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Abstract: The usage of OpenStreetMap (OSM), one of the resources offered by Volunteered
Geographic Information (VGI), has rapidly increased since it was first established in 2004. In line
with this increased usage, a number of studies have been conducted to analyze the accuracy and
quality of OSM data, but many of them have constraints on evaluating the profiles of contributors.
In this paper, OSM road data have been analyzed with the aim of characterizing the behavior of OSM
contributors. The study area, Ankara, the capital city of Turkey, was evaluated with several network
analysis methods, such as completeness, degree of centrality, betweenness, closeness, PageRank,
and a proposed method measuring the activation of contributors in a bounded area from 2007–2017.
An evaluation of the results was also discussed in this paper by taking into account the following
indicators for each year: number of nodes, ways, contributors, mean lengths, and sinuosity values of
roads. The results show that the experience levels of the contributors determine the contribution type.
Essentially, more experience makes for more detailed contributions.
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1. Introduction

For several decades, the task of mapping had been executed by trained staff in state organizations [1].
In the early days, military interests dominated mapping activities; however, with the advancement of
Web 2.0 technology, this responsibility shifted more to laymen, mostly volunteers and non-experts [2,3].
One prominent example is the OpenStreetMap (OSM) project, an impressive Volunteered Geographic
Information (VGI) resource, which was established in 2004 to allow contributors to engage in the common
goal of producing and editing spatial data in a joint, collaborative effort. Some surveys have been conducted
to determine the proficiency of OSM contributors, but they have pointed out that more than half of the
contributors were not Geographic Information System (GIS) amateurs, which does not completely support
the transition to using laymen [4,5].

Evaluating VGI data before using it for its intended purpose is crucial for determining the quality
of data collected or produced [6]. The assessment of the VGI network data is generally carried out
from the same perspective as that for spatial networks. As detailed below, a number of studies have
been conducted to examine the statistical evolution of road networks, which are a type of spatial
network. Buhl et al. [7] analyzed the topological patterns of a large number of different settlements
using the approach of complex networks. Crucitti et al. [8] compared over-samples of different urban
centers to analyze five different measures of centrality and the differences between self-organized and
planned cities. Jiang [9] derived a topological pattern of urban road networks using a large sample of
40 US cities and found that 80% of streets have fewer degrees than average and 20% of streets have
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higher degrees than average. Barthélemy and Flammini [10] proposed a simple model of network
evolution based on local optimization combined with ideas previously proposed in studies of leaf
pattern formation. The authors found that the evolution of many different transportation networks
indeed follows a simple universal mechanism. Masucci et al. [11] examined the street network of
London both in its primary and dual representations. Erath et al. [12] examined the evolution of the
Swiss road system and railway network from 1950–2000. Ferber et al. [13] developed an empirical
transit system model for major world cities including Sydney and Paris with varying station sizes
on public transport networks. Soh et al. [14] analyzed the travel routes of the public rail and bus
transportation systems in Singapore from a complex weighted network perspective. Masucci et al. [15]
examined a unique dataset based on the street patterns of London metropolitan areas at nine time
instants represented as nine map series spanning over 224 years (1786–2010). Strano et al. [16] analyzed
almost 200 years of the evolution of the road network in a large area located north of Milan, Italy to
be governed by two elementary processes, referred to as densification and exploration. They defined
densification and exploration as “corresponding to an increase in the local density of roads around
existing urban centers” and “whereby new roads trigger the spatial evolution of the urbanization
front,” respectively. Their study shows that the rise of urbanization is reflected in the growth of road
networks and occurs at differing speeds at different times, such as the significantly rapid increase that
occurred between 1933 and 1994.

With the advancement of Web 2.0 technology, street network analysis, which is a specific field of
VGI, has been realized on OSM. OSM studies cover a broad range, such as quality assessment [17],
data analysis, types of usage, the accuracy of contributed data, and the effectiveness of contributors.
Many studies, as outlined below, show how OSM research has focused on the quality of the data and the
evolution of road networks. Haklay [18] focused on the analysis of OSM data quality by comparing it
with Ordnance Survey datasets. The author found that OSM data accuracy was around 6 m, and there
was approximately an 80% overlap between the two datasets. Girres and Touya [19] examined
the quality of French OSM data and extended the work of Haklay [18] to France. They analyzed
the results with a larger set of spatial data quality assessment elements (i.e., geometric, attribute,
semantic and temporal accuracy, logical consistency, completeness, lineage, and usage) and different
methods of quality control. Neis et al. [20] analyzed the quality of OSM road network evolution in
different regions of Germany from 2007–2011. They specified that OSM even exceeds the information
provided by the proprietary dataset by 27% when taking into account the whole German OSM
road network, including small walkways and pedestrian paths. Corcoran et al. [21] analyzed the
evolution of three OSM road networks in Ireland and assessed the results according to densification
and exploration processes. Zhao et al. [1] presented the results of the evolution of OSM road networks
between 2009–2012 in Beijing, China, from four aspects (general, geometric, topological, and centrality).
They mentioned that (1) mapping direction moves from outskirts to downtown; (2) mapping behaviors
are mainly constrained by the underlying structure of road networks; (3) volunteers tend to contribute
roads with short length or straight roads, while few of them contribute long ones or curved ones.
Zhang and Malczewski [22] evaluated the extrinsic quality of the Canadian OSM road networks and
compared it to several spatial data assessment elements (completeness, positional accuracy, attribute
accuracy, semantic accuracy, and lineage). They found that urban networks received more participation
than rural.

The number of registered users in the OSM project is increasing daily and various studies that
focus on the participants are represented in the literature [23–27]. In the evolution of OSM urban
road networks, some studies took into account the activations of the contributors, rather than the
number of users in the period, as a way to characterize their behaviors. The direct extraction of
information about the members of the OSM, such as a list of all users or registration information, is not
possible [23]. Neis and Zipf [23] analyzed the behavior of OSM contributors from full history OSM
files. They used some temporal information about the activation of contributors. They mentioned that
17% of contributors had at least one contribution in 2011. Moreover, their study clarified the number
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of contributors per country. Developing countries had 27% of registered contributors in Europe in
2011. Although many different studies have been conducted on OSM road networks, developing
countries, like Turkey, have not investigated how the contributions of OSM users have impacted
current developments in the entire system. Therefore, the objective of this study is to measure the
activation of contributors by using several network analysis methods, such as completeness, the degree
of centrality, betweenness, closeness, and PageRank; in addition, it will take into account factors like
the number of nodes, ways, contributors, mean lengths, and sinuosity values.

The remainder of the paper consists of the following sections: (2) describing the study area,
the structure of OSM road data, and several network analysis methods; (3) evaluating the behavior of
contributors and the data; (4) concluding with some discussions. The quality and accuracy of OSM
road data is out of the scope of this study.

2. Study Description

2.1. The Study Area and OSM Road Data Structure

This research has been conducted using the OSM road data of Ankara, the capital city of Turkey
(Figure 1). The city has a growing population that increased from 4.5 million in 2007 to 5.4 million
in 2017 [28]. This means urbanization has also expanded during this period. The study area covered
40 km × 35 km in the center of Ankara.
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Figure 1. Location map of the study area: Turkey (yellow), Ankara (pink) and study area (green).

The OSM data structure is composed of two basic elements to assess spatial data: geometry and
attributes. The attributes are described with tags on any geometry. Tags provide information to the
user about the particular element to which they are attached. They contain two free format text items,
such as key-value pairs. The geometry consists of three elements: nodes, ways, and relations. The node
geometry basically represents a specific point on the Earth’s surface. The way geometry consists of the
lines connecting two or more nodes. The relation geometry logically defines geographic relationships
between geometry and tags with respect to their order.

Graph theory is considered an important way to study road network analysis. G = (V, E) is a kind
of network structure consisting of vertices (V) and edges (E), which are unordered pairs of V. In the
literature, there are two types of graphs, primary and dual, to represent urban road networks. In a
primary approach, road intersections and cul-de-sacs are considered to be vertices, and streets, which
are connected vertices, are assumed to be edges [29]. In a dual approach, streets are nodes, and road
intersections are edges [30]. We used the primary approach to analyze road networks in this study,
because of the global fundamental standards for geospatial dataset construction and diffusion [29].

In this paper, some terms are used with suffixes to avoid confusion. The term “road” defines OSM
raw ways, and the term “road-tp” is used hereafter to define the lines transformed into lines of a topologic
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road network. Also, the term “node” defines OSM raw nodes, and the term “node-tp” is used hereafter to
define the points that topologically represent the connection of road-tp (i.e., junction, crossroad, etc.).

2.2. Evaluation Methods

Temporal Completeness: Completeness is used to measure a lack of reference data [18].
However, since quality and accuracy assessments are out of scope for this paper, the completeness
formula was used to measure a lack of data with respect to the following year to temporarily
understand the evolution of the data. In other words, temporal completeness was determined to
assume the data from the following year as a reference. It was calculated for a specified time as:

Temporal Completeness = ∑ Li

∑ A
/ ∑ Li+1

∑ A
=

∑ Li

∑ Li+1
, (1)

where L, A, and i represent the total length of road objects, the coverage area of the centrum, and a
specified time, respectively. The size of the coverage area was a constant 40 km× 35 km = 1400 km2.

Centrality measures: Centrality is associated with various factors that affect the lives and behavior
of humans in their cities and communities [8]. The notion of centrality first applied by Bavelas [31]
revolved around the communication between small groups of people and the relationship between
structural sociology and influence/power [32]. For instance, any person in the community can have
an important role in her/his social environment, which makes her/him more central than the others.
This is also true for the nodes that trigger the development of road networks. Centrality measures
quantify that some nodes in a network are more significant than others and they determine how
centrality values are distributed among all nodes. Various centrality measures, such as degree,
betweenness, closeness, straightness, PageRank, load, Katz, and eigenvector, can be used for different
purposes. In this study, degree, betweenness, closeness, and PageRank centrality measures of each
node-tp were calculated according to certain periods in order to examine the behavior of contributors.

The degree of centrality: This is based on the idea that important nodes have a higher degree of
ties than other nodes in the graph. The degree of a node was measured by the number of edges related
to the node (i.e., the number of neighbors connected to the node) [29]. The degree centrality CDeg

i of
each node-tp i was defined as [33]:

CDeg
i =

di
N − 1

, (2)

where di is the degree of node-tp i (the number of nodes-tp adjacent to node-tp i), and N is the number
of nodes-tp in the graph.

Closeness: This is the degree of proximity of a node directly or indirectly to other nodes.
The closeness centrality of a node i was calculated using the reciprocal of the sum of the shortest path
distances from i to all other nodes [33]. It also reflected how quickly a node could connect to other
nodes in the network.

CCls
i =

N − 1

∑N−1
v=1 d(v, i)

, (3)

where d(v, i) is the shortest path distance between starter node v and node i.
Betweenness: This is the degree to which a node is found among all other nodes in the network.

It shows how a node is connected to nodes that are not directly related to each other [34]. Any node
with a high degree of betweenness is acting as an important bridge in the network.

CBtwn
i = ∑

s,t∈V

σ(s, t|v)
σ(s, t)

, (4)

where v is the set of nodes-tp, σ(s, t) is the number of shortest (s, t) paths, and σ(s, t|v) is the number
of those paths passing through some node-tp v other than s, t. If s = t, σ(s, t) = 1, and if v ∈ s, t,
σ(s, t|v) = 0 [35].
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PageRank: This is a method that associates the importance of a node with its location in the
network compared to other nodes to which it is linked. This method was previously designed as an
algorithm to rank the importance of web pages. Okomato et al. [36] and de Sousa and Kropatsch [37]
calculated PageRank centrality with the following equation:

CPr =
1− d

n
× 1 + dACPr, (5)

where CPr = (r(i1), r(i2), . . . , r(in))
T is the PageRank vector, r(in) is the PageRank value of node-tp

in, n is the total number of nodes-tp, d takes the damping value = 0.85, and A is an adjacency matrix
between nodes-tp [1].

Activation density: Neis et al. [20] calculated a simplified number of participants per km2 in each
administrative area. In this study, new or updated road data contributed by volunteers is assumed
to be an activation. A contributor who carried out at least one activation is labelled as an active
contributor. The activation density is the ratio of the number of active contributors per km2. The area
used in this calculation represents the activation area. Each area size was determined as the convex
hull bounding new or updated road data in each year (grey polygons in Figure 2).

AD =
AC
AA

, (6)

where AD is the activation density, AC is the number of active contributors and AA is the
activation area.

Sinuosity: The sinuosity defines the curvature of a line [38] and is calculated with the equation:

Sinuosityi =
di
li

, (7)

where l is the length of road-tp i, and d is the straight distance between the start and end points of
road-tp i. In this study, the mean of weighted sinuosity values was preferred, instead of mean sinuosity
values, since a longer road-tp affects the mean value the same as a shorter road-tp. For instance,
a motorway with a high sinuosity index may have an equal effect on the calculation of mean sinuosity
value as a high sinuosity indexed semi-roundabout; however, using a weighted sinuosity makes a
longer road-tp more effective.

3. Evaluation of OSM Road Data and Results

OSM road data was evaluated based on temporal completeness, the degree of centrality,
betweenness, closeness, and PageRank from 2007–2017. A proposed method measuring the activation
of contributors in an actively bounded area was also used to characterize the behavior of OSM
contributors. OSM road data was retrieved year by year using the osmium tool [39]. All linestring
objects having a “Highway” tag were used (highway=*); however, duplication of identical roads were
eliminated before the assessment started. The experiment was carried out using the NetworkX python
package [40]. The road networks contributed by volunteers by year are shown in Figure 2. OSM road
data evolution in Ankara is not parallel with the mapping in Beijing [1], since the mapping direction is
not certain (such as from outskirts to downtown or vice versa).
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Figure 2. OpenStreetMap (OSM) road networks from 2007 to 2017.

OSM contributors mapped 10 times more road segments in 2013 than in 2010 (Table 1). The number
of roads affects the total length of road data. From 2015–2017, it increased, but less. However, the mean
length of road data in 2013 compared to that of 2007–2012 and 2014 decreased by less than half.
Moreover, the mean lengths of roads from 2015–2017 approximate the values of those from 2013
(Figure 3a). The results show that in the earlier stages of the OSM project, the contributors mapped
longer roads, like motorways. After 2014, however, they started to draw highly detailed roads, like
residential roads (Figure 4). Downtrend and uptrend lines represent motorway and residential road
rates in all roads mapped by contributors, as depicted in Figure 4a,b, respectively. Also, temporal
completeness of road data had deep and peak points in 2012 and 2013, respectively (Figure 3b).
This means that in 2013, OSM users made their best efforts until that time to contribute road data.

Table 1. The statistics of road data.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Number of roads 1706 2766 2519 3890 2195 1776 37910 3834 6416 16990 10070
Length of new roads (km) 1413.7 2486.6 2185.5 3146.8 2026.2 1947.9 11472 2955.6 3164.4 6979.3 4223.6

Mean length (m) 828.7 899.0 867.6 808.9 923.1 1096.8 302.6 770.9 493.2 410.8 419.4
∑ L
∑ A 1.010 1.776 1.561 2.248 1.447 1.391 8.194 2.111 2.260 4.985 3.017

Temporal completeness (%) 57 114 69 155 104 17 388 93 45 165 -
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During early OSM contributions, the volunteers contributed the roads-tp that had higher values
of each centrality measure (Figure 5). In 2012 and 2014, the degree of centrality and PageRank had
two peaks and, in 2013, each had a deep point as shown in Figure 5a. This means that more important
roads-tp were contributed in the peaks and less were contributed in the deep points. There were also
the same peak and deep points in the motorway contributions in related time periods. The motorways
were not only important roads for urban areas, but were also explicitly simple to draw. In 2010 and 2013,
closeness had two peaks, meaning that the roads-tp contributed in these years had quicker connections
among the nodes-tp (Figure 5b). In 2011, betweenness had a peak, meaning that the roads-tp could act
as important bridges in the network (Figure 5b). The most remarkable point appeared in 2013 when
both the degree of centrality and PageRank had deep values (less important) and, vice versa, closeness
had a peak value (quicker). This situation might be commented as the connection quickness of roads-tp
does not guarantee the importance of centrality.
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While experience is not a quantifiable measurement, some calculations based on the activities of
contributors were used to make some predictions. For example, the number of active OSM contributors
and the size of the drawing areas where they were active can be used for this purpose. In addition,
the selection criteria of the road data, which were drawn or integrated into the system, made it easy
to make inferences about the experiences of contributors. There were explicit differences between
the wide roads (motorways) and narrow roads (residential). While motorways can be seen and
drawn easily on small and medium scale satellite images because of their width, residential roads
can be seen and drawn only on more detailed large scale images or by using the Global Positioning
System. In this study, the experience levels of OSM contributors were examined by using these
criteria. Wide/narrow (width) or long/short (length) variations of roads could determine the drawing
preferences. Some calculations were conducted to detect the preferences. Activation density measures
the density of active contributors in the activation (drawing) area. This makes it easy to decide
when the roads were contributed to intensely. The contributors mapped road data in larger areas
with less numbers of active contributors during early periods of the OSM project than latter periods
(Figure 6, Figure 7). In the beginning, they probably used the online drawing interface for the first
time, and so their preferences were determined to be longer and explicit roads. The activation area in
2007 had the largest value and, as stated in the upper temporal completeness results, the volunteers
preferred to contribute mainly long roads, like motorways, at that time (Figure 4a, Figure 6, Figure 7).
However, after 2014, the area had smaller values and the volunteers started to contribute highly
detailed roads, like residential roads (Figure 4b, Figure 6, Figure 7). This indicates that there was a
relation between activations and level of detail. Since it was assumed that the experience of contributors
rises every year with the accumulation of contributions, more experienced volunteers preferred to
contribute highly detailed roads and less experienced volunteers preferred the less detailed roads.
Figure 8 presents the distribution of the ratio of residential roads to all roads and activation density
year by year. They both result in similar linear trends, excluding a few segments. This supports the idea
that the experience of OSM contributors has a positive effect on the level of detail of road contributions.
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Figure 8. Distribution of the ratio of RR to AR (blue), and AD (red).

The distributions of mean and weighted mean sinuosity values are shown in Figure 9. The results
show that the roads-tp with higher sinuosity values were added earlier in 2007–2008. As an assumption,
relatively more experienced contributors preferred the lower sinuosity indexed roads-tp, like residential
roads in the inner city. This observation was parallel with the results of the study from Beijing [1].
Most of the OSM users contributed relatively straight and short roads (residential) in both Ankara and
Beijing. In 2012, the mean of weighted sinuosity, the degree of centrality, and PageRank graphs peaked
to indicate that the high sinuosity indexed roads-tp contributed at this time were more important.
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4. Conclusions

Analyzing and categorizing the behavior of volunteer contributors is a challenging issue because
the OSM has only been established for fourteen years. The study presented in this paper has searched
for ways to characterize the behavior of OSM contributors. Based on the statistical results of this
research, the authors have inferred that the experience levels of contributors determine the contribution
type and level of road detail. While more experienced volunteers preferred to contribute roads
with more detail and lower sinuosity, like residential streets of the inner city, less experienced
volunteers preferred to contribute roads with less detail and higher sinuosity, like motorways.
Moreover, the higher sinuosity indexed roads-tp might be considered more important since the
degree of centrality and PageRank values were also higher. However, closeness centrality results
also show that the importance of the centrality of roads does not completely reflect the connection
quickness. The future work resulting from this study will focus on the assessment of accuracy and
quality with regard to the experience levels of OSM contributors.
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