomalous trajectories and determine four anomalous behavior patterns. These anomalous
patterns summarize the reasons for the anomalous trajectories, which are highly significant in taxi
driver supervision and traffic management.

The article is organized as follows: we review related work regarding trajectory clustering for
anomalous trajectory detection in Section 2. Then, Section 3 describes the proposed method for
detecting anomalous trajectories. Section 4 presents a series of experiments on anomalous trajectory
detection and anomalous trajectory behavior pattern analysis, demonstrating the advantages and
effectiveness of the proposed approach. We discuss the research results in Section 5 and conclude this
work in Section 6.

2. Related Works about Trajectory Clustering for Anomalous Trajectory Detection

As previously mentioned, the trajectory clustering method can be used to detect anomalous
trajectories. According to the clustering target, existing approaches could be divided into whole
trajectory clustering and sub-trajectory clustering. Previous works divide trajectory data into
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sub-trajectory datasets and take these sub-trajectories as the clustering object. Lee et al. [19] first
partitioned a trajectory into a set of line segments, then calculated the distances of the line segments
based on the three components of Euclidean distance. Final detection of anomalous sub-trajectories
was done using a hybrid of the distance-based and density-based approaches. Guan et al. [20] defined
the distance between sub-trajectories based on local and relative distance from the line Hausdorff
distance. In addition, an R-tree was employed to improve the efficiency of the DBSCAN method.
These distance algorithms are effective for a similarity measurement of a sub trajectory. However,
they ignored the integrality of trajectory behavior information and may not be applicable to the
whole trajectory.

There has been another method to express trajectories in another form to replace coordinate
pair calculation. Won et al. [21] proposed a new clustering scheme for objects moving on road
networks. First, trajectory data can be represented as a sequence of road segments. Then, a similarity
measurement of a trajectory segment based on DSN (dissimilarity with number) is defined. Finally,
one chooses hierarchical clustering as a trajectory query-processing scheme. Sha et al. [22] focused
on spatiotemporally similar trajectories of road networks and defined the similarity between the
query locations and the trajectory on the road networks based on a Network Voronoi Diagram.
Zhang et al. [12] first divided the city into grid cells of equal size, then taxi trajectories are represented
in cell grid and become a sequence of traversed cells. Secondly, isolation forest method is developed
and a data-induced random tree (iTree) is utilized. A randomly selected cell is used to recursively
divide the data in each node of the iTree until the node has only one trajectory or all trajectories at
the node are the same. Finally, the trajectories that have short path lengths in iTree are suspected to
be anomalous. The trajectory expression of the road network is related to the structure of the road
network. When the density of a road network is low, some true locations of trajectories will be lost.
Otherwise, the grid size affects the accuracy of the trajectory expression and the computational cost of
the algorithm.

Taking a whole trajectory as a clustering object, a key step is defining the similarity measurement
between different trajectories based on the characteristics of the trajectory data. There have been
many methods used to realize a similarity measurement, including Euclidean distance [23], Hausdorff
distance [20], LCSS (longest common subsequences) [24], DTW (dynamic time warping) [7], ERP (edit
distance with real penalty) [25], and EDR (edit distance in real sequence) [26]. In practical application,
the Euclidean distance requires two trajectories of the same length. Hausdorff distance does not
consider the structural relationship between trajectories. LCSS requires reasonable similar threshold
parameter selection. DTW is sensitive to noise and cannot effectively identify the dissimilarity of
small part interval dissimilarity. However, edit distance, which is the similarity measurement method
of multi sub-time interval correspondence, does not require correspondence between points and
the points of the two trajectories, which can reflect the structural differences between the trajectory
sequences and determine the similarities of whole trajectories. At present, there are few studies on the
application of edit distance to GPS trajectories [27,28]. The specific situation of edit distance will be
discussed in Section 3.1.

The selection of a suitable clustering algorithm includes a density-based method [20,23,29],
spectral clustering [30], a model-based method [12], or hierarchical clustering [31]. Lee et al. [23]
chose a density-based line-segment clustering algorithm for grouping similar line segments together.
Bermingham et al. [29] improved TRACLUS to create ND-TRACLUS, which introduced Retraspam,
and split and merged the most representative line segments simply. Guan et al. [20] proposed trajectory
clustering based on an improved minimum Hausdorff distance, named TraClustMHD. Fu et al. [30]
first resampled trajectories by equal space intervals. Then, they employed spectral clustering to group
trajectories of similar spatial patterns. Roh et al. [31] proposed a new trajectory clustering called
NNCluster, a modified agglomerative hierarchical clustering that was chosen as a baseline algorithm,
to reduce the number of distance computations during the clustering process. Density-based clustering
methods need to calculate the density between objects. For trajectory data, the density calculation
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needs to regard trajectories as a point object, which will result in a loss of trajectory integrity, and it
will not be easy to identify the trajectory represented by the points. Spectral clustering is not good for
processing high-dimensional data and depends on a similarity matrix. Different similarity matrices
may result in different clustering results.

In summary, existing anomalous trajectory detection methods based on trajectory clustering
should either calculate the similarity of trajectories with many parameters or determine the number
of clusters that requires prior knowledge participation. The current study develops a new trajectory
clustering method and applies it to taxi trajectory data to detect anomalous trajectories.

3. Trajectory Clustering Method that Integrates Edit Distance and Hierarchical Clustering

A procedure for anomalous trajectory detection is introduced in Figure 1. There have given a list
of N trajectories T = {T1, T2, . . . , TN}. There are three main aspects to consider in the procedure. The first
aspect is the similarity of trajectories based on edit distance to obtain the distance matrix, which can be
employed to obtain the clusters by using a hierarchical clustering method. The second aspect is how to
determine the cluster number of the hierarchical clustering. These clusters include normal trajectories
and anomalous trajectories. The third aspect is to further divide detected anomalous trajectories into
different anomalous behavior patterns based on a statistical indicator.
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Figure 1. A procedure for the anomalous trajectory detection.

3.1. Improved Edit Distance for GPS Trajectory Data

The edit distance algorithm has proven success in assessing trajectory similarity in many research
projects. Chen et al. [25,26] earlier applied edit distance to time series data and proposed ERP
(edit distance with real penalty) and EDR (edit distance on real sequence) functions to measure the
similarity between two trajectories. The matching thresholds were defined to reduce the effects of
noise, and subcost was defined to address local time shifting. However, these methods take into
account the general movement trajectory data, and the operation cost is only 1. Because the sampling
time of the GPS data is inconsistent, the distance between the sampling points is different, and the
operation cost must be modified. Dodge et al. [27] represented trajectories by a string representation
according to movement parameters, such as speed, acceleration, or direction. However, the method
focused on the parameters describing the dynamic characteristics of movement and did not address
trajectory similarity for geospatial space. Yuan et al. [28] modified the operation cost based on the
effects of each operation by measuring the centroid displacement after each operation from detailed
call record data. The centroid of the trajectory by calculating the average position. However, taxi
trajectory data are restricted by road networks, and the centroid of taxi trajectory may not be on the
road. The centroid method cannot be used directly and needs to be improved.

In our study, an improved real edit distance operation cost is proposed, which include two aspects:
(1) An edit distance value of a taxi trajectory must identify the point operation that corresponds to
the coordinates. Thus, we need to redefine the operation cost of the corresponding coordinates.
Considering that trajectory data are recorded in a time series, the point of current operation has
a significant relationship with the point of previous record. Thus, the operation cost is defined based
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on the gap between the position point of current operation and the previous position point. The value
of the operation cost is calculated based on real coordinate positions between two operation points.
(2) The time and length of each trajectory record are different. Because the edit distance value is related
to the number of record points contained in the trajectory, this leads to the edit distance value of
a long-sequence trajectory being greater than the edit distance value of a short-sequence trajectory.
To solve this problem, the edit distance value needs to be normalized.

3.1.1. Edit Distance Operation Cost

Given two real trajectory sequences of moving objects R(r1, r2, · · · , rm) and S(s1, s2, · · · , sn),
the defined formula IED(R, S) of the revised edit distance to transform the R sequence to the S
sequence is

∑n
j=1 Cost[insert(sj)] m = 0

∑m
i=1 Cost[delete(ri)] n = 0

min

 IED(Rest(R), S) + Cost[delete(rm)],
IED(R, Rest(S)) + Cost[insert(sn)],

IED(Rest(R), Rest(S)) + Cost[replace(rm, sn)]

 other
. (1)

Equation (1) is a recursive formula; hence, m is a length of the R sequence, n is a length of
the S sequence, ri is the i element of the R sequence, and sj is the j element of the S sequence.
Rest(R) = {r1, r2, · · · , rm−1} are the other parts of the R sequence removing the current point, and
Rest(S) = {s1, s2, · · · , sn−1} are the other parts of the S sequence removing the current point.

The operations include insert, delete and replace. For trajectories R(r1, r2, · · · , rm) and
S(s1, s2, · · · , sn), ri and sj contain the actual coordinate positions (xi, yi) and (xj, yj). Every cost
function is defined as

Cost
[
insert

(
sj
)]

=
∣∣sj − sj−1

∣∣ j > 1 (2)

Cost[delete(ri)] =

{
|ri − ri−1| i > 1 m = 0∣∣ri − sj

∣∣ m 6= 0
, (3)

Cost[replace(rm, sn)] =

{ ∣∣ri − sj
∣∣ ∣∣ri − sj

∣∣ > θ

0
∣∣ri − sj

∣∣ < θ
. (4)

The process aims to transform an R sequence to an S sequence. Thus, all operations are taken on
the original R sequence. Operation cost can be calculated based on Equations (2)–(4). However, if we
transform an S sequence to an R sequence, the values of operation cost differ from the values when we
transform an R sequence to an S sequence. Hence, the edit distance values of IED(R, S) and IED(S, R)
are different. The asymmetry of this distance is reasonable in the field of cognitive science. However,
in our study, we focus on the physical meaning of edit distance using the edit distance algorithm to
measure the similarity between two trajectories. Thus, the edit distance between trajectories R and S
does not consider asymmetry and can calculate the average value of IED(R, S) and IED(S, R).

3.1.2. Normalization

The formula for edit distance normalization is

NIED(R, S) =
IED(R, S)

IED_max(R) + IED_max(S)
(5)

In formula (5), IED(R, S) is the edit distance of trajectories R and S. IED_max(R) is the length
of the continuous points of trajectory R, and IED_max(S) is the length of the continuous points of
trajectory S. The denominator of the formula, which denotes that the two trajectories are completely
irrelevant, is the maximum distance weight required for the operation from one trajectory to another.
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When edit distance is normalized between 0 and 1, 0 denotes that the two trajectories are exactly the
same, whereas 1 indicates that the two trajectories are completely irrelevant.

3.2. Determining the Number of Clusters in Hierarchical Clustering

In hierarchical clustering, clusters are merged or divided according to linkage standards, which
include single linkage, complete linkage, average linkage, centroid method, and Ward’s method [32].
Different linkage standards can lead to various clustering results. When the distance matrix is
calculated, single linkage, complete linkage, and average linkage are relatively easy to calculate.
The trajectory is composed of a series of points, and the centroid of the trajectory can be calculated as
the average location of these points [28]. Ward’s method calculates the sum of square errors generated
by the merging of two clusters. It is necessary to determine which method to adopt by experiments.

Determining the number of clusters is an important part of hierarchical cluster analysis.
The classic method is the elbow point method, which is described by Ketchen [33] and presented
in Yuan and Raubal [28]. The number of clusters and the merge distance are fitted to a curve.
In general, the elbow point appears at the point of maximum value change in the tangent slope.
However, in real-world applications, the ‘elbow point’ cannot always be unambiguously identified [33].
Other methods, such as the L-method [34], have been proposed to identify the elbow point of the
curve by examining the boundary between the pair of straight lines that most closely fit the curve.
Zhao et al. [35] considered sum-of-squares-based indices that show promising properties in terms of
determining the number of clusters. Therefore, the WB-index was proposed and had a minimum value
as the determined number of clusters. Then, in comparison with the other two indices, Xu-index [36]
and CH-index [37], three indices of automatic keyword categorization were introduced.

In our study, we defined three sum-of-squares-based indices including the WB-index, CH-index,
and Xu-index for determining the number of the cluster. This notion originates from Zhao’s [35]
research. Before calculating these indices, we need to calculate two basic elements for SSW and SSB.
SSW elements are used to measure the compactness of clusters, and SSB elements are used to measure
separation. They are defined as

SSW(M) = max
t

{
max

i,j
(1− IED

(
Ti, Tj

)
Ti 6=Tj∈Ct

)

}
+ ∑
|Ct=1|

1 (6)

SSB(M) = ∑M
t=1 ∑M

s>t min
(

1− IED
(
Ti, Tj

)
Ti∈Ct ,Tj∈Cs

)
(7)

In the SSW formula, Ti and Tj (i, j = {1, 2, . . . , N}) are the ith and jth trajectories in cluster
Ct (t = {1, 2, . . . , M}). When only one trajectory is in a cluster, we sum up the number of clusters
according to ∑|Ct=1| 1. When the number of trajectories is greater than 1, we search the minimum value
of edit distance between Ti and Tj. In the SSB formula, Ct and Cs (t, s = {1, 2, . . . , M}) are the tth and
sth clusters. Ti and Tj (i, j = {1, 2, . . . , N}) are the ith and jth trajectories in cluster Ct and cluster Cs,
respectively. We calculate the cumulative sum for the maximum value of edit distance between Ti and
Tj. M is the number of clusters. Therefore, the three indices are defined as

WB-index = M ∗ SSW(M)/SSB(M) (8)

CH-index =
SSB(M)/M− 1

SSW(M)/N −M
(9)

Xu-index = log
√
(SSW(M))/N2 + logM (10)

We can see that the three indices change with the number of clusters using the obtained
Formulas (6)–(10). The number of clusters (on the x-axis) is plotted against the three index values
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(on the y-axis). By comparing the changes in the three curves, we can determine the optimal number of
clusters based on the minimum or maximum values.

3.3. Anomalous Trajectories and Behavior Pattern Detection

3.3.1. Definition of Anomalous Trajectories

We suppose that there are two points: source point (S) and destination point (D). A list of
N trajectories T = {T1, T2, . . . , TN} crossing the same SD pairs obtains a set of clustering results
C = {C1, C2, . . . , CM}. The cluster results include five clusters using the hierarchical clustering method
as introduced in Figure 2. The two clusters C1 and C2 each contain more than one trajectory. C1 and C2

are defined as normal clusters, and these trajectories are defined as normal trajectories, which represent
the regular routes of taxi drivers as shown by the gray lines. The other three clusters, C3, C4, and C5,
include only one trajectory. C3, C4, and C5 are defined as anomalous clusters, and these trajectories are
defined as anomalous trajectories (C3-t1, C4-t2, and C5-t3.), which represent the occasional routes of
taxi drivers and are shown in black lines.
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3.3.2. Algorithm Flowchart of Anomalous Trajectory Detection

Our algorithm is presented in a structured pseudocode form of trajectory clustering for anomalous
trajectory detection as shown Algorithm 1. It mainly includes three steps and executes two algorithms
to perform the tasks, including the edit distance and hierarchical clustering, which have already been
introduced in Sections 3.1 and 3.2. For step 1, the process of calculating the edit distance uses dynamic
programming techniques and returns the edit distance matrix ED including all trajectories. In step 2,
each trajectory forms an initial cluster, and when the distance of two trajectories is minimal, the two
trajectories are merged into one cluster until the number of clusters is equal to x. The method of
calculating x was introduced in Section 3.2, and its use will be described in detail in Section 4.3. For the
final step, we will obtain trajectory data using anomalous attribute labels.
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3.3.3. Discovering Anomalous Behavior Patterns Based on Statistical Indicators

The taxi trajectory data only represent the activities of the taxi drivers or passengers [38].
These trajectories reflect the activity processes of taxi drivers or passengers in an urban road network.
Usually, normal trajectories included in normal clusters will be chosen by the driver or passengers;
however, anomalous trajectories are selected for various reasons, which can be summarized in two
subjective or objective perspectives. The first is a subjective perspective including the intentional
choice and well-meaning choice of drivers. The intentional choice of drivers is to increase income, and
the well-meaning choice of drivers is related to the requirements of passengers. All choices will lead to
a significant increase in the lengths of the trajectories. The second is an objective perspective, because
unexpected events can happen on the road, causing the trajectory to become anomalous. Unexpected
events are accidents, road congestion, road closures, and other special events that result in a significant
increase in the time of the trajectories.

There is no prior knowledge of the reasons for the anomalous trajectories. It is feasible to speculate
on the reasons based on the statistical properties of anomalous trajectories. Therefore, we chose two
appropriate statistical indicators: length and time. Suppose the length and time of an anomalous
trajectory Ar are represented by ALr and ATr (r = 1 · · · n), and the average length and time of a normal
trajectory are denoted by NLvalue and NTvalue. These conditions can be categorized into four kinds of
anomalous behavior patterns:
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• Anomalous behavior pattern 1(Abp1): ALr ≤ NLvalue + Lρ and ATr ≤ NTvalue + Tρ,
• Anomalous behavior pattern 2(Abp2): ALr ≤ NLvalue + Lρ and ATr > NTvalue + Tρ,
• Anomalous behavior pattern 3(Abp3): ALr > NLvalue + Lρ and ATr ≤ NTvalue + Tρ, and
• Anomalous behavior pattern 4(Abp4): ALr > NLvalue + Lρ and ATr > NTvalue + Tρ.

4. Experiment of the Proposed Approach

4.1. Taxi Trajectory Data Pre-Processing

The raw taxi trajectory data include nearly 20,000 taxis and come from a local company in Wuhan
City, China in 2014. This dataset includes location and other attribute information—such as speed,
direction, state, etc.—recorded at least once every 60 s. Table 1 provides a sample record. Longitudes
and latitudes are shown ‘****’ for protecting privacy. The filed ‘Acc’ represents the state of the engine,
which include ‘On’ and ‘OFF’ values. The ‘On’ value means that the engine is working, and the ‘OFF’
value means that the engine is flameout. The filed ‘State’ represents whether there are passengers
in the taxi, which include ‘heave’ and ‘empty’ values. The ‘heave’ value means that the taxi has
passengers, and the ‘empty’ value means that there is no passenger in the taxi. The taxi trajectory data
only represent the activity of a driver or a passenger. However, taxis drivers are more flexible and
able to plan their cruising routes, which will form predictable patterns [39]. Raw taxi trajectory data
must undergo data filtering, which mainly includes two aspects. In the first aspect, the drift of the GPS
device will cause the incorrect recording of the point. These error points need to be removed according
to the distances between these points, which are far beyond the distance that a taxi can drive in one
minute. In the second aspect, a human or machine generated value errors occurred in the course of
recording the text attributes of the trajectories. These errors can be removed through experience, for
example, when value of ‘State’ is ‘heave’, the value of ‘Acc’ must be ‘On’. Those records that value of
‘Acc’ is ‘OFF’ are errors.

Table 1. Sample records from taxi trajectory data.

Vehicle ID Time Longitude Latitude Direction Acc State

1681 00:00:00 114.**** 30.**** 142 On empty
7864 00:00:50 114.**** 30.**** 0 On heave

... ... ... ... ... ... ...
1681 00:00:50 114.**** 30.**** 20 On heave
7864 00:00:60 114.**** 30.**** 40 On heave

The data pre-processing involved in the study mainly includes map matching and passenger
trajectory extraction of source–destination (SD) pairs. First, the GPS drift problem will lead to
inaccurate positioning of the taxi trajectory data. Thus, matching taxi trajectory data to the current
road network is necessary. The map matching method is based on the nearest principle where point
data for the nearest road factor are matched within a certain search radius. Second, given a pair of SD
points, we need to select all driving trajectories between the SD pair. The driving trajectories are those
trajectories crossing the same SD pair, and their values of ‘State’ is ‘heavy’.

In our experiment, four source–destination pairs (SD1, SD2, SD3, and SD4) are selected, and each
(SD) pair represents an actual location (Table 2). To obtain more trajectories, these locations include
railway stations, business circles, parks, etc., where people have frequent activities.
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Table 2. Geographic names of four source–destination group.

Group Name First Group (SD1) Second Group (SD2) Third Group (SD3) Fourth Group (SD4)

Source (S) JieDaoKou ZhongJian
KangCheng

ZhongJian
KangCheng

Wuchang
Railway Station

Destination (D) Wuhan
Railway Station

MaAnShan
Forest Park JieDaoKou WuHan

Railway Station

All driving trajectories, including the number of trajectories between each SD pair, are overlaid
with a Wuhan city road map, as shown in Figure 3.
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4.2. Distance Measurement of Taxi Trajectory Data

Based on the proposed improved edit distance algorithm (Section 3.1), we randomly selected
10 real taxi passenger trajectories from SD1 data. We calculated the edit distance between the trajectories
and obtained the 45 values each two trajectories. To prove the validity of the edit distance method,
the DTW (dynamic time warping) [40] method was chosen for comparison. The key feature of DTW is
that it allows siftings and elongations while it compares two time-series, which is a common method
in time series data [41], and can be used for trajectory data. A comparison of the IED and DTW values
is shown in Figure 4a for 10 trajectory datasets. To show convenience, DTW normalization is based on
its maximum and minimum values.

We know that the changing trends of the values of IED and DTW are roughly the same as seen in
Figure 4a. However, the different trends of values for IED and DTW are marked with the numbers
8, 11, 13, 39, and 44. To identify the reasons, we chose the corresponding trajectories for the marked
number and its previous number. All results of IED and DTW from these trajectories are shown in
Table 3. NIED and NDTW are the values of IED and DTW standardization. From the overall values
of this view, it is found that the most involved trajectories are at 21. Therefore, we take the example
and choose two numbers, 10 and 11, corresponding to the trajectory IDs of 21 and 28 as well as 21 and
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31 from Table 3, respectively. We know that the IED values of trajectories 21 and 28 are greater than
those of trajectories 21 and 31, which means that the trajectories 21 and 31 are more similar. In contrast,
the DTW values of trajectories 21 and 28 are smaller than those of trajectories 21 and 31, which means
that trajectories 21 and 28 are more similar. The spatial distribution of trajectories 21, 28, and 31 in
Wuhan are shown in Figure 4b.
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Table 3. The values of ED and DTW between trajectories.

Number Trajectory ID Pairs IED NIED DTW NDTW

07 1, 180 63.6384 0.9681 1538.5648 0.4743
08 1, 188 38.1715 0.9723 1115.1115 0.3437
10 21, 28 61.0285 0.9325 612.7917 0.1888
11 21, 31 43.2647 0.7715 1166.6670 0.3596
12 21, 68 43.1681 0.7700 1168.2111 0.3601
13 21, 82 49.4162 0.82741 1165.6056 0.3593
38 21, 126 40.5420 0.9645 401.3309 0.1235
39 21, 120 40.0110 0.9209 438.9380 0.1351
43 82, 188 75.7054 0.9913 1540.9585 0.4750
44 82, 209 61.7448 0.7938 1587.8943 0.4895

Trajectories 21 and 31 are more similar than trajectories 21 and 28 from the spatial distribution of
the trajectories as seen on the map. Because the trajectory is recorded in time intervals of less than 60 s,
the sampling rate is not fixed, which will lead to a large number of sampling points in some trajectories,
for example, the number of points included in trajectory 21 is 217; however, the time of trajectory 21 is
43.33 min, which is far longer than a minute to sample each point. When we calculate trajectories 21
and 31 using the DTW method, some of the sampling points in trajectory 21 will be used many times
to achieve local stretching of the time dimension. This will result in an inaccurate calculation of the
DTW value, which is due to the inconsistency of the sampling rate for the trajectory data. Our IED
method can overcome such a problem according to standardization to realize spatial dimension scaling.
Therefore, the edit distance method can address the problem of inaccurate calculation of distance
values caused by the large disparities in sampling rates for the trajectories.

4.3. Comparison of Indices for Automatic Trajectory Clustering

Four SD pairs of trajectory data are involved in the experiment. According to Section 3.2, we
calculate three sum-of-squares-based indices—the WB-index, CH-index, and Xu-index—for automatic
trajectory clustering. The distance between trajectories is based on an improved edit distance algorithm
as described in Section 3.1. The hierarchical clustering method is used to cluster trajectories into groups
in the progress of calculating indices. For our experimental data, the number of clusters over 100 is
meaningless. Therefore, the maximum number of clusters is 100.
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The number of clusters determined by the three sum-of-squares-based indices on the four SD
pairs of trajectory data are shown in Figure 5. The change in the Xu-index index is monotonically
increasing; thus, this index cannot be used to determine the number of clusters. For SD2, SD3, and SD4,
there is a clear maximum value for the CH-index at 8, 20, and 24. The minimum values of the WB-index
are also at 8, 20, and 24. For SD1, the maximum value of the CH-index is at 21; however, the minimum
values of the WB-index are also at 20. The numbers of clusters corresponding to these values are
inconsistent. This requires human judgement to determine which is best by comparing the clustering
result. Of course, when the number of clusters is very close, for SD1, we are not good at making
judgments from the result. When the data size is large, the factor (M− 1)/(N −m) plays a more
important role than SSW/SSB in the whole index [35]. Therefore, when the values of the WB-index
and CH-index are different, we chose the maximum of the CH-index as the number of clusters.ISPRS Int. J. Geo-Inf. 2018, 7, 25  12 of 19 
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trajectories. The centroid of taxi trajectories is different from call data based on Yuan’s [28] method. 
Taxi trajectory data are restricted by road networks, and the centroid of the trajectory by calculating 
the average position is not on the roads, which does not fully represent the trajectory and deviates 
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4.4. Anomalous Trajectory Detection by Trajectory Clustering

We can choose the appropriate linkage methods through experiments by using test data. The test
data also are from the real taxi trajectory data and were already introduced in Section 3.3 (shown in
Figure 2), with an obvious five clusters and two anomalous trajectories. The number of clusters is
set to 5. The clustering results based on different linkage methods—which include single linkage (S),
complete linkage (C1), average linkage (A), Ward’s method (W), and the centroid method (C2)—are
shown in Table 4. The IDs of the anomalous trajectories are t1, t2, and t3. Only the S method detected
the three anomalous trajectories correctly. The C1 and W methods identified two anomalous trajectories,
and the A and C2 methods only found one anomalous trajectory.

Table 4. The clustering result based on different linkage method.

ID t1 2 3 4 t2 6 7 8 9 10 11 12 13 14 15 16

S 0 4 4 4 1 4 4 4 4 4 3 4 4 4 3 4
C1 3 2 2 2 0 2 3 2 3 3 4 3 2 2 1 3
A 4 2 2 2 0 2 4 2 4 4 3 4 2 2 3 4
W 3 2 2 2 0 2 1 2 1 1 4 1 2 2 4 1
C2 0 2 2 2 1 2 3 2 3 3 4 3 2 2 4 3

ID 17 18 19 20 21 22 23 24 25 t3 27 28 29 30 31

S 4 4 4 4 3 4 4 3 4 2 4 4 3 4 4
C1 3 3 2 3 4 2 3 4 2 4 2 2 1 2 3
A 4 4 2 4 3 2 4 3 2 1 2 2 3 2 4
W 1 3 2 1 4 2 3 4 2 4 2 2 4 2 1
C2 3 3 2 3 4 2 3 4 2 4 2 2 4 2 3
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Complete linkage is suitable for determining a relatively compact cluster. Average linkage
considers the structure of the class, which is suitable for two classes of small difference. Furthermore,
unlike the distance between points, in our analysis, the smaller the distance, the more similar the
trajectories. The centroid of taxi trajectories is different from call data based on Yuan’s [28] method.
Taxi trajectory data are restricted by road networks, and the centroid of the trajectory by calculating
the average position is not on the roads, which does not fully represent the trajectory and deviates
from reality significance. Thus, the centroid method cannot be used directly and needs to be improved.
Ward’s method [32] also belongs to the centroid method and is suitable for datasets in which the
number of data in each cluster is approximately equal and has no anomalous value. Meanwhile,
Ward’s method needs to calculate an average object in a cluster, which leads to the same problem as
the centroid method. Therefore, we chose the single linkage method as the linkage between clusters by
experiment and analysis.

According to the Section 4.3, the optimal cluster numbers for SD1, SD2, SD3, and SD4 are 21, 8, 20,
and 24, respectively. Clustering results can be overlapped with the Wuhan road map overlay, as shown
in Figure 6. To show the clustering results clearly, we display the clustering results of each SD1–SD4
pair in four sub-figures. The first three sub-figures display the normal clustering and are represented
by a colored solid line, and the number of clusters displayed in each sub-figure is different. In addition,
the average length and time of the trajectories in the normal clusters are shown. The last sub-figure
shows the anomalous trajectories, which are denoted by a black dotted line, and the average length
and time of the anomalous trajectories are also shown. The Wuhan road map is indicated by a gray
line. The units of length and time are kilometers and minutes, respectively.
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4.5. Anomalous Trajectory Behavior Pattern Analysis

According to Section 3.3, we also need to set threshold Lρ and time threshold Tρ to determine
the behavior patterns. According to the distribution of the SD1–SD4 data (shown in Figure 7),
the distribution of length and time belonged to a long tail distribution. In Wuhan city, the price
for a taxi ride is 10 yuan for the first three kilometers and then an additional 1.8 yuan per kilometer.
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In most cases, the driver chooses to increase the length of the route using a detour to augment income.
According to Figure 7, the minimum length of SD1–SD4 data is 4.83 kilometers; thus, the length
threshold Lρ set to five kilometers is reasonable. Meanwhile, the minimum length of SD1–SD4 data
is 6.98 min, and time increased to five minutes becomes a barrier to travel for passengers. Therefore,
the time threshold Tρ is set to five minutes.ISPRS Int. J. Geo-Inf. 2018, 7, 25  14 of 19 
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The statistical results of length and time for the trajectories from SD1–SD4 data are shown in
Figure 8. It is a 2D plot, where x is the length of the anomalous trajectories and y is the time of the
anomalous trajectories. Vertical and horizontal lines, respectively, are the average length and time of
normal trajectories.
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Figure 8. Classification graph on anomalous trajectories lengths and time.

By statistical classification from Figure 8, we can see that the SD1 data contain two anomalous
behavior patterns (Abp2 and Abp4), the SD2 data contain two anomalous behavior patterns (Abp1
and Abp2), the SD3 data contain three anomalous behavior patterns (Abp1, Abp2, and Abp4),
and the SD4 data contain four anomalous behavior patterns (Abp1, Abp2, Abp3, and Abp4).
The geographic distributions of the four behavior patterns are represented in Figure 9. The four
behavior patterns are expressed using different colors. The changes in color depth indicate the times of
the trajectories; light-colored trajectories are relatively short, and dark-colored trajectories are relatively
long. The lengths of the trajectories are tagged on the map.



ISPRS Int. J. Geo-Inf. 2018, 7, 25 15 of 20

ISPRS Int. J. Geo-Inf. 2018, 7, 25  14 of 19 

 

Figure 7. Lengths and time distribution of the SD1–SD4 data. 

The statistical results of length and time for the trajectories from SD1–SD4 data are shown in 
Figure 8. It is a 2D plot, where x is the length of the anomalous trajectories and y is the time of the 
anomalous trajectories. Vertical and horizontal lines, respectively, are the average length and time of 
normal trajectories. 

 
Figure 8. Classification graph on anomalous trajectories lengths and time. 

By statistical classification from Figure 8, we can see that the SD1 data contain two anomalous 
behavior patterns (Abp2 and Abp4), the SD2 data contain two anomalous behavior patterns (Abp1 
and Abp2), the SD3 data contain three anomalous behavior patterns (Abp1, Abp2, and Abp4), and 
the SD4 data contain four anomalous behavior patterns (Abp1, Abp2, Abp3, and Abp4). The 
geographic distributions of the four behavior patterns are represented in Figure 9. The four behavior 
patterns are expressed using different colors. The changes in color depth indicate the times of the 
trajectories; light-colored trajectories are relatively short, and dark-colored trajectories are relatively 
long. The lengths of the trajectories are tagged on the map. 

ISPRS Int. J. Geo-Inf. 2018, 7, 25  15 of 19 

 

 

 

 

Figure 9. Geographic distribution of behavior patterns in the four pairs of experimental data. 

In Abp1, there are many anomalous trajectories that occur in the early hours of the morning, 
including all trajectories in Abp1-SD3 and the light-colored trajectories in Abp1-SD4. These time 
periods represent travel on uncongested roads and conform to the characteristics of the trajectory. 
Moreover, in Abp1-SD2, the occurrence of anomalous trajectories is between 11:45–11:57, and the 
dark-colored trajectories in Abp1-SD4 also occur between 12:37–13:52. These time periods represent 
rush hour in the city, when terrible traffic can be expected. However, the lengths and times of these 
trajectories are relatively small. This can be explained by a taxi driver choosing an uncongested road 
to avoid congested roads during rush hour based on experience. Thus, Abp1 can be used as a 
recommended route for residents during rush hour from S to D. 

In Abp2, many anomalous trajectories are similar to the normal cluster, such as Abp2-SD1 being 
similar to Cluster01 in SD1, the light-colored trajectories in Abp2-SD3 similar to Cluster03 and 
Cluster04 in SD3, and the dark-colored trajectories in Abp2-SD4 similar to Cluster02 in SD4. 
However, the time of these trajectories is greater than the average time of these normal clusters. 
Meanwhile, many anomalous trajectories occur at rush hour. This indicates that some unusual events 
are most likely to occur at this time, such as congestion, traffic accidents, etc. Thus, we can determine 
whether unexpected events occur on the road based on the time and place of anomalous trajectories 
belonging to Abp2 combined with the Wuhan road map. 

In Abp3, there was only one trajectory from Abp3-SD4. The starting point and the destination 
are all the train stations in the SD4, the driver chooses the long route but takes less time to reach the 
destination, and the occurrence of the anomalous trajectories is between 05:09–05:41. This can be 
explained by the driver selecting the route with no congestion to increase speed and reach the 
destination in a timely manner, as passengers may need to hurry to another station in the early hours 
of the morning. Therefore, Abp3 can be used to identify a driver who chose a route with a detour to 
help passengers arrive at their destination more quickly. 

In Abp4, most of the trajectories are more than 30 min in time, and most of the trajectories are 
greater than 20 kilometers in length. These can be identified as significant detour trajectories. For 
example, in Abp4-SD3, the three trajectories all choose left first through the three ring roads and then 
the destination. One of them even travels to the left to the edge of the Yangtze River and back to the 

Figure 9. Geographic distribution of behavior patterns in the four pairs of experimental data.

In Abp1, there are many anomalous trajectories that occur in the early hours of the morning,
including all trajectories in Abp1-SD3 and the light-colored trajectories in Abp1-SD4. These time
periods represent travel on uncongested roads and conform to the characteristics of the trajectory.
Moreover, in Abp1-SD2, the occurrence of anomalous trajectories is between 11:45–11:57, and the
dark-colored trajectories in Abp1-SD4 also occur between 12:37–13:52. These time periods represent
rush hour in the city, when terrible traffic can be expected. However, the lengths and times of these
trajectories are relatively small. This can be explained by a taxi driver choosing an uncongested
road to avoid congested roads during rush hour based on experience. Thus, Abp1 can be used as
a recommended route for residents during rush hour from S to D.

In Abp2, many anomalous trajectories are similar to the normal cluster, such as Abp2-SD1
being similar to Cluster01 in SD1, the light-colored trajectories in Abp2-SD3 similar to Cluster03 and
Cluster04 in SD3, and the dark-colored trajectories in Abp2-SD4 similar to Cluster02 in SD4. However,
the time of these trajectories is greater than the average time of these normal clusters. Meanwhile,
many anomalous trajectories occur at rush hour. This indicates that some unusual events are most
likely to occur at this time, such as congestion, traffic accidents, etc. Thus, we can determine whether
unexpected events occur on the road based on the time and place of anomalous trajectories belonging
to Abp2 combined with the Wuhan road map.
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In Abp3, there was only one trajectory from Abp3-SD4. The starting point and the destination
are all the train stations in the SD4, the driver chooses the long route but takes less time to reach
the destination, and the occurrence of the anomalous trajectories is between 05:09–05:41. This can
be explained by the driver selecting the route with no congestion to increase speed and reach the
destination in a timely manner, as passengers may need to hurry to another station in the early hours
of the morning. Therefore, Abp3 can be used to identify a driver who chose a route with a detour to
help passengers arrive at their destination more quickly.

In Abp4, most of the trajectories are more than 30 min in time, and most of the trajectories
are greater than 20 kilometers in length. These can be identified as significant detour trajectories.
For example, in Abp4-SD3, the three trajectories all choose left first through the three ring roads and
then the destination. One of them even travels to the left to the edge of the Yangtze River and back
to the north. In Abp4- SD4, one anomalous trajectory chooses to pass over the Yangtze River twice
from the Wuchang Railway Station to the Wuhan Railway Station. The width of the Yangtze River
through Wuhan city is approximately 1.4 km. This can be explained by evident detour behavior.
However, we cannot be certain that these trajectories are the driver’s fraudulent behavior without
a priori knowledge. It is also possible to go to one place first and then finally to the destination because
of the passengers’ requirements.

5. Discussion

The similarities of taxi GPS trajectories can be measured effectively using an improved edit
distance method according to the characteristics of the trajectory data. We compare two common
methods include DTW and IED methods in Section 4.2. The DTW method calculates distance by
stretching or scaling the time dimension, which ensures that the time sequence of the trajectory record
points is the same, and does not need to be compared in one-to-one time. However, DTW is robust
in response to an increase in the sampling rate but highly sensitive to a decrease [42]. Therefore,
the DTW method can lead to some inaccurate calculations when the difference in the sampling rate of
the trajectories is relatively large (See Section 4.2). A trajectory is a group of limited points in a time
sequence that can be divided into n sub-intervals consisting of corresponding points. The IED method
can search for the number of similar sub-intervals between two trajectories. This method does not
require the sequences of the two trajectories to have a point-by-point correspondence relationship.
Instead, the method can better reflect the structural difference of the trajectory sequences and determine
the non-overall similar trajectories.

Taxi anomalous trajectories are some driving trajectories chosen by a small number of drivers
that are different from the regular choices of other drivers. The definitions of anomalous trajectories
and normal trajectories are introduced in Section 3.3.1, and these are suitable for detection using the
hierarchical-clustering method. Anomalous trajectories are equivalent to the isolated leaf nodes in the
hierarchical tree, the stem length represents the distance between the trajectories, and the isolated leaf
nodes and adjacent layers have a longer stem length. The only parameter of hierarchical clustering is
the number of clusters, which is determined based on comparing three sum-of-squares-based indices:
the WB-index, CH-index, and Xu-index. For our trajectory data, the CH-index is more effective
compared to the WB-index and XU-index. When the number of trajectories is large, these indicators
cannot provide the true number of clusters by comparing the clustering result with those of human
judgement. However, in our experiment, these indices are helpful for using the clustering method.

The time complexity for the edit distance method depends on the number of trajectories and
the size of the database. Suppose that these have N list of trajectories T = {T1, T2, . . . , TN}. For the
trajectory Ti, the numbers Ti and Tj are m and n, therefore, the time complexity of calculating the
distance between Ti and Tj is O(m*n), and the time complexity of calculating N trajectories is O(N2).
The trajectories are independent of each other. When the amount of data is large, we consider dividing
the trajectories into multiple groups and calculating the distance between them in parallel. Usually,
the time complexity of hierarchical clustering is O(N2), and the space complexity of hierarchical
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clustering is O(N3). To reduce the computational complexity of hierarchical clustering, we chose the
nearest-neighbor chain algorithm [43]. In this algorithm, the nearest neighbor chain is used to decide
the merging of these clusters. Each cluster in the nearest neighbor chain is the nearest neighbor of
its nearest cluster, that is, the cluster with the smallest distance. The algorithm can reduce the time
complexity of hierarchical clustering to O(N2).

The aim of this paper is to detect anomalous trajectories based on trajectory clustering method.
The analysis of anomalous trajectory behavior patterns can help more effectively explain the cause
and significance of these anomalous trajectories. The length and time of their distribution belonged to
a long-tail distribution as seen in Figure 7. We sort the length and time respectively and obtain the
trajectory IDs corresponding to the 20 percent larger values of the time and the length from SD1–SD4.
They do not completely contain the trajectory IDs of the anomalous trajectories. Especially anomalous
trajectory IDs belong to Abp4. Certainly, simple length and time attributes cannot distinguish the
similarity between these trajectories in geographic space. To distinguish them, more statistical
indicators need to be added. However, this requires more statistical analysis and is not the focus of
this study.

Unavoidable uncertainty issues also exist when detecting anomalous trajectories utilizing taxi
trajectory data. In our analysis, uncertainty issues need to be discussed mainly in three aspects.
The first aspect is data quality. Taxi position may not be accurate because of the drift in GPS data.
Uncertainty in passenger trajectory could also be caused by lower frequencies and inaccurate sampling
points. The second aspect refers to the uncertainty of the model and algorithm. Although we can prove
the effectiveness of the method in anomalous trajectory detection, selecting different methods will
lead to uncertainty in the results. Examples include different clustering methods or clustering number
determination methods. The final aspect is mobile randomness of the driver. Although anomalous
behaviors can be analyzed, random and distinct characteristics of driver behaviors are inevitable,
which can lead to uncertainty about some anomalous behaviors without prior knowledge.

6. Conclusions and Future Research

In this paper, we proposed a trajectory clustering method to detect anomalous trajectories.
We improved the operation cost of the edit distance algorithm, and we used this method to
obtain similarity measurements of taxi GPS trajectories. During the hierarchical clustering process,
we determined the number of clusters based on a comparison of three sum-of-squares-based indices.
According to the algorithm flowchart of the anomalous trajectory detection, we detect anomalous
trajectories and then analyze anomalous behavior patterns according to the length and time of the
anomalous trajectories. The main contribution of this paper is to consider the trajectory’s integrality
in discovering anomalous taxi trajectories using a trajectory clustering method that can effectively
perform automatic mode detection using taxi GPS trajectories. Moreover, this paper detects four
anomalous behavior patterns and summarizes the causes of the behavior of the anomalous trajectory.
It is meaningful to discover the unusual behavior of taxi drivers and anomalous traffic conditions.

Our future research includes the following aspects: (1) Current clustering objects are driving
trajectories that confined same SD pairs. In fact, the source point and destination point of each driving
trajectory is different. In the future, taking the trajectories of different SD pairs as the research object,
we study a suitable method to detect the anomalous trajectories. (2) This paper employed historical
taxi trajectory data. However, some anomalous behavior patterns need to be detected and processed
in real time. In future research, we will detect anomalous behavior of taxis based on real-time taxi
GPS trajectory data and carry out detection and analysis of anomalies online, which will further
improve the effectiveness of the anomalous trajectory analysis. (3) Four anomalous behavior patterns
were discovered based on the clustering results of the statistical analysis. In the future, we need to
thoroughly analyze the causes of anomalous behavior from the perspectives of human behavior and
dynamic city development, making the categorization of anomalous behavior more reasonable.
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