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Abstract: Citrus is considered one of the most important fruit crops globally due to its contribution
to food and nutritional security. However, the production of citrus has recently been in decline due
to many biological, environmental, and socio-economic constraints. Amongst the biological ones,
pests and diseases play a major role in threatening citrus quantity and quality. The most damaging
disease in Kenya, is the African citrus greening disease (ACGD) or Huanglongbing (HLB) which is
transmitted by the African citrus triozid (ACT), Trioza erytreae. HLB in Kenya is reported to have
had the greatest impact on citrus production in the highlands, causing yield losses of 25% to 100%.
This study aimed at predicting the occurrence of ACT using an ecological habitat suitability modeling
approach. Specifically, we tested the contribution of vegetation phenological variables derived
from remotely-sensed (RS) data combined with bio-climatic and topographical variables (BCL) to
accurately predict the distribution of ACT in citrus-growing areas in Kenya. A MaxEnt (maximum
entropy) suitability modeling approach was used on ACT presence-only data. Forty-seven (47) ACT
observations were collected while 23 BCL and 12 RS covariates were used as predictor variables
in the MaxEnt modeling. The BCL variables were extracted from the WorldClim data set, while
the RS variables were predicted from vegetation phenological time-series data (spanning the years
2014–2016) and annually-summed land surface temperature (LST) metrics (2014–2016). We developed
two MaxEnt models; one including both the BCL and the RS variables (BCL-RS) and another with
only the BCL variables. Further, we tested the relationship between ACT habitat suitability and
the surrounding land use/land cover (LULC) proportions using a random forest regression model.
The results showed that the combined BCL-RS model predicted the distribution and habitat suitability
for ACT better than the BCL-only model. The overall accuracy for the BCL-RS model result was 92%
(true skills statistic: TSS = 0.83), whereas the BCL-only model had an accuracy of 85% (TSS = 0.57).
Also, the results revealed that the proportion of shrub cover surrounding citrus orchards positively
influenced the suitability probability of the ACT. These results provide a resourceful tool for precise,
timely, and site-specific implementation of ACGD control strategies.
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1. Introduction

Citrus is considered one of the most important fruit crops in the world due to its contribution to
food and nutritional security [1]. Also, citrus is the top-ranked fruit crop with regard to its international
trade value [2]. The commercially important citrus species are sweet oranges (Citrus sinensis), lemons
(Citrus limon), limes (Citrus aurantifolia), grapefruit (Citrus paradisi), and tangerines (Citrus reticulata).
Globally, sweet oranges represent approximately 70% of citrus production. In 2016, the global total
production of sweet oranges was about 73 million tons [3]. In Kenya, citrus is a valuable fruit crop
used mainly for domestic consumption as a fresh produce with only a small quantity being processed
into juice and jams [4]. Citrus provides some minerals and vitamins like vitamin C, carotenoids,
and polyphenols that are essential for human health. In terms of the area of production, citrus (mainly
oranges) ranks third (7268 ha) after bananas (63,299 ha) and mangoes (54,332 ha) in the country [5].

Citrus plants can prosper in a wide range of environmental conditions from tropical to subtropical
climatic conditions [6]. However, the best citrus production conditions are found in subtropical climate
zones in elevations ranging from sea level up to 2100 m above mean sea level (m.a.s.l.), with an optimal
growth temperature ranging from 20 ◦C to 30 ◦C. In Kenya, citrus fruits’ quantity and quality have
been considerably declining. For instance, oranges yields at 11.73 ton ha−1 are far below (23% less)
the global mean yield of 18.45 ton ha−1 [7,8]. Two of the major production constraints that hinder
citrus production in Kenya are insect pests and diseases, among which the African citrus triozid (ACT),
Trioza erytreae, plays a key role [9]. Direct feeding by ACT results in leaf curling and, furthermore,
causes deposition of honeydews on infested plants [10]. In Africa, ACT is known for transmission
of the devastating phloem-limited bacterium Candidatus Liberibacter africanus (CLaf), responsible
for the African citrus greening disease (ACGD) or Huanglongbing (HLB) [11]. In addition to ACT,
HLB is also transmitted by the Asian citrus psyllid (ACP) (Diaphorina citri), which is the primary
vector in Asia [12,13] but was also recently discovered in eastern Africa [14]. These two psyllids
are distributed according to their temperature requirements, with ACT being highly temperature
sensitive and thus restricted to cooler elevated areas [15,16]. The common symptoms of ACGD are
mottling and yellowing of the leaves, reduced tree foliage which results in small and bitter-tasting
fruits, and the eventual death of severely infected citrus trees [17]. In Kenya, ACGD is reported to have
had the greatest impact on citrus production in the highlands, causing yield losses of 25% to 100% [18].
The yield of affected trees is not only considerably reduced by continuous fruit drop, dieback, and tree
stunting, but also by the poor quality of fruits that remain on the trees which are inedible.

Over the years, different approaches have been used for implementing various ACGD preventive
and control measures [19]. This includes strict regulations of nurseries through a registered disease-free
certification scheme to prevent the spread of ACGD and its vectors [20]. Little is known on the spatial
distribution of the disease vectors, yet such information could greatly assist in developing precise
geo- and time-referenced vector distribution maps. Such maps can be useful in monitoring the spatial
spread and suitable areas for the vectors, enabling for a more targeted implementation of interventions.
Vector-transmitted disease propagation follows vector ecological principles as an indirect explanation
of disease cycles, outbreaks, and prevalence [21]. One of the most frequently used approaches for
producing vector distribution maps is the ecological niche (EN) modeling approach [22]. EN models
statistically link spatial variabilities in a set of predictor variables to the distribution of species of interest
that can be a plant disease vector like ACT [23,24]. The dependence of plant disease propagation on
spatio-temporal environmental niche factors of the disease vector has recently received considerable
attention [25]. Yet, studies focusing on the ways in which geographical environmental factors affect
the habitat suitability and host-vector dynamics are still limited. In addition, there is a need for studies
that employ a multi-source variable (e.g., vegetation phenology and climate) approach to predict the
spatial distribution of plant disease vectors.

Models have been developed to provide information about diseases and the distribution of
associated environmental variables that are used as proxies for habitat suitability. The best known
EN models used in insect-based distribution modeling include Generalized Linear Models (GLM),
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Generalized Additive Models (GAM), Genetic Algorithm for Rule-Set Production (GARP), Boosted
Regression Trees (BRT), and Maximum Entropy (MaxEnt) [26]. Studies have compared the performance
of several EN modeling algorithms to predict the distribution of different species and found that
MaxEnt was the best-performing model using presence-only data [27]. In addition, MaxEnt is the most
utilized EN model for estimating the distribution of plant insect pests like stink bugs (Halyomorphahalys
spp.) [28], large pine weevil (Hylobius abietis), and horse-chestnut leaf miner (Cameraria ohridella) [29],
boreal forest insect pests [30], fruit flies [31], and disease vector ticks (Ixodes ricinus) [32].

For HLB, a number of studies employed mathematical, and geostatistical simulation, life table,
and conceptual modeling routines [33–35], to study the distribution of ACP using environmental variables
as predictors (i.e., temperature and rainfall) in regard to the biology of the vector (e.g., developmental
stages and their populations) and host plant interactions (e.g., number of susceptible or infectious orange
trees). These studies demonstrated the possibility of estimating the distribution, progression and optimal
temperature ranges for ACP in countries like the USA, Mexico, Brazil, Vietnam, and Australia. In Africa,
Shimwela et al. [36] and Narouei-Khandan et al. [37] employed two correlative MaxEnt and support vector
machine modeling approaches to map the potential distribution of ACP using global-scale environmental
predictors. These two studies reported that Eastern African countries like Kenya and Tanzania would be
highly suitable for the psyllid. To the best of our knowledge, no other study has employed an EN modeling
approach to predict the distribution of ACGD vectors in Africa.

Yet, there is a need for an explicit ACT distribution mapping routine in countries such as Kenya,
where the transmission of ACGD is mainly due to this vector. Moreover, previous studies looked
at the relevance and influence of environmental variables in predicting the distribution of ACGD
vectors but did not consider the expected relevance of vegetation patterns and phenology, resulting
through interactions between climatic, topographic, and vegetation patterns at a landscape scale, which
can considerably improve the performance of EN models like MaxEnt [30]. Moreover, vegetation
patterns and phenology play a key role in influencing vector-host-pathogen transmission, including
vector distribution, abundance, and diversity [38]. These vegetation-related patterns and phenological
variables can only be extracted from temporal remotely-sensed datasets. When used in EN models,
the remotely-sensed vegetation pattern and phenological variables are useful additional predictors
for the spatial distribution of pests and diseases since EN models rely on the correlation between a
habitat’s characteristics and the biophysical properties of the studied pest and disease [39].

Further, much research has focused on the biology of ACT and its dispersal [40]; however,
little is known regarding how land use/land cover (LULC) features influence the habitat suitability
of the vector and its dispersal. However, remotely-sensed datasets from different systems have
been widely used for the identification and separation of citrus orchards from other LULC types
for appropriate policy making and citrus production forecasting [41–43]. More efforts concerning
understanding the influence of the landscape on the survival of pests and diseases like ACT using
remotely-sensed variables are crucial. For instance, the context of the landscape has been reported
to affect the population of crop insects directly, or more frequently, indirectly, through its effects on
the physical environment around the host plants [44]. For instance, landscape heterogeneity has been
reported to influence the direction and distance moved by a dispersed pest and pathogens, in addition
to the infestation rate [45]. For example, Rizzo et al. [46] reported that the proximity to the forest
edge was associated with an increase in the infestation of sudden oak death disease in California.
Avellino et al. [47] tested the relationship between the landscape context and three highly differentiated
focal coffee pests and pathogens. They found a positive relationship between the studied coffee
pest and disease incidences and the proportion of different LULC classes at different radii around
coffee sample plots. Thies et al. [48] studied the correlation between the local proportion of destroyed
oilseed canola buds and the characteristics of landscape context. They showed that an increase in
the landscape complexity was associated with a decrease in damage caused to oilseed canola by
Meligethes. aeneus. All these studies alluded to the fact that the surrounding vegetation provides a
refuge for the vectors during periods of time when the conditions are unfavorable for the spreading of
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the disease. Despite this strong influence that the landscape properties have on the spread of pests
and diseases, no research has explored the relationship between ACT habitat suitability with the
surrounding landscape composition for a better understanding of the ecology and spread of ACGD.

The objectives of this study were, (i) to explore the potential and contribution of vegetation
phenological variables and Land Surface Temperature (LST) derived from remotely-sensed data
combined with environmental variables to predict the distribution and habitat suitability for ACT at a
test site in Kenya using a MaxEnt model and, (ii) to test the effect of the surrounding landscape context
on the habitat suitability for ACT. This was achieved by relating a set of bio-climatic and topographic
environmental (BCL) variables and remotely-sensed (RS) variables to ACT presence-only distributions
over a region-specific, i.e., representative agro-ecological gradient.

2. Methods

2.1. Study Area

The study site consists of 35 administrative counties in three main agro-ecological zones in Kenya
lying in low-, mid-, and high- elevation zones, see Figure 1. The study area covers parts of the Coastal,
Eastern, Central, and Western regions of Kenya. The Central and Western regions exhibit cooler
and wetter climatic conditions which are particularly favorable for citrus growing. The two regions
experience a bi-modal rainfall distribution with the major crops being maize and beans, which in most
cases are interspersed with mangoes and citrus trees, in addition to tea and coffee. Generally, citrus
growing across the entire country is commonly practiced in small orchards and backyards, with only a
few big citrus plantations in Kenya.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  5 of 20 
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Figure 1. Study area (major citrus-growing regions) in Kenya where the African citrus triozid (Trioza
erytreae) presence data were collected.

In the low-lying coastal region with higher humidity levels, farmers cultivate a wide range of food
as well as tree crops like coconut palms, mango, citrus, and pawpaw. The major citrus-growing areas in
the coastal region are Kwale Kilifi and Taita Taveta [49]. The Eastern region is located in the hot and dry
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semi-arid savannah biome and has similar cropping patterns as the coastal region. It is dominated by steep
slopes with elevations ranging from 500 to 1200 m above mean sea level (m. a. m. s. l.).

2.2. ACT Occurrence Data

Field surveys were conducted along a clearly defined transect within the citrus-growing regions
from the lowlands to the highlands in Kenya. In general, horticultural farming in Kenya is mainly
carried out by small-scale producers because of the scarcity of productive land for horticultural
production. Thus, citrus is grown in a wide range of elevations ranging from the lowlands to the
highlands of Kenya [50]. The study area was divided into three elevation zones: Low (0–500 m. a.
m. s. l.), middle (501–1000 m. a. m. s. l.), and high (>1000 m. a. m. s. l.). Each elevation zone was
regarded as a stratum; therefore, we followed a stratified random sampling protocol to collect the
ACT presence data. In each stratum (i.e., elevation zone), we randomly selected citrus orchards and
nurseries, including backyards of small farms with a minimum orchard-to-orchard distance of 2 km
for sampling. At least 30 citrus orchards in each stratum were sampled and with the aid of a hand-held
Global Positioning System (GPS) device with a positional accuracy of ±2 m, the location of the citrus
orchard, nursery, or backyard farm where ACT was present was recorded as an occurrence point.
Specifically, for sample citrus orchard and backyard farms ≤ 0.5 ha, all citrus trees were inspected
for ACT symptoms, while in orchards > 0.5 ha only 20 randomly selected trees were sampled in each
orchard by moving across the orchard in a W-pattern [36]. Presence-only observations (n = 47) were
collected across the study area, see Figure 1, between January 2015 and September 2016. This number
of presence-only observations is regarded as acceptable in a MaxEnt modeling routine [51,52]. A subset
of the ACT presence-only observations was used for training the MaxEnt model (75% of the sample
observations), and 25% of the sample observations were used for model evaluation [53]. We also
collected information on the representative sample vegetation cover and type surrounding citrus
orchards and backyard farms where the ACT was present using geotagged photographs that were
taken from the main four cardinal directions of the orchards for further inspection on how the landscape
context could affect the presence of ACT.

2.3. Predictor Variables

We considered 35 variables as potential predictors for estimating ACT distribution and habitat
suitability. The variables were categorized into BCL and RS variables, see Table 1. For the BCL variables,
we selected variables based on the ecological requirements of the vector as reported in previous studies:
temperature, humidity, and elevation [36]. Temperature and precipitation were represented by 19
“bioclimatic” variables, see Table 1, available from the WorldClim database (www.worldclim.org) [54].
WorldClim projects current climatic conditions at 1-km spatial resolutions based on observations
gathered from different weather stations between 1950 and 2000; the point datasets are interpolated
using a thin plate smoothing spline algorithm to create a seamless raster dataset [54]. We also used
topographical variables related to the potential ACGD vectors’ habitat. These included elevation, slope,
hill shade, and aspect in degrees, see Table 1. Hill shade was included as a proxy for relative solar
radiation load that accounts for the effect of topographic shading [55]. We observed in the field that
the majority of ACT presence points were on the windward side for mountainous regions as opposed
to the leeward side; hence, we included hill shade as a predictor variable in our ACT distribution
model. The topographical variables were extracted from a void-filled 90 m digital elevation model
(DEM) data set from the Shuttle Radar Topographical Mission (SRTM) [56]. Using the Environment for
Visualizing Images (ENVI) version 4.8 (Exelis Visual Information Solutions, Boulder, CO, USA), both
bio-climatic and topographical variables were resampled using a bilinear interpolation method to fit
the 250m pixel size of the remotely-sensing variables [57].

RS variables on vegetation phenological metrics and vegetation productivity dynamics were
derived from a Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index
(EVI) time-series data at a 250-m spatial resolution. MODIS products such as Normalized Difference

www.worldclim.org
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Vegetation Index (NDVI) and EVI are the most widely used indices for monitoring of the vegetation
phenological pattern [58]. Matsushita et al [59] pointed out that NDVI is easily affected by soil
background and low vegetation coverage and easily saturated in high vegetation coverage. On the
other hand, EVI minimizes the noise of soil background and adjusts atmospheric aerosol interference,
thus improving the sensitivity of mimicking densely vegetated sites as compared to NDVI [60–62].
In the present study, MODIS 16-day EVI composites for the years 2014 to 2016 from the National
Aeronautics and Space Administration (NASA) Land Processes Distributed Active Archive Center
(LP DAAC—https://lpdaac.usgs.gov/) were downloaded and preprocessed using the MODISTools
package in R [63]. MODISTools provides a function for mosaicking and sub-setting the downloaded
data to a selected geographical extent. Then, we calculated 11 vegetation phenological metrics,
see Table 1, using the TIMESAT software [64]. Namely, we calculated (1) start of the season (start
of season) which is the time of initial vegetation green up, (2) end of the season (end of season)
representing time of initial vegetation senescence, (3) the length of growing season from green up
to senescence (length of season), (4) base level, which was calculated by averaging the left and right
minimum values (base value) that represent the baseline of the seasonal phenology curve, (5) time for
the middle of the growing season (mid of season), (6) the highest EVI value of the season (max fitted
value), (7) seasonal amplitude calculated as the difference between the peak EVI value and the average
of the left and right minimum values corresponding to the amount of EVI change (amplitude), (8) the
rate of vegetation green up (left derivative), (9) the rate of vegetation senescence (right derivative),
(10) proxy for the relative amount of vegetation biomass without regarding the minimum EVI values
(large integral), and (11) the proxy for the relative amount of vegetation biomass while regarding the
minimum EVI values (small integral). All 11 vegetation phenological metrics [64–66] were calculated
for the two growing seasons within each year. TIMESAT extracts vegetation phenological variables
by fitting a local function to the time-series datasets [67]. We fitted the Savitzky-Golay smoothing
model function that replaces the data value by values in a window using a second-order polynomial
function with optimum smoothing parameters [64,68]. The Savitzky-Golay function reduces the
effects of residual signals and smooths the time-series EVI dataset to a degree determined by the
size of the smoothing window and reduces the noise caused primarily by cloud contamination and
atmospheric variability [67]. The start and end of season threshold parameters for the smoothing
function were set at 20%, as suggested by Jonsson and Eklundh [64], to optimize the error that could
be caused by varying start and end of season dates in different locations across the study area [69].
Only variables for the first season were used in this study since data from the second season were
not consistent throughout all the years across the study area [69]. Our study area cuts across different
climatic zones in Kenya with a varying number of rainy seasons; hence, some of our sample sites
commonly experience unimodal rainfall (one rainy season), while others have bi-modal rainfall (two
rainy seasons) in a calendar year. This variability in the rainy seasons could have caused the variation
and inconsistency in the vegetation phenological variable across the entire study area during the
second rainy season. In addition to the vegetation phenological metrics, LST has proved to have a
major influence on the spread and development of pests and diseases [70]. LST variables extracted
from time-series MODIS data for the years 2014 to 2016 were averaged for each year and included in
the set of predictor variables. MODIS LST has a high spatial characteristic that enables the capture of
the spatial variability of land surface fluxes within a finer scale as opposed to point observations taken
on the ground.

https://lpdaac.usgs.gov/
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Table 1. Predictor variables used for modeling the ecological niche for the African citrus triozid (Trioza
erytreae). The variables were divided into two sets; environmental (bio-climatic and topographical) and
remote-sensing variables. Bold text refers to variables which were selected through a multi-collinearity
test using the Findcorrelation function in the caret package in the R software and finally used in the
MaxEnt model.

Data
Source Category Variables Description Abbreviations Units

WorldClim Bioclimatic Annual mean temperature Bio 1 ◦C
Mean diurnal range (mean of monthly (max temp, min temp)) Bio 2 ◦C

Isothermality (Bio 2/Bio 7) (×100) Bio 3 ◦C
Temperature seasonality (standard deviation × 100) Bio 4 ◦C

Maximum temperature of warmest month Bio 5 ◦C
Minimum temperature of coldest month Bio 6 ◦C
Temperature annual range (Bio 5-Bio 6) Bio 7 ◦C

Mean temperature of wettest quarter Bio 8 ◦C
Mean temperature of driest quarter Bio 9 ◦C

Mean temperature of warmest quarter Bio 11 ◦C
Mean temperature of coldest quarter Bio 11 ◦C

Annual precipitation Bio 12 mm
Precipitation of wettest month Bio 13 mm

Precipitation of driest month Bio 14 mm
Precipitation seasonality (coefficient of variation) Bio 15 mm

Precipitation of wettest quarter Bio 16 mm
Precipitation of driest quarter Bio 17 mm

Precipitation of warmest quarter Bio 18 mm
Precipitation of coldest quarter Bio19 mm

SRTM Topographic Ground height Elevation m
Sloping direction Aspect degree

Steepness of the ground Slope degree
Shading effect Hill shade n/a

MODIS EVI Remotely sensed Time for the start of the season Start of season decades
Time for the end of season End of season decades

Length of season from start to end Length of season decades
Mid of the season Mid of season decades

Difference between maximum and base level Amplitude n/a
Average minimum EVI value Base value n/a

Maximum fitted value Max fitted value n/a
Rate of increase at the beginning of season Left derivative %

Rate of decrease at the end of season Right derivative %
Large seasonal integral Large integral n/a
Small seasonal integral Small integral n/a

MODIS Land surface temperature LST ◦C

2.4. Predictor Variable Selection

To examine the expected multi-collinearity among the predictor variables, we performed
a Pearson correlation test, see Figure 2, between all the predictor variables shown in Table 1.
Furthermore, the “Findcorrelation” function in the Caret package in R was used to eliminate highly
correlated variables using the mean absolute error score. A correlation coefficient of |r| > 0.7 was set
as a collinearity indicator for variables that would severely affect our model [17]. Variables that met
this criterion were eliminated from the analysis, and only the uncorrelated predictor variables were
used in the MaxEnt model.
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2.5. EN Modeling

A MaxEnt model algorithm [71] was used to predict the distribution and likely suitable sites for ACT.
MaxEnt is a presence background machine-learning approach that estimates species’ distribution that has
maximum entropy subject to a set of constraints based upon a user’s knowledge of the environmental
conditions at known occurrence sites [27]. Like most maximum-likelihood estimation methods, the MaxEnt
algorithm adopts a uniform distribution and performs several iterations in which the weights related to the
environmental variables are adjusted to maximize the average probability of point localities. These weights
are then used to compute the distribution over the entire geographical space [72].

To minimize overfitting in the MaxEnt model, we implemented a regularization method to
penalize the model in proportion to the coefficient magnitude [73]. Further, we ran MaxEnt
models using the default variable responses setting and a logistic output format which results
in the ACT distribution suitability prediction ranging from 0 (less suitable) to 1 (highly suitable).
However, a default regularization multiplier was doubled to reduce the chance of under or over
prediction [74]. In addition, we used the 10th percentile training presence threshold which predicts the
10% most extreme presence observations as absent to eliminate ‘outliers’ from the final model [75].
To study the effects of the vegetation phenology and dynamics for predicting ACT distribution,
we performed two MaxEnt models, one included the environmental variables only (BCL model) and
the other included both the environmental and remote-sensing variables (BCL-RS model).
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2.6. EN Models Validation

Commonly, the accuracy of the MaxEnt distribution suitability maps is assessed using conventional
accuracy measures such as the area under the curve (AUC) and chi-squared (X2) statistics. However, these
accuracy statistics are somehow biased and highly sensitive to the proportional extent of the predicted
presence observations [76], as a result of an overestimation of the pseudoabsence samples. Hence, in this
study, we employed more reliable and adequate measures to evaluate the overall MaxEnt model
performance. Specifically, we used true skill statistic (TSS) and Cohen’s kappa coefficient (Khat) to evaluate
the accuracy of the ACT distribution suitability maps [77]. As compared to TSS, kappa inherently depends
on prevalence. However, an ideal measure of model performance should not be affected by prevalence but
combine sensitivity and specificity [78]. Thus, TSS combines both sensitivity and specificity to account
for both omission and commission errors and is not affected by prevalence and the size of the validation
set and, therefore, is the best parameter to measure model performance. Both TSS and Khat range from
−1 to +1, where +1 indicates perfect agreement between the observed and predicted ACT observations,
whereas values <0 indicate no agreement or that most of the predicted ACT observations were produced by
chance [79]. In addition, we used a Jackknife procedure to assess the relative importance of each individual
predictor variable to the ACT distribution suitability model [80]. To test the null hypothesis that there was
no statistical (p ≤ 0.05) difference between the predictions of the BCL and the BCL-RS MaxEnt models,
a two-sample t-test was performed. Herein, using ‘ArcGIS create random points’ tool, we generated
500 random sample points throughout the study area and compared their predictive power for each of the
two models (i.e., BCL and BCL-RS).

2.7. Landscape Context Calculation

To describe the landscape context, we used a LULC map at a 20-m spatial resolution over
the study area based on one year of Sentinel-2A observations ranging from December 2015 to
December 2016 developed and validated by Climate Change Initiative (CCI) Land Cover (LC)
team [81]. Since ACT is likely to spread locally up to a distance of 1500 m by natural dispersal [82],
we extracted the LULC proportion within a 1500 m radius buffer from the center for each of the
24 ACT occurrence points collected from the field which were not overlapped within each buffer,
see Figure 3. The proportions of the four major LULC classes (tree cover, shrubs cover, grassland,
and cropland) within each buffer were calculated. We hypothesize that these four major LULC
classes could influence the occurrence of ACT within a landscape scale. The same buffers were
also used to extract the corresponding average habitat suitability scores from the suitability map
generated by the MaxEnt algorithm. Random forest (RF) regression [83,84] analysis was performed to
determine the most relevant LULC classes for the ACT habitat suitability scores using the RF variable
importance by-product. An RF regression model was performed using the default settings suggested
by Breiman [83], and the importance of the LULC classes was assessed using the RF mean decrease in
accuracy (%) metric.
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3. Results

3.1. EN Models

The Pearson correlation test for multi-collinearity resulted in selecting only six BCL and six RS
uncorrelated predictor variables, respectively, see Table 1. The overall accuracy, TSS, and Khat for
both the BCL and BCL-RS MaxEnt models are shown in Table 2. A combined BCL-RS model gave
the highest accuracy of 92% with a TSS score of 0.83 compared to the model with only environmental
variables (BCL model), which had an overall accuracy of 85% and a TSS score of 0.572. TSS and Khat
statistics showed a prediction better than expected at random (TSS = 0.5) for both models, with the
BCL-RS model performing better than the BCL model.
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Table 2. Accuracy assessment statistics for the developed African citrus triozid (Trioza erytreae) MaxEnt models.

Model Bio-Climatic and Topographical Variables
(BCL, n = 6)

Bio-Climatic, Topographical and Remotely-Sensed Variables
(BCL-RS, n = 12)

Overall accuracy 0.85 0.92
Sensitivity 0.73 0.91
Specificity 0.85 0.92

Khat 0.30 0.42
TSS 0.57 0.83

3.2. Variable Importance

Figures 4 and 5 show the results of the jackknife test of variable importance for the BCL and BCL-RS
models, respectively. Blue shades show the individual importance of each variable when used in isolation,
while green shows the model performance when the variables are exempted from the model. The figures
also show the variables which caused the greatest decreases in the gain when omitted, indicating that
they provided a significant portion of information that was not contained in the other variables. For both
models (BCL and BCL-RS), the variable with the highest gain (relevance) when used in isolation was Bio 18;
therefore, Bio 18 appears to have the most useful information individually, followed by Bio 16 (for variable
definitions see Table 1). Likewise, the variables that decreased the gain the most when they were omitted
were Bio 16 and Bio 18 for the BCL model and Bio 16 and LST for the BCL-RS model. These variables
appear to have the most influence on the models compared to the other variables.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  11 of 20 

The Pearson correlation test for multi-collinearity resulted in selecting only six BCL and six RS 
uncorrelated predictor variables, respectively, see Table 1. The overall accuracy, TSS, and Khat for both 
the BCL and BCL-RS MaxEnt models are shown in Table 2. A combined BCL-RS model gave the 
highest accuracy of 92% with a TSS score of 0.83 compared to the model with only environmental 
variables (BCL model), which had an overall accuracy of 85% and a TSS score of 0.572. TSS and Khat 

statistics showed a prediction better than expected at random (TSS = 0.5) for both models, with the 
BCL-RS model performing better than the BCL model. 

Table 2. Accuracy assessment statistics for the developed African citrus triozid (Trioza erytreae) 
MaxEnt models. 

Model Bio-climatic and topographical variables 
(BCL, n = 6) 

Bio-climatic, topographical and remotely-
sensed variables (BCL-RS, n = 12) 

Overall 
accuracy 

0.85 0.92 

Sensitivity 0.73 0.91 
Specificity 0.85 0.92 

Khat 0.30 0.42 
TSS 0.57 0.83 

3.2. Variable Importance 

Figures 4 and 5 show the results of the jackknife test of variable importance for the BCL and 
BCL-RS models, respectively. Blue shades show the individual importance of each variable when 
used in isolation, while green shows the model performance when the variables are exempted from 
the model. The figures also show the variables which caused the greatest decreases in the gain when 
omitted, indicating that they provided a significant portion of information that was not contained in 
the other variables. For both models (BCL and BCL-RS), the variable with the highest gain (relevance) 
when used in isolation was Bio 18; therefore, Bio 18 appears to have the most useful information 
individually, followed by Bio 16 (for variable definitions see Table 1). Likewise, the variables that 
decreased the gain the most when they were omitted were Bio 16 and Bio 18 for the BCL model and 
Bio 16 and LST for the BCL-RS model. These variables appear to have the most influence on the 
models compared to the other variables. 

 
Figure 4. Jackknife variable importance test of regulated gains for the BCL model. The dark blue 
shades show the regularized training gain for the specific variable, light blue shows the relevance 
when the variable is omitted, while red shows the regularized training gain with all the variables 
combined. 

Figure 4. Jackknife variable importance test of regulated gains for the BCL model. The dark blue
shades show the regularized training gain for the specific variable, light blue shows the relevance when
the variable is omitted, while red shows the regularized training gain with all the variables combined.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  12 of 20 

 
Figure 5. Jackknife variable importance test of regulated gains for the BCL-RS model. The dark blue 
shades show the regularized training gain for the specific variable, light blue illustrates gains without 
the variable, while red shows the regularized training gain with all the variables combined. 

Table 3 presents the percentage that each variable contributed and its permutation importance 
in the BCL and BCL-RS models, respectively. In the BCL model, Bio 16 was the variable that 
contributed the most (48.3%) followed by Bio 18 (44.5%), Elevation (4.0%), and Aspect (2.2%), 
respectively. Similarly, in the BCL-RS model, Bio 16 contributed the most (41%), followed by Bio 18 
(36.3%), while the contributions for LST, Elevation, and Aspect ranged from 4.9% to 6.6%. 

Table 3. Percentage contributions and permutation importance for each variable to the BCL and BCL-
RS models, respectively.  

Variables Percent Contribution Permutation Importance 
BCL Model 

Bio 16 49.3 40.5 
Bio 18 44.5 38.9 

Elevation 04.0 18.3 
Aspect 02.2 02.3 
Bio 2 00.0 00.0 

Bio 13 00.0 00.0 
BCL-RS Model 

Bio 16 41.0 30.6 
Bio 18 36.3 23.9 

Land surface temperature (LST) 06.6 11.5 
Elevation 05.3 07.0 

Aspect 04.9 07.8 
Small integral 02.8 03.9 
Large integral 02.5 07.6 

Bio 13 00.5 04.2 
Right derivative 00.2 03.4 
Left derivatives 00.0 00.1 

3.3. Habitat Suitability Mapping 

Figure 6 shows the predicted habitat suitability map for ACT based on the BCL, see Figure 6a, 
and the BCL-RS, see Figure 6b, models. The maps indicate the more suitable predicted sites with 
warmers colors (red) and less suitable predicted sites with cooler colors (blue). Both models show 
better predicted conditions in Western, Central, and small parts of Eastern Kenya. These areas have 

Figure 5. Jackknife variable importance test of regulated gains for the BCL-RS model. The dark blue
shades show the regularized training gain for the specific variable, light blue illustrates gains without
the variable, while red shows the regularized training gain with all the variables combined.



ISPRS Int. J. Geo-Inf. 2018, 7, 429 12 of 19

Table 3 presents the percentage that each variable contributed and its permutation importance in
the BCL and BCL-RS models, respectively. In the BCL model, Bio 16 was the variable that contributed
the most (48.3%) followed by Bio 18 (44.5%), Elevation (4.0%), and Aspect (2.2%), respectively.
Similarly, in the BCL-RS model, Bio 16 contributed the most (41%), followed by Bio 18 (36.3%),
while the contributions for LST, Elevation, and Aspect ranged from 4.9% to 6.6%.

Table 3. Percentage contributions and permutation importance for each variable to the BCL and
BCL-RS models, respectively.

Variables Percent Contribution Permutation Importance

BCL Model

Bio 16 49.3 40.5
Bio 18 44.5 38.9

Elevation 04.0 18.3
Aspect 02.2 02.3
Bio 2 00.0 00.0

Bio 13 00.0 00.0

BCL-RS Model

Bio 16 41.0 30.6
Bio 18 36.3 23.9

Land surface temperature (LST) 06.6 11.5
Elevation 05.3 07.0

Aspect 04.9 07.8
Small integral 02.8 03.9
Large integral 02.5 07.6

Bio 13 00.5 04.2
Right derivative 00.2 03.4
Left derivatives 00.0 00.1

3.3. Habitat Suitability Mapping

Figure 6 shows the predicted habitat suitability map for ACT based on the BCL, see Figure 6a,
and the BCL-RS, see Figure 6b, models. The maps indicate the more suitable predicted sites with warmers
colors (red) and less suitable predicted sites with cooler colors (blue). Both models show better predicted
conditions in Western, Central, and small parts of Eastern Kenya. These areas have a higher elevation above
mean sea level. The least suitable sites are mostly towards the coastal region which has lower elevations.
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The t-test result showed that the BCL-RS model produced significantly (t-statistic = 2.8279 and p =
0.005) higher AUC values compared to the BCL model. The t-test difference in the means, indicated that
RS variables contributed 18% to the prediction model when combined with environmental variables.

3.4. Relationship between ACT Habitat Suitability and Landscape Context

We realized that there are diverse and multiscale responses of landscape context (i.e., LULC) to
the habitat suitability of ACT. Using the mean decrease in accuracy (%) in the RF variable importance
rank, the “shrubs” class was found to be the most relevant LULC class to ACT habitat suitability
followed by “trees”, “grassland”, and “cropland”, respectively, as shown in Figure 7.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  14 of 20 
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Figure 7. The relevance of the four major land use/land cover classes to the habitat suitability of
African citrus triozid (Trioza erytreae) using a random forest variable importance rank.

4. Discussion

This study tests the applicability of an EN modeling approach for predicting the distribution and
suitable habitat for ACT in citrus-growing regions in Kenya. This was achieved through nesting ACT
habitat variables with a MaxEnt modeling framework for generating distribution information that is
fundamental for prioritizing sites in which the management of ACGD is most needed or feasible [85].
A reliable and accurate ACT distribution map is a valuable information source for monitoring vector
infestation rates and disease spread. Such a spatial data set can also be used to prioritize interventions
that prohibit the spread of the disease to unaffected areas [86]. The “near-real-time” aspect of the
remotely-sensing data means that the largely neglected aspect of early response can be addressed
within integrated pest management (IPM) strategies [87].

In general, our study shows that both the uncorrelated BCL and RS variables were well-associated
with the occurrence of ACT in typical Eastern African landscapes with their heterogeneous agro-ecologies.
The results showed the importance of fusing RS with BCL variables in reducing the overestimated spatial
variability in the predictor variables and in enhancing the predictive power of the model [69]. For the
best performing models, Bio 16 (annual precipitation) had the highest contribution towards predicting
the habitat suitability for ACT followed by Bio 18 (precipitation of the warmest quarter), LST, elevation,
aspect, and small integral (MODIS-derived vegetation productivity). Precipitation of both the wettest and
warmest quarter were important variables in defining the habitat suitability of ACT since they regulate
the optimal temperature ranges within which the triozid survives [88]. In addition, precipitation and
temperature regulate citrus flushing circles which are known to be highly correlated with the occurrence
of ACT [10]. The significance of the precipitation related variables in describing habitat suitability for
ACT was more pronounced than elevation, which has been linked with the distribution of the vector in a
previous study [36]. This could be due to the micro-climatic aspect which is not entirely dependent on
elevation but also landscape heterogeneity, among other aspects. In the BCL model, Bio 16 and Bio 18 alone
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contributed more than 92% to the model performance, while in the BCL-RS model, the contribution from
these variables was reduced to 77% indicating that inclusion of RS variables contributes immensely to the
model. Since our aim was to start from known BCL variables that are commonly used to predict the spatial
distribution of crop pests, then explore the contribution of RS variables to the predictive model performance,
we did not create a model without bioclimatic variables. Also, we did not create any bootstrapped MaxEnt
models, which could have allowed the quantification of the effect sampling variability had on our model
results (ACT distribution map).

Makori et al. [69] reported that RS information used within habitat suitability models is known to
better account for explicit landscape patterns, that define habitats, thereby reducing model over-fitting
and essentially increasing the accuracy and precision of habitat suitability models. In addition,
our results showed that LST played a key role in defining the niche of the ACT vector. This is in
agreement with previous studies which have shown LST to be a main parameter in pest modeling
routines [89]. The influence of RS variables in modeling the habitat suitability of ACT was considerable.
The BCL model, as shown in Figure 6a, had over-predicted the distribution of ACT compared to
the BCL-RS model, as shown in Figure 6b. In our ACT prediction distribution map, areas with high
occurrence probabilities are characterized by high precipitation, high elevation, lower temperature
regimes, and relatively similar vegetation productivity patterns.

The ACT distribution maps using BCL-RS variables show high occurrences of ACT in specific locations
of the coastal region of Kenya. This disagrees with the findings of previous studies that ACT is unlikely
to be present in coastal ecosystems. This could be related to vegetation dynamics and landscape context
(i.e., LULC), which are very distinct in some specific areas along the coastal region, such as Wundanyi
sub-county in Taita-Taveta county where the habitat suitability was reported to be high compared to other
coastal regions of Kenya using the MaxEnt model. Despite the climate conditions being very similar to
other regions where the model has predicted a high suitability of ACT, vegetation patterns in regions
where the habitat suitability is high are very distinct and of similar productivities since they have common
climatic conditions in terms of rainfall and temperature. This is in alignment with the finding from the
literature that vegetation dynamics play a key role in defining the niche of crop pests and diseases [90].
This result reinforced the importance of both BCL and RS variables for modeling the distribution of ACT.
Further, our study is a step towards the understanding of how the spread of insect pests is enhanced
by BCL (both bio-climatic and topographic) and RS (vegetation phenological variables and LST), that
influence the spread and multiplication of the vector in African agro-ecosystems.

Furthermore, the results from this study revealed that landscape context should not be ignored
regarding understanding the distribution and dispersal pattern of ACT. However, we did not include
landscape context in our MaxEnt model since from our field observation, we realized that the majority
of the citrus orchards in our study area are within a cropland class. In our case, a presence-only MaxEnt
model would have extracted only ‘cropland’ features for all ACT presence points. Therefore, we opted
to look at the effect of the landscape context on ACT habitat suitability based on the dispersal capability
of the pest (which is 1500 m). The relationship between ACT habitat suitability and the four major
LULC classes across the major citrus-growing regions showed that there is an association between
the surrounding shrub cover proportion and habitat suitability for ACT. Shrub cover near citrus
orchards could provide alternative host plants for the vector during the time when citrus trees are not
flushing since ACT is correlated with the flushing rhythm of the citrus host [91]. In addition, from field
observations, it became clear that the majority of the ACT-infected citrus trees were within shaded
areas, and thus trees and shrubs surrounding the citrus orchards most likely provide more suitable
temperature conditions for the survival of ACT.

To the best of our knowledge, our study is the first attempt to predict the distribution of ACT using
an enhanced and optimized EN modeling algorithm with BCL and RS variables and habitat suitability
relationships with the surrounding landscape classes. Previous studies have only investigated the
role of various environmental variables for mapping ACP distribution, but in these studies, links
between localized factors captured in more sophisticated modeling routines and better consideration
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of landscape patterns were not considered [36]. Future studies should explore the relationship between
vegetation phenological and other localized pest classification factors and ACT densities (i.e., number
of insets per unit area) to better understand the survival and dispersal patterns of the vector as there is
a need for a better and more concerted implementation of vector management practices.

5. Conclusions

The impact of spatially heterogeneous environmental factors on ACT population dynamics are
complex to model. However, understanding the inter-relationship between vectors, hosts, and their
niches environment can provide valuable information for identifying conditions suitable for pathogen
introduction and transmission in citrus-growing regions. By exploring the spatial distribution of ACT,
we identified a set of BCL factors that are favorable for its development, predicted its spatial occurrence,
and identified potential areas that, due to their BCL conditions, would be suitable for its introduction.

The BCL-RS model showed higher accuracy metrics and was deemed appropriate for predicting
the distribution and potentially suitable areas for ACT. Though less important, the influence of
vegetation phenological variables and LST for determining the habitat suitability of ACT was
considerable. Our results revealed that apart from the BCL variables like temperature, rainfall,
and elevation, which have previously been found to define the EN of ACT, vegetation patterns and
dynamics at a landscape level play a key role in influencing vector-host-pathogen transmission and
distribution. The ACT distribution prediction maps are an important tool for identifying risk zones
and understanding risk drivers. Also, the distribution maps can provide baseline information for the
development and implementation of effective IPM strategies. Future studies should look at modeling
the density of ACT on a landscape scale for the precise application of prevention and control measures.
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