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Abstract: The objective of this study was to identify the areas that are most susceptible to landslide
occurrence, and to find the key factors associated with landslides along Jinsha River and its tributaries
close to Derong and Deqin County. Thirteen influencing factors, including (a) lithology, (b) slope angle,
(c) slope aspect, (d) TWI, (e) curvature, (f) SPI, (g) STI, (h) topographic relief, (i) rainfall, (j) vegetation,
(k) NDVI, (l) distance-to-river, (m) and distance-to-fault, were selected as the landslide conditioning
factors in landslide susceptibility mapping. These factors were mainly obtained from the field
survey, digital elevation model (DEM), and Landsat 4–5 imagery using ArcGIS software. A total of
40 landslides were identified in the study area from field survey and aerial photos’ interpretation.
First, the frequency ratio (FR) method was used to clarify the relationship between the landslide
occurrence and the influencing factors. Then, the principal component analysis (PCA) was used to
eliminate multiple collinearities between the 13 influencing factors and to reduce the dimension of
the influencing factors. Subsequently, the factors that were reselected using the PCA were introduced
into the logistic regression analysis to produce the landslide susceptibility map. Finally, the receiver
operating characteristic (ROC) curve was used to evaluate the accuracy of the logistic regression
analysis model. The landslide susceptibility map was divided into the following five classes:
very low, low, moderate, high, and very high. The results showed that the ratios of the areas
of the five susceptibility classes were 23.14%, 22.49%, 18.00%, 19.08%, and 17.28%, respectively.
And the prediction accuracy of the model was 83.4%. The results were also compared with the FR
method (79.9%) and the AHP method (76.9%), which meant that the susceptibility model was
reasonable. Finally, the key factors of the landslide occurrence were determined based on the above
results. Consequently, this study could serve as an effective guide for further land use planning
and for the implementation of development.

Keywords: landslide susceptibility mapping; frequency ratio; principal component analysis; logistic
regression analysis; receiver operating characteristic curve

1. Introduction

Landslides have become one of the most destructive disasters in mountainous areas [1].
Landslide susceptibility mapping at regional scales is of great significance to risk mitigation
and land planning in mountainous areas [2,3]. Landslide susceptibility can be thought of as
the tendency of a region to generate landslides [4,5]. Landslide susceptibility only takes into account
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the likelihood of the landslide predisposing factors of landslide occurrence, not including the instability
process and the return period of landslide occurrence [6,7].

With the development of the geographic information system (GIS), global positioning system
(GPS), and remote sensing (RS), many researchers have applied these technologies to landslide
susceptibility mapping [8–10]. Over the last decades, many statistical methods have been used
in landslide susceptibility mapping, such as the logistic regression analysis [11], frequency ratio
(FR) [10], statistical index (SI) [12], certainty factor (CF) [13], discriminant analysis (DA) [14],
evidential belief function [15], and index of entropy [16]. In addition to the statistical methods, a lot
of machine learning algorithms, such as artificial neural network models (ANN) [10], support vector
machines (SVM) [13], maximum entropy (MaxEnt) [16], and naïve Bayes [17] have also been used
for landslide susceptibility mapping. But beyond that, some ensemble methods have also been
used in landslide susceptibility mapping, such as the ANN–SVM, ANN–MaxEnt, SVM–MaxEnt,
ANN–MaxEnt–SVM [18], and ANN–Bayes analyses [19].

In this study, logistic regression was applied to produce the landslide susceptibility map of
the study area, which is a multivariate statistical method and has been widely used in landslide
susceptibility analysis. Logistic regression is a statistical method, but it is actually a machine learning
method, except that its mathematical expression is known. Compared with other evaluation methods,
it has the following features: (1) it is based on statistical methods, and it has low requirements for
the quality and quantity of samples; (2) the independent variable can be continuous or discrete, and it
does not have to satisfy the normal distribution; (3) this method is very mature, with many mature
tests, and the results are easy to test [5,8–11]. Our choice of this method was based on the fact that
landslide occurrence is controlled by many linear and nonlinear influencing factors. The aims of this
study are to identify the areas that are most susceptible to the occurrence of landslides, and to find
the key factors associated with landslides. So, this study is mainly divided into six steps, as follows:
(1) According to the remote sensing and aerial photos’ interpretation and the field survey, a total of
40 landslides were mapped in the study area (including rock slope deformation, rock planar slide,
and rock flexural topple, not including debris flow). (2) Based on the field survey, the mechanism of
the landslide, the local geo-environmental conditions, and the previous studies, 13 influencing factors,
were selected to produce the landslide susceptibility map. (3) In order to clarify the relationship
between the landslide occurrence and the influencing factors, the frequency ratio (FR) model was
used to describe their relationship. (4) Principal component analysis (PCA) was used to eliminate
the multiple collinearity between the 13 influencing factors. (5) Logistic regression analysis was used
to produce the landslide susceptibility map, and was compared with other methods. (6) The receiver
operating characteristic (ROC) curve was used for validation.

The purpose of this study is to find an accurate landslide susceptibility map, and to find the key
factors associated with landslides, which provides a reasonable tool for the landslide risk mitigation
of the study area. The landslide susceptibility map could serve as an effective guide for the further
land use planning and for the implementation of development.

2. Study Area

The study area lies on the border between the Sichuan province and Yunnan province of china,
along the upper reaches of the Jinsha River. On the left bank of the Jinsha River is Derong County,
and the right bank is Deqin County. The study area ranges from 99◦12′ E to 99◦21′ E longitude
and from 28◦12′ N to 28◦26′ N latitude, covering a total area of 364.10 km2 (Figure 1). The elevation of
the study area ranges from 1989 to 4888 m, and the maximum elevation difference is 2899 m. The study
area belongs to the Tibetan Plateau, which is a rapidly uplifting region. Previous studies have shown
that since the Quaternary, neotectonic movement has made the study area uplift at a rate of 5 mm
per year [20]. As a result of the rapid uplift, a rapid river incision was caused. Many landslides
occurred along the river because of the combined effect of both the rapid uplift and river incision.
The annual temperature is 13.8−19.2 ◦C. As a result of the study area being under the influence of
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southwest and southeast monsoons, the climatic characteristics of this area are complex. The study
area belongs to the subtropical dry–hot valley climate. Because of the huge elevation difference
and the monsoons, the foehn effect here is very significant. The mean annual precipitation of the low
elevation area is around 300 mm. However, it can reach more than 1000 mm in the high elevation area.

Figure 1. Geographical position and landslide inventory of the study area.

3. Methodology

The methodology of this study is shown in Figure 2. Based on the flow chart, this study is mainly
divided into the following three steps: (a) data preparation, (b) landslide susceptibility modeling
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using logistic regression analysis; and (c) evaluation accuracy analysis using a receiver operating
characteristic (ROC) curve.

Figure 2. Flow chart of this study.

3.1. Methods

In the analysis of landslide susceptibility, the influencing factors are usually used as
the independent variables, and whether the landslides occurred is shown as a binary (“1” represents
a landslide occurred, “0” represents a landslide has not occurred). Because of the existence of
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non-continuous variables in the influencing factors (such as lithology), the multivariate linear
regression method will no longer be applied to the derivation of the relationship between
such independent variables and dependent variables. However, the logistic regression (LR)
method can solve this problem.

The logistic regression method is a commonly used method for the statistical analysis of
dichotomous dependent variables (the dependent variable only takes two values). This method
can describe the relationship between a binary dependent variable and a series of independent variables.
The independent variable can be continuous or discrete, and it does not have to satisfy the normal
distribution. Logistic regression can describe the complex nonlinear relationship between the natural
phenomena using simple linear regression, and can be used to predict the probability of an event’s
occurrence. The odds ratio estimated using logistic regression can also be used to test the strength of
the correlation between the independent variables and the dependent variables. So, this method has been
widely used in the analysis of landslide susceptibility.

The main idea of the logistic regression model is to determine the likelihood of future landslide
occurrence after each factor is converted to a logical variable. Logistic regression use the maximum
likelihood method to look for the “best fit”. The simplified logical regression method can be described
by the following equation [10,21]:

P =
1

1 + e−z , (1)

where P is the probability of landslide occurrence, and the value of P ranges between 0 and 1; z is
the liner combination:

z = β0 + β1Y1 + β2Y2 . . . + βGYG, (2)

where β0 is a constant; β1, β2, . . . , and βG are the regression coefficients; and Y1, Y2, . . . , and YG
are the influencing factors. In the analysis of landslide susceptibility, the pixels with landslides have
a value of 1, and the pixels without landslides have a value of 0. By using the logistic regression
and the observed data, the probability of the landslide occurrence can be calculated.

3.2. Landslides and Influencing Factors

The study area of this paper is very large, and the terrain is very steep. Many areas are inaccessible
to human beings. It is very important to conduct a detailed geological survey of the landslides
in the study area, but, because of time and manpower constraints, it is impossible to conduct
a detailed field survey of all of the landslides in the study area. Therefore, it is necessary to carry out
the investigation and research of landslides by means of aerial photos and remote sensing interpretation
technology. Landslides have certain recognition features in remote sensing images and aerial photos,
such as shape, color, shadow, and differences with surrounding topography and landform [22,23].
In previous remote sensing interpretation work, if there was an area where there were obvious landslide
characteristics, we would have tentatively defined it as a landslide. Subsequently, the field survey
in the study area was used to determine the accuracy of the interpretation of the landslides, and to
supplement those that could not be interpreted.

There are many factors that affect the occurrence of landslides [4,24–32]. In order
to understand the main factors affecting landslide sensitivity, Hamid Reza Pourghasemi
and Mauro Rossi reviewed 220 scientific papers published between 2005 and 2012 in different
ISI (Internation Scientific Indexing) journals [15], and they counted the application frequency
of the influencing factors, which were used in landslide susceptibility mapping. The statistical
results show that the 20 factors with the highest application frequency were the slope degree,
lithology, slope aspect, land cover/land use, distance from river, elevation, distance from faults,
plan curvature, profile curvature, distance from road, soil type, topographic wetness index (TWI),
rainfall, normalized difference vegetation index (NDVI), slope-length, steam power index (SPI),
drainage density, geomorphology, soil thickness, and fault density. According to the statistical results
and the geological environment characteristics of the study area, 13 influencing factors were selected
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for landslide susceptibility mapping in this study, and they can be divided into the following three
categories: lithology, geomorphological, and environment. These influencing factors maps were
converted to a pixel size of 10 × 10 m, and the digital elevation model (DEM) was also converted to
the same pixel size. All of those maps are conducted using ArcGIS 10.2 software. The classification of
the continuous influencing factors was based on previous studies [24,25].

3.2.1. Landslide Inventory

By means of the aerial photo and remote sensing interpretation and extensive field survey,
a total of 40 landslides were identified and mapped along the Jinsha River and Dingqu River.
Fourteen of these landslides are located on the right bank of the Jinsha River and eight are on its
left bank. Five landslides are located on the right of the Dingqu River, and three are located on its
left (Figure 1). As shown in Figure 1, the landslides in the study area are mainly distributed on
the left bank of the Jinsha River and Dingqu River. The reason for this is that landslide occurrence
is affected by topography, stratigraphic lithology, geological structure, meteorological conditions,
hydrological conditions, human engineering activities, and so on.

3.2.2. Lithology Factor

The influence of formation lithology on the occurrence of landslides is obvious. The type,
degree of hardness, structural characteristics, and so on have great influence on the physical
and mechanical properties, weathering resistance, deformation, and failure modes of the slopes.
According to the geological map of scale 1:200,000, the exposed strata in the study area are form
the Devonian, Carboniferous, Permian, Triassic, and Quaternary. The Quaternary strata include
the landslide accumulation (Qh

del) and the bench gravel and sand layer (Qp
3). The Triassic strata

include the Jiabila formation (T3j) and Qugasi formation (T2q
1, T2q

2, and T2q
3). The lithology of

the Jiabila formation are mainly composed of siltstone, volcanic rock, slate, sandstone, and limestone.
The lithology of the Qugasi formation are mainly composed of volcanic rock, slate, sandstone,
and limestone. The Permian strata include the Gangdadai formation (P2 and P2g) and the Ranlang
formation (P1b, P1a, and P1r). The lithology of the Gangdadai formation and the Ranlang formation are
mainly composed of volcanic rock, slate, sandstone, and limestone. The carboniferous strata include
the Dingpo formation (C3) and Zhapu formation (C2). The lithology of the Dingpo formation
and the Zhapu formation are mainly composed of basalt, andesite, rhyolite, and volcanic breccia.
The Devonian strata include the Qiongcuo formation (D2q) and the Gerong formation (D1g).
The lithology of the Qiongcuo formation and Gerong formation are mainly composed of volcanic rock,
slate, sandstone, and limestone. The geological map was used to extract a lithology map.

3.2.3. Geomorphological Factors

The statistical results of Hamid Reza Pourghasemi and Mauro Rossi show that geomorphological
factors have a significant influence on the occurrence of landslides. According to the statistical
results, seven factors are selected in this category, including the slope angle, slope aspect,
topographic wetness index (TWI), curvature, steam power index (SPI), sediment transport index
(STI), and topographic relief.

Slope angle: Slope angle is one of the most important factors for landslide susceptibility
mapping [33]. Within a certain slope angle, because of the increases of the slope angle, the gravity stress
and shear stress of the slope generally increase and the probability of slope failure is increased [34].
Based on the digital elevation model (DEM), with a resolution of 10 m of the study area, the slope
angle map can be extracted using the ArcGIS 10.2.

Slope aspect: As another important factor for landslide susceptibility mapping, the slope
aspect affects the rainfall direction, and the amount and the effluence of the solar radiation of
the slope. So, it makes the moisture and vegetation unevenly distributed in the slope [15,24,25,35].
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Therefore, the slope aspect has a different influence on the slope stability. The slope aspect map was
produced using the DEM.

TWI: The TWI reflects the amount of flow accumulation at any point in the study area [36].
To some extent, the TWI represents the distribution of the soil moisture [37]. The TWI can be calculated
using the following equations [38–40]:

TWI = ln(AS ÷ tanβ), (3)

where AS is the upslope contributing area and β is the slope angle.
Curvature: Curvature describes the morphological characteristics of the slope shape,

which reflects the formation of surface erosion and surface runoff. The slope shape provides spaces for
slope sliding [41]. The curvature map was extracted using the DEM.

SPI: The SPI reflects the erosion capacity of water flow in the study area [42]. The SPI can be
calculated using the following equations [43]:

SPI = AS × tanβ, (4)

where AS is the upslope contributing area and β is the slope angle.
STI: The STI is a dimensionless parameter, and it is calculated by combining the length

and steepness. It describes the process of erosion and deposition of the study area [44]. The STI
can be calculated using the following equations [40]:

STI = (
As

22.13
)

0.6
× (

sinβ

0.0896
)

1.3
, (5)

where AS is the upslope contributing area and β is the slope angle.
Topographic relief: Topographic relief can reflect the change of the rolling of the slope surface

and can reveal the law of topography change of an entirety area.

3.2.4. Environmental Factors

The environmental factors include the average annual rainfall, vegetation, normalized difference
vegetation index (NDVI), distance-to-river, and distance-to-fault.

Average annual rainfall: Rainfall is one of the most important factors that trigger landslides.
Rainfall will cause the erosion on the slope surface. The water infiltration will increase the gravity of
the rock and reduce the shear strength of the joints, thus inducing landslide hazards. Because of
the foehn effect, the precipitation of the study area follows an obvious vertical distribution.
Previous studies have shown that the precipitation increases with increasing elevation, and it
is proportional to the elevation [45]. There are many precipitation stations distributed in
the Yunnan and Sichuan province (China Meteorological Data Service Center) [24,46], but most
of these are distributed in the county, rather than along Jinsha River and Dingqu River. Based on
the distance to the Jinsha River and Dingqu River, the climate zone, and other factors, nine precipitation
stations were selected to establish the relationship between the average annual rainfall and elevation,
as listed in Table 1. In Figure 3, the red points represent the rainfall data collected from the nine
precipitation stations. The fitting equation is as follows:

Pa = 0.265H − 223.4, (6)

where H is the elevation of the precipitation stations and Pa is the average annual rainfall. Caochen [12]
suggested that the precipitation gradient is 24.4 mm/100 m of the Xulong reservoir, which is similar to
this area. The precipitation gradient of this study is 26.5 mm/100 m. So, 26.5 mm/100 m is a reasonable
precipitation gradient of the study area.
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Table 1. Annual precipitation measured by precipitation station at different elevation.

Precipitation
Station Longitude Latitude Elevation/m Average Annual

Precipitation/mm Data Resources/Year

Derong 99◦10.2′ 28◦25.8′ 2422.9 347.1 1981−2010
Batang 99◦03.6′ 30◦00.0′ 2589.2 497.0 1981−2010

Xiangcheng 99◦28.8′ 28◦33.6′ 2842.0 483.1 1981−2010
Xianggelila 99◦25.2′ 27◦30.0′ 3276.7 651.1 1981−2010

Deqin 98◦33.0′ 28◦17.4′ 3319.0 696.7 1981−2010
Dege 98◦35.0′ 31◦48.0′ 3184.0 622.4 1981−2010
Baiyu 98◦50.0′ 31◦13.0′ 3260.0 626.6 1981−2010

Benilan 99◦17.0′ 28◦17.0′ 2023.0 308.0 1965−1998
Shangqiaotou 99◦24.0′ 28◦10.0′ 2040.0 369.7 1961−2004

Figure 3. The relationship between elevation and average annual precipitation based on the nine
precipitation stations.

Vegetation: For the field survey, the vegetation of the study area can be divided into the following
five types: (a) in the elevation range, 1989 to 2500 m is the bare soil; (b) in the elevation range,
2500 to 3300 m is the brush-forbs; (c) in the elevation range, 3300 to 4200 m is the woods;
(d) in the elevation range, 4200 to 4500 m is the grassland; and (e) in the elevation range, more than 4500 m
is the snow.

NDVI: The NDVI can be used to reflect the vegetation coverage of the study area. If the normalized
vegetation index is less than zero, it means that the ground is covered with water or snow.
If the normalized vegetation index is equal to zero, it means that there is bare land or rock.
If the normalized vegetation index is greater than zero, it indicates that there is vegetation cover,
and the greater the value, the higher the vegetation coverage. The Landsat 4–5 image was used to
extract the NDVI map.

Distance-to-river: The slope on both sides of the river is usually eroded by rivers. In normal
conditions, at the closer distance to the river, the stronger the erosion and the higher probability of
the occurrence of landslides [47]. The distance-to-river map was calculated in 300 m intervals.

Distance-to-fault: In the faulted zone, the rock is relatively broken and the joint fracture is
developed, which makes the slope of these areas less stable and more prone to landslide occurrence [48].
The distance-to-fault map was calculated in 300 m intervals.

All of the influencing factor maps are shown in Figures 4–7.
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Figure 4. Influencing factors maps of the study area: (a) lithology; (b) slope angle; (c) slope aspect;
and (d) topographic wetness index (TWI).
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Figure 5. Influencing factor maps of the study area: (a) curvature; (b) steam power index (SPI);
(c) sediment transport index (STI); and (d) topographic relief.
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Figure 6. Influencing factor maps of the study area: (a) rainfall; (b) vegetation; (c) normalized difference
vegetation index (NDVI); and (d) distance-to-river.



ISPRS Int. J. Geo-Inf. 2018, 7, 438 12 of 29

Figure 7. Influencing factors maps of the study area: (a) distance-to-fault and (b) elevation.

3.3. Evaluation of Influencing Factors

3.3.1. Probabilistic Relationship Analysis between Landslides and the Influencing Factors

Bivariate statistical methods are commonly used to compute the probabilistic relationship between
the dependent and independent variables. In this paper, the frequency ratio (FR) method will be
used to ensure the relationship between the influencing factors and the occurrence of the landslides.
In the FR method, the quantitative relationship between the landslide occurrence and the different
conditioning parameters can be identified and expressed as an FR value. The FR value calculation
process is very concise, and can be realized as follows [49]:

FR =
a/A
b/B

, (7)

where a is the number of pixels with landslides for each conditioning factor, A is the total number of
pixels with landslides in study area, b is the number of pixels for each conditioning factor, and B is
the total number of pixels in the study area. If the values are greater than 1, it means there is a greater
correlation, whereas values less than 1 represent a minor correlation [12].

3.3.2. Principal Component Analysis

In general, there is no independent test on the selected influencing factors before logistic regression.
However, the adjustment of the logistic regression model is sensitive to the linear correlation of
the influencing factors [50]. The linear correlation of the influencing factors will increase the variance
of the logistic regression coefficients. Some studies use an independence test to verify the mutual
independence of each influencing factor, such as the variance inflation factor (VIF) [51] and conditional
independence test [52], and can then exclude the influencing factors, which are highly correlated.
However, compared with these methods, the principal component analysis (PCA) can not only
eliminate the multicollinearity problem among the influencing factors, but can also be used to evaluate
by how much the different influencing factors affect the landslide susceptibility of the study area.
This is crucial to the subsequent search for the key factor of landslide occurrence. So, in this paper,
PCA is used to reduce the dimension of the preselected influencing factors and change the factors,
which are reselected, so as to make them independent of each other. Then, the reselected factors will
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be used in the logistic regression to eliminate the influence of the linear correlation between the factors
on the predicted results.

The principal component analysis uses the liner correlation between the preselected
factors, replacing the preselected factors with a small number “principal components”.
Those “principal components” can represent most of the information of the preselected factors [53].
The algebraic essentials of PCA are as follows: Let Y (t, x) be a preselected data at point x (x = 1, . . . , p)
and time t (t = 1, . . . , m). The matrices {Y(t, x): x = 1, . . . , p} mean all of the values of Y(t, x) at point
t from 1 to m, and the matrices center on their time averages. Those matrices can be replaced as
the p × 1 column vectors, Y(t) = [Y(t, 1), . . . , Y(t, p)]T, and “T” means the transformation operation.
The vectors will form a series of points around the origin of a p-dimensional Euclidian space, Ep.
So, PCA can transform the preselected factors system to a new factors system, using the linear
transformation. PCA makes the greatest variance using any projection of the data lies as the first
principal component, and the second greatest variance as the second principal component, and so on.
Thus, by retaining the characteristics of the data set that contribute most to its variance, PCA can be
used to reduce the dimensional of the data set.

The steps of PCA are as follows:

(1) Use the following equation to normalize the preselected influencing factors:

M =
H − Hmin

Hmax − Hmin
, (8)

where M is the preselected influencing factor’s normalized value, H is the value of each preselected
influencing factor’s pixels, Hmax and Hmin are the maximum and minimum values of each preselected
influencing factor, respectively.

(2) In ArcGIS 10.2 software, a 20 × 20 m fishnet was built to sample 13 preselected factors.
(3) Using the Kaiser–Meyer–Olkin (KMO) test and the Bartlett’s test of the sample data,

the applicability of PCA can be verified.
(4) PCA was carried out for the sample data, and a correlation matrix eigenvalue greater than 0.9 was

selected as the principal component.
(5) According to the principal component, a new influencing factors system will be built.

3.4. Data for the Logistic Regression Analysis

In order to establish the logistic regression model, which needed pixels with or without
the presence of landslides [54], we created datasets containing 200,000 pixels with landslides
and an equal number of non-landslides pixels, which were randomly chosen from the study area.
Both of the landslides pixels and non-landslides pixels are divided into two sets. One set of the pixels
that was used as the training dataset for the regression analysis included 90% (180,000 pixels)
of the pixels. And the other set was used as the validation dataset, which included 10% (20,000 pixels)
of the pixels. So, the final datasets consisted of 400,000 pixels. All of the pixel’s information are put
into a table. One column of the table contained the status information of the landslides. A value
of 1 was assigned to the pixels with landslides, and a value of 0 was assigned for the pixels without
landslides. In the other column, the one for the influencing factors, contained the influencing factors
value information. Finally, the datasets will be used in the logistic regression analysis, and the value of
β0, . . . , βG can be achieved, which can be used to calculate the value of z.

3.5. Model Development

First, before the PCA, the datasets should be tested using the Kaiser–Meyer–Olkin test
and the Bartlett’s test. The Kaiser–Meyer–Olkin test is used to test the correlation between the influencing
factors, and its values range from 0 to 1. The Bartlett’s test is used to test whether the influencing factors
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are independent from each other. When the KMO value is greater than 0.6 and the Bartlett’s value is
less than 0.01, it is suitable for the PCA. Second, the goodness of fit of the logistic regression model was
evaluated using the Cox and Snell pseudo R2 test and the Negelkerke pseudo R2 test [55]. The value
of the Cox and Snell pseudo R2 test is usually less than 1. The value of the Negelkerke pseudo R2

test ranges from 0 to 1 [55,56]. If an R2 value is more than 0.2, it means that it is a good fit [57].
Finally, the landslide susceptibility map produced by the logistic regression model will be divided into
the following five classes using the natural breaks method: very high, high, moderate, low, and very low.

3.6. Model Validation

It is necessary to validate the accuracy of the model. In this study, the receiver operating
characteristic curve (ROC) analysis was used to evaluate the prediction power of the model.
The ROC curve is drawn with the false positive rate (sensitivity) as the X-axis, and the true positive
rate (1-specificity) as the Y-axis. It has a chance diagonal (the connection between the origin
and the point (1, 1)), and the ROC curve area (AUC) of the opportunity diagonal is 0.5. The farther away
the opportunity diagonal, the larger the AUC value, and the more accurate the prediction. For any
prediction experiment, the value of AUC is between 0.5 and 1. The ROC curve area is commonly used
as a standard to evaluate the goodness of the susceptibility model [25,51,58–61].

4. Results

4.1. Evaluation of Influencing Factors

In order to clarify the relationship between the landslide occurrence and the influencing factors,
the FR model was used to describe the relationship between them. Table 2 shows the results of
the application of the FR model. From this table, it is seen that the percentages of the landslide
area of the Qh

del, T2q
2, T2q

1, P2g, and D2q were 7.32%, 14.00%, 17.40%, 35.67%, and 22.82%, respectively,
which means 97.21% of the landslide area was distributed among the five lithologies. The lithologies
with an FR value greater than 1 are Qh

del, Q3
P, T2q

1, P2g, and D2q, and the highest value of the FR
was Qh

del (13.04), following by T2q
1 (4.72), P2g (2.48), Q3

P (1.37), and D2q (1.26). This means that
the relationship between the lithology and the occurrence of the landslide from small to large is T2q

1,
P2g, Q3

P, and D2q. The slope angle was between 0 and 73◦ in the study area. For the slope angle
factor, classes 20−30, 30−40, and 60−70 had a positive FR value (1.11, 1.05, and 2.06, respectively).
For the slope angle classes <20, 40−60, and >70, the FR values were negative. This means that the slope
angle classes of 20−40 and 60–70 were prone to landslide occurrence. As for the slope aspect, 75.83%
of the landslide areas were found in the slope aspect of the S, SW, W, and NW. The areas facing
the SW, W, and NW have higher FR values, which means that they have higher probabilities of
landslide occurrence. The TWI of the study area was divided into the following four classes: <6, 6–12,
12–18, and >18. Over 70 % of the landslide areas were found in the class of 6–12. The FR values of
the four classes were 0.93, 1.01, 1.42, and 0.60, respectively. It can be seen that the TWI classes of 6–12
and 12–18 are prone to landslide occurrence. As for the curvature, the percentages of the landslide
area of the classes of concave, flat, and convex were 39.71%, 29.00%, and 39.30%, respectively, but the FR
values of the three classes were not high.
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Table 2. Distribution of the training pixels. NDVI—normalized difference vegetation index;
FR—frequency ratio; TWI—topographic wetness index; SPI—steam power index; STI—sediment
transport index; NDVI—normalized difference vegetation index.

Factors Class
Landslide Not Occurred Landslide Occurred

Total Count FR
Count Ratio Count Ratio

Lithology

Qh
del 1067 0.03% 19,379 7.32% 20,446 13.04

Q3
p 44,741 1.33% 4964 1.88% 49,705 1.37

T3j
1 82,644 2.45% 0 0.00% 82,644 0.00

T2q
3 433,458 12.84% 0 0.00% 433,458 0.00

T2q
2 646,006 19.13% 37,075 14.00% 683,081 0.75

T2q
1 88,043 2.61% 46,056 17.40% 134,099 4.72

P2 265,722 7.87% 639 0.24% 266,361 0.03
P2g 430,106 12.74% 94,434 35.67% 524,540 2.48
P1

b 461,126 13.66% 0 0.00% 461,126 0.00
P1

a 127,972 3.79% 0 0.00% 127,972 0.00
P1

r 141,015 4.18% 0 0.00% 141,015 0.00
C3 55,805 1.65% 1763 0.67% 57,568 0.42
D2q 598,585 17.73% 60,422 22.82% 659,007 1.26

Slope Angle

0–10 99,022 2.93% 3832 1.45% 102,854 0.51
10–20 390,709 11.57% 27,926 10.55% 418,635 0.92
20–30 1,105,152 32.73% 96,973 36.63% 1,202,125 1.11
30–40 1,284,364 38.04% 105,990 40.04% 1,390,354 1.05
40–50 430,872 12.76% 25,518 9.64% 456,390 0.77
50–60 60,726 1.80% 3549 1.34% 64,275 0.76
60–70 5331 0.16% 939 0.35% 6270 2.06
>70 114 0.00% 5 0.00% 119 0.58

Slope Aspect

Flat 1938 0.06% 6 0.00% 1944 0.04
N 433,950 12.85% 7207 2.72% 441,157 0.22

NE 364,642 10.80% 13,411 5.07% 378,053 0.49
E 387,480 11.48% 28,779 10.87% 416,259 0.95

SE 340,425 10.08% 14,563 5.50% 354,988 0.56
S 435,604 12.90% 31,770 12.00% 467,374 0.93

SW 466,658 13.82% 60,966 23.03% 527,624 1.59
W 509,216 15.08% 67,252 25.40% 576,468 1.60

NW 436,377 12.92% 40,778 15.40% 477,155 1.18

TWI

<6 812,439 24.06% 58,599 22.14% 871,038 0.93
6–12 2,486,604 73.65% 197,698 74.68% 2,684,302 1.01

12–18 70,336 2.08% 8122 3.07% 78,458 1.42
>18 6911 0.20% 313 0.12% 7224 0.60

Curvature
Concave 1,341,951 39.75% 105,133 39.71% 1,447,084 1.00

Flat 689,221 20.41% 55,595 21.00% 744,816 1.03
Convex 1,345,078 39.84% 104,044 39.30% 1,449,122 0.99

SPI (×104)
<15.78 1,029,734 30.50% 2,447,736 93.58% 3,477,470 0.98

15.78–1432.47 138,638 4.11% 16,422 6.20% 155,060 1.46
>1432.47 7898 0.23% 574 0.22% 8472 0.93

STI

<35 887,114 26.27% 60,897 23.00% 948,011 0.88
35–600 2,320,987 68.74% 185,085 69.91% 2,506,072 1.02

600–9509 162,241 4.81% 18,227 6.89% 180,468 1.39
>9509 5948 0.18% 523 0.20% 6471 1.11

Topographic Relief

0–10 707,752 20.96% 52,211 19.72% 759,963 0.94
10–20 2,052,327 60.79% 170,331 64.34% 2,222,658 1.05
20–30 552,583 16.37% 37,517 14.17% 590,100 0.87
30–40 54,636 1.62% 2928 1.11% 57,564 0.70
>40 8992 0.27% 1745 0.66% 10,737 2.24
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Table 2. Cont.

Factors Class
Landslide Not Occurred Landslide Occurred

Total Count FR
Count Ratio Count Ratio

Rainfall

303.68–439.10 684,222 20.27% 120,189 45.40% 804,411 2.05
439.10–571.60 940,470 27.86% 93,156 35.19% 1,033,626 1.24
571.60–704.10 751,015 22.24% 40,886 15.44% 791,901 0.71
704.10–836.60 526,648 15.60% 10,501 3.97% 537,149 0.27
836.60–969.10 364,558 10.80% 0 0.00% 364,558 0.00
969.10–1071.92 109,377 3.24% 0 0.00% 109,377 0.00

Vegetation

Bare Soil 684,222 20.27% 120,189 45.40% 804,411 2.05
Brush-forbs 1,410,763 41.78% 126,123 47.64% 1,536,886 1.13

Woods 831,805 24.64% 18,420 6.96% 850,225 0.30
Grassland 340,123 10.07% 0 0.00% 340,123 0.00

Snow 109,377 3.24% 0 0.00% 109,377 0.00

NDVI

−0.378–0.038 369,510 10.94% 45,345 17.13% 414,855 1.50
0.038–0.149 901,201 26.69% 141,964 53.63% 1,043,165 1.87
0.149–0.272 799,708 23.69% 51,241 19.36% 850,949 0.83
0.272–0.412 734,348 21.75% 18,177 6.87% 752,525 0.33
0.412–0.705 571,523 16.93% 8005 3.02% 579,528 0.19

Distance-to-river

0–300 260,359 7.71% 30,297 11.44% 290,656 1.43
300–600 222,237 6.58% 52,314 19.76% 274,551 2.62
600–900 210,492 6.23% 46,048 17.39% 256,540 2.47

900–1200 204,869 6.07% 39,290 14.84% 244,159 2.21
1200–1500 198,806 5.89% 31,041 11.73% 229,847 1.86

>1500 2,279,527 67.52% 65,742 24.83% 2,345,269 0.39

Distance-to-fault

0–300 522,093 15.46% 79,029 29.85% 601,122 1.81
300–600 510,160 15.11% 75,870 28.66% 586,030 1.78
600–900 297,156 8.80% 38,661 14.60% 335,817 1.58

900–1200 533,958 15.81% 46,486 17.56% 580,444 1.10
1200–1500 348,652 10.33% 18,600 7.03% 367,252 0.70
1500–1800 286,178 8.48% 5486 2.07% 291,664 0.26
1800–2100 207,871 6.16% 600 0.23% 208,471 0.04

>2100 670,222 19.85% 0 0.00% 670,222 0.00

As for the SPI, the highest FR value was found to be related to the class of 15.78–1432.47 (1.46),
followed by the classes of <15.78 (0.98) and >1432.47 (0.93). Over 90% of the landslide area was found
in the class of <15.78. The FR values for each class of the STI were 0.88, 1.02, 1.39, and 1.11, respectively.
Over 69% of the landslide area was found in the class of 35–600. The FR values of the topographic
relief classes of 0–10, 10–20, 20–30, 30–40, and >40 were 0.94, 1.05, 0.87, 0.70, and 2.24, respectively,
which means that the class of >40 was favorable for landslide hazards. Over 60% of the landslide
area was found in the class of 20–30. As for the rainfall, 45.40% of the landslide area was found
in the class of 303.68–439.10, 35.19% of the landslide area was found in the class of 439.10–571.60,
and 15.44% of the landslide area was found in the class of 571.60–704.10. The classes of 303.68–439.10
and 439.10–571.60 had positive FR values (2.05 and 1.24, respectively). For the rainfall class of >571.60,
the FR value was negative. As for the vegetation, 45.40% of the landslide areas were found in the bare
soil zones, and 47.64% of the landslide areas were found in brush-forbs zones. The FR value of
the vegetation classes of bare soil, brush-forbs, woods, grassland, and snow were 2.05, 1.13, 0.30, 0.00,
and 0.00, respectively. The NDVI was between −0.378 and 0.705. More than 90% of the landslide
area had an NDVI value below 0.272. The classes of −0.378–0.038 and 0.038–0.149 had positive
FR values (1.50 and 1.87, respectively). The landslides were mainly distributed within 0–1500 m of
the river, and 0–1200 m of the faults.

4.2. Result of the PCA

The adjustment of the logistic regression model is sensitive to the linear correlation of
the influencing factors. In this study, the PCA was used to eliminate the linear correlation between
the influencing factors. First, all of the influencing factors were normalized. Next, a 20 × 20 m fishnet
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was built in the study area, so as to sample 13 preselected factors. A total of 12,748,442 sampling
points were obtained. Then, the Kaiser–Meyer–Olkin (KMO) test and the Bartlett’s test of the sample
data were carried out. The test results are shown in Table 3. It can be seen from Table 3, that the KMO
test value is 0.640 and the p-value is <0.05, which shows that there was a certain correlation between
the influencing factors, and it was suitable for the PCA.

Table 3. Results of the Kaiser–Meyer–Olkin (KMO) test and the Bartlett’s test.

KMO test 0.640

Bartlett’s test 8,177,019.716
p-value 0.000

The correlation matrix of the influencing factors is shown in Table 4. As can be seen from
Table 4, the correlation coefficient between the slope angle and the topographic relief was 0.90,
the correlation coefficient between the SPI and STI was 0.96, and the correlation coefficients between
the rainfall and vegetation was 0.95. These results show that there was a high correlation between
some of the influencing factors. In other words, there were extra elements between the preselected
influencing factors.

According to the eigenvalue of the correlation matrix, six principal components with eigenvalues
greater than 0.9 were selected. In general, the higher the eigenvalue, the greater the difference reflected
by the principal component, and the more the actual information of the preselected influencing factors
can be retained. From Table 5, it can be seen that the sum of the variance contribution rates of the six
principal components was 82.36%, which means that they extracted 82.36% of the information from
the original data.

In the process of dimension reduction, PCA is used. The newly generated factors are liner
combinations of the preselected influencing factors. According to the component score coefficient
matrix, shown in Table 6, six new factors can be obtained, namely, Factor 1, Factor 2, Factor 3, Factor 4,
Factor 5, and Factor 6. In the matrix, the higher the coefficient of the preselected influencing factor
was, the higher the correlation between the new factors and the preselected influencing factors was.
The new factor maps are shown in Figures 8 and 9.

Table 4. The correlation matrix of the influencing factors.

Factors F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

F1 1.00 0.12 −0.08 −0.03 0.00 0.01 0.02 0.12 −0.40 −0.38 −0.27 −0.34 −0.41
F2 0.12 1.00 −0.01 −0.25 0.01 −0.02 0.00 0.90 −0.06 −0.07 −0.04 −0.13 −0.02
F3 −0.08 −0.01 1.00 0.00 0.00 0.00 0.00 −0.01 0.09 0.07 0.08 0.02 0.09
F4 −0.03 −0.25 0.00 1.00 −0.28 0.19 0.31 −0.26 −0.08 −0.07 −0.04 −0.04 −0.01
F5 0.00 0.01 0.00 −0.28 1.00 −0.02 −0.05 0.01 0.03 0.02 0.01 0.01 0.00
F6 0.01 −0.02 0.00 0.19 −0.02 1.00 0.96 −0.02 −0.04 −0.04 −0.04 −0.04 −0.01
F7 0.02 0.00 0.00 0.31 −0.05 0.96 1.00 0.00 −0.06 −0.05 −0.04 −0.05 −0.01
F8 0.12 0.90 −0.01 −0.26 0.01 −0.02 0.00 1.00 −0.07 −0.09 −0.05 −0.15 −0.02
F9 −0.40 −0.06 0.09 −0.08 0.03 −0.04 −0.06 −0.07 1.00 0.95 0.48 0.80 0.38

F10 −0.38 −0.07 0.07 −0.07 0.02 −0.04 −0.05 −0.09 0.95 1.00 0.41 0.77 0.34
F11 −0.27 −0.04 0.08 −0.04 0.01 −0.04 −0.04 −0.05 0.48 0.41 1.00 0.35 0.34
F12 −0.34 −0.13 0.02 −0.04 0.01 −0.04 −0.05 −0.15 0.80 0.77 0.35 1.00 0.36
F13 −0.41 −0.02 0.09 −0.01 0.00 −0.01 −0.01 −0.02 0.38 0.34 0.34 0.36 1.00

Notes: F1—lithology; F2—slope angle; F3—slope aspect; F4—TWI; F5—curvature; F6—SPI; F7—STI;
F8—topographic relief; F9—rainfall; F10—vegetation; F11—NDVI; F12—distance-to-river; F13—distance-to-fault.
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Figure 8. Influencing factor maps selected using principal component analysis (PCA): (a) Factor 1; (2)
Factor 2; (3) Factor 3; and (b) Factor 4.
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Table 5. Total variance explained.

Components
Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 3.506 26.969 26.969 3.506 26.969 26.969
2 2.190 16.843 43.812 2.190 16.843 43.812
3 1.873 14.409 58.220 1.873 14.409 58.220
4 1.146 8.813 67.034 1.146 8.813 67.034
5 1.038 7.985 75.019 1.038 7.985 75.019
6 0.910 6.997 82.016 0.910 6.997 82.016
7 0.724 5.568 87.584 - - -
8 0.624 4.797 92.382 - - -
9 0.570 4.384 96.766 - - -

10 0.252 1.939 98.705 - - -
11 0.096 0.737 99.441 - - -
12 0.040 0.310 99.751 - - -
13 0.032 0.249 100.000 - - -

Figure 9. Influencing factors maps selected by PCA: (a) Factor 5 and (b) Factor 6.

Table 6. Component score coefficient matrix.

Factors 1 2 3 4 5 6

F1 −0.577 −0.076 −0.019 0.112 −0.299 0.447
F2 −0.207 −0.588 0.717 −0.177 −0.034 −0.003
F3 0.126 0.005 0.032 −0.115 0.798 0.573
F4 −0.054 0.611 −0.091 −0.486 −0.061 −0.004
F5 0.032 −0.195 −0.001 0.850 0.198 −0.112
F6 −0.102 0.719 0.619 0.223 0.012 0.009
F7 −0.117 0.746 0.626 0.139 0.004 0.007
F8 −0.220 −0.590 0.714 −0.174 −0.020 −0.012
F9 0.925 −0.052 0.140 0.035 −0.176 0.199
F10 0.895 −0.038 0.124 0.047 −0.210 0.230
F11 0.592 −0.040 0.097 −0.069 0.132 −0.107
F12 0.842 0.016 0.057 0.045 −0.251 0.165
F13 −0.577 −0.076 −0.019 0.112 −0.299 0.447

Notes: F1—lithology; F2—slope angle; F3—slope aspect; F4—TWI; F5—curvature; F6—SPI; F7—STI;
F8—topographic relief; F9—rainfall; F10—vegetation; F11—NDVI; F12—distance-to-river; F13—distance-to-fault.
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4.3. Landslide Probability

The six factors that were obtained using the PCA will be introduced into the logistic regression
analysis. We checked the significance of each factor. We will retain only the significant factor that had
a p-value less than 0.05. In other words, we will exclude the factors with a p-value more than 0.05 from
the model. The first regression analysis results (Table 7) show that the p-value of Factor 4 was greater
than 0.05, so it was excluded from the logistic regression analysis model.

Table 7. The first logistic regression analysis results.

Factors Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

P-value 0.000 0.042 0.000 0.784 0.000 0.000

The Cox and Snell pseudo R2 test and the Negelkerke pseudo R2 test were used to evaluate
the goodness of the fit of the logistic regression model. For the final logistic regression model,
the Cox and Snell pseudo R2 value was 0.233, and the Negelkerke pseudo R2 value was 0.310 (Table 8).
Both the Cox and Snell R2 value and the Negelkerke pseudo R2 value were greater than 0.200,
which indicates that the fitting result was good.

Table 8. Results of the Cox and Snell pseudo R2 test and the Negelkerke pseudo R2 test.

Pseudo R2 test value

Cox and Snell pseudo R2 test 0.233
Negelkerke pseudo R2 0.310

In the final logistic regression model, Factor 1, Factor 2, Factor 3, Factor 5, and Factor 6,
were introduced into the logistic regression analysis model. In this study, the odds ratio was used
to assess the relationship of the factors and the landslide susceptibility. If the odds ratio value of
the factors is greater than 1, it means that the factors are related to landslide susceptibility. If the odds
value of the factors is equal to 1, it means that the factors are neutral with landslide susceptibility.
If the odds ratio value is less than 1, it means that the factors are negated with landslide susceptibility.
From Table 9, it can be seen that Factor 2 and Factor 5 were related with landslide susceptibility,
while Factor 1, Factor 3, and Factor 6 were negated with landslide susceptibility.

Table 9. The factors estimated coefficients.

Factors BG Standard Error of Estimate Wald χ2 Value p-Value Odds Ratio

Factor 1 −5.370 0.036 21,795.771 0.000 0.005
Factor 2 0.478 0.168 8.081 0.004 1.613
Factor 3 −0.859 0.131 42.868 0.000 0.424
Factor 5 2.324 0.019 14,953.978 0.000 10.215
Factor 6 −0.538 0.017 991.685 0.000 0.584
Constant 0.925 0.016 3183.937 0.000 2.522

Using Equation (1), we calculated the predicted probability of landslides for the entirety of
the study area. The result was a raster map and the value of each pixel of the map represents
the estimated probability of landslide occurrence. The map was divided into the following five classes:
very high, high, moderate, low, and very low (Figure 10). Table 10 shows that the areas of the five classes
are 62.93, 98.48, 65.55, 81.89, and 84.25 km2, respectively.

In order to establish a more accurate model of landslide susceptibility, the FR method
and the analytic hierarchy process (AHP) were also used in this study. As the application of
the FR method and the AHP in landslide susceptibility modeling is quite known, the theory was not
introduced in this study. This study only lists the evaluation results of the FR method and the AHP
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method. The landslide susceptibility maps of the FR method and the AHP method were also divided
into five classes using the natural breaks method (Figure 10). Table 10 shows that the areas of
the five susceptibility classed of the AHP method (very high, high, moderate, low, and very low)
were 40.14, 70.10, 88.99, 103.14, and 61.73 km2, respectively. For the FR method, they were 35.08, 74.00,
84.82, 101.67, and 68.53 km2, respectively.

Table 10. Statistical results of the landslide susceptibility mapping. PCA-LR—principal component
analysis logistic regression; FR—frequency ratio; AHP—analytic hierarchy process.

Models Susceptibility
Landslide Occurred Total Study Area

Prediction Accuracy
Count Ratio Area (km2) Count Ratio Area (km2)

PCA-LR

Very Low 8021 3.02% 0.80 842549 23.14% 84.25

83.4%
Low 1625 6.12% 1.63 818895 22.49% 81.89

Moderate 33,901 12.76% 3.39 655499 18.00% 65.55
High 88,080 33.15% 8.81 694770 19.08% 69.48

Very High 1,184,800 44.59% 11.85 629309 17.28% 62.93

AHP

Very Low 2441 0.92% 0.24 617269 16.95% 61.73

76.9%
Low 16,843 6.34% 1.68 1031436 28.33% 103.14

Moderate 29,421 11.07% 2.94 889896 24.44% 88.99
High 76,814 28.91% 7.68 701028 19.25% 70.10

Very High 139,213 52.39% 13.92 401393 11.02% 40.14

FR

Very Low 4774 1.80% 0.48 685253 18.82% 68.53

79.9%
Low 18,598 7.00% 1.86 1016745 27.92% 101.67

Moderate 44,106 16.60% 4.41 848232 23.30% 84.82
High 101,138 38.06% 10.11 740007 20.32% 74.00

Very High 96,116 36.17% 9.61 350785 9.63% 35.08

Figure 10. Landslide susceptibility map: (a) PCA-logistic regression (LR) method; (b) FR method;
and (c) analytic hierarchy process (AHP) method.
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5. Discussion

5.1. Validation

The validation is very important for landslide susceptibility mapping. Without validation,
the landslide susceptibility model will have no meaning. In order to verify the quality of the prediction
and the stability of the model, the ROC curve has been used to estimate the model’s accuracy, which is
used as a quantitative measurement. The ROC curves of the model built in this study are shown
in Figure 11. From Figure 11, it can be seen that the AUCs of the PCA-LR model, AHP model,
and FR model were 0.834, 0.769, and 0.799, respectively. Many studies have introduced the traditional
academic point system into the accuracy ranking, and they have suggested that the accuracy rate
between 0.90 and 1.00 is excellent, the accuracy rate between 0.80 and 0.90 is good, the accuracy rate
between 0.70 and 0.80 is fair, the accuracy rate between 0.60 and 0.70 is poor, and the accuracy rate
between 0.50 and 0.60 is failing [62,63]. Thus, the accuracy rate of the PCA-LR model fell within
the “good” classification category, and the accuracy rate of the FR model and the AHP model fell
within the “fair” classification category. We also compared our results with other studies in similar
areas. The prediction accuracy of the landslide susceptibility model of the Xulong reservoir, which is
similar to this area, based on the combination of the information content method and the hierarchical
analysis method established by Caochen [24] is 85.74%. This result is basically equal to the result of
the PCA-LR model established in this paper, and the prediction accuracy of this model is the highest.
Therefore, the subsequent discussion in this paper is based on the PCA-LR model.

Figure 11. Receiver operating characteristic (ROC) curve of the model.

5.2. Key Factors for Landslide Occurrence

The landslide susceptibility mapping should not only produce the landslide susceptibility map,
but also identify the main factors of landslide occurrence, and evaluate the contribution and influence
of these factors. In order to establish the landslide susceptibility model, we adopted an FR method
to analyze the correlation between landslide occurrence and preselected factors, using PCA to
eliminate the multicollinearity between the preselected factors. Finally, the 13 preselected factors
were reduced to six factors, and the landslide susceptibility model was established using logistic
regression. For the logistic regression model, the odds ratios (Exp(βG)) can be used to measure
the correlation between the factors and the landslide occurrence. The component score coefficient of
the PCA shows the extent of the correlation between the principal components and the preselected
factors. The FR method can reflect the correlation between each class of each preselected factor
and landslide occurrence. Based on the above discussion, we can find the combination of the most
favorable factors for landslide occurrence.
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Because the odds ratios of Factor 2 (1.613) and Factor 5 (10.215) (Table 9) are greater than 1,
this indicates that Factor 2 and Factor 5 play a major role in landslide occurrence in the study area.
From Table 6, it can be seen that the slope angle (−0.588), TWI (0.611), SPI (0.719), STI (0.746),
and topographic relief (−0.590) are the preselected factors with the highest correlation for Factor 2,
and the lithology (0.299), slope aspect (−0.588), vegetation (0.132), rainfall (−0.210), NDVI (−0.251),
distance-to-river (0.798), and distance-to-fault (−0.299) are the preselected factors with the highest
correlation for Factor 5. This means that these preselected factors have a stronger effect on landslide
occurrence than the other factors.

Lithology: From Table 2, it can be seen that the lithologies with an FR value greater than 1 are
Qh

del, Q3
P, T2q

1, P2g, and D2q. The lithology of these strata is mainly limestone, volcanic rock, slate,
and green schist. In the area where the landslides densely occurred in the study area, the thickness
of the rock mass is thin or medium–thin. The rock mass is cut by joins and fractures, and these
discontinuities are highly developed. Thus, the local gravity deformation of the rock mass is serious.
It is common to see the bending phenomena and tearing deformation phenomena in the rock mass.
Therefore, these factors provide favorable conditions for landslide occurrence.

Slope angle and distance-to-river: According to the FR value, the slope angle classes that were
the most prone to landslide were 20–40 and 60–70. As for the distance-to-river, the class that was
most prone to landslide was the class of 0–1500. The study area is located in a rapidly uplifting
region [64]. According to previous research, it was shown that the annual uplift rate of the study
area was 5.8 ± 1.0 mm from 1970 to 2012 [65]. The rapid uplift give rise to a rapid river incision.
Under the combined action of the bedrock uplift and the river incision, the slope along the river become
steeper [24,25,34,66]. In this case, landslides can make the slopes adjust to the rapid river incision
quickly [66]. So, a large number of landslides have occurred along the Jinsha River and Dingqu River.

Slope aspect: The FR value of the slope aspect classes show that the areas facing the SW, W,
and NW have higher probabilities of landslide occurrence. The slope aspect usually affects the slope
structure of the rock mass. The altitude of rock dipping toward to the inner slope was more prone to
bending, and the dip bedded rock slope is more prone to landslide occurrence than the escarpment
slope is.

TWI, SPI, and STI: From Table 2, it can be seen the TWI classes of 6–12 and 12–18, the SPI
class of 1.58–1432.47, and the STI classes of 35–600, 600–9509, and >9509 had a positive effect on
the landslide occurrence. These factors reflect the hydrologic condition of the study area. The smaller
the TWI value, the lower the moisture. The higher TWI value symbolizes a higher order water channel.
In this study, the TWI classes of 6–12 and 12–18 represent a lower order drainage, which is vulnerable
to instability. As for SPI and STI, a high value is indicative of water contributions from upslope
and high water flow velocities, and the effect of topography on erosion, which are directly linked to
landslide occurrence [67].

Topographic relief: The FR value of the topographic relief shows that the class of >40 was favorable
for landslide hazards.

Rainfall, vegetation, and NDVI: As for the rainfall, vegetation, and NDVI, the classes most prone
to landslide were the class of 303.68–439.10 (rainfall), classes bare soil and brush-forbs (vegetation),
and the class −0.378–0.149 (NDVI). It can be seen that the area with high rainfall has fewer landslides.
The reason for this was that the annual rainfall in the study was generally low (around 300 mm in
the low elevation and 1000 mm in the high elevation), and the precipitation commonly occurred as
snowfall in the high elevation area (elevation more than 4800 m) [12]. Therefore, it is difficult to have
effective rainfall in a short period, leading to the occurrence of landslides. Second, because of the close
relationship between the vertical distribution of the precipitation and the distribution of the vegetation,
the distribution of the vegetation also followed a vertical distribution law. The low elevation areas
have little vegetation, because of the low rainfall (the low and high elevation areas has a low NDVI
value and the moderate elevation area have a high NDVI value). Areas without vegetation cover are
more prone to cause the landslides.
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Distance-to-fault: The landslides mainly occurred within 0–1200 m of the faults. In the faulted
zone, the rock is relatively broken and the joint fracture is developed, which makes the slope of these
areas less stable and more prone to landslide occurrence [48].

In summary, the factors that are most favorable to landslide occurrence are as follows: (a) lithology:
Qh

del, Q3
P, T2q

1, P2g, and D2q; (b) slope angle: 20–40 and 60–70; (c) slope aspect: SW, W, and NW;
(d) TWI: 6–18; (e) SPI: 1.58–1432.47; (f) STI: >35; (g) topographic relief: >40; (h) rainfall: 303.68–571.60;
(i) vegetation: bare soil and brush-forbs; (j) distance-to-river: 0–1500 m; (k) distance-to-fault: 0–1200 m.

5.3. Landslide Susceptibility Mapping

The landslide susceptibility map (PCA-LR model) is shown in Figure 6, and the statistical results of
the landslide susceptibility mapping are shown in the Table 10. It can be seen from Figure 5 and Table 10
that the very low and the low susceptibility areas had an area of 84.25 km2 and 81.89 km2, accounting
for 23.14% and 22.49% of the total study area, respectively. This region is mainly distributed in the high
and moderate elevation area. The strata of this area are T3j

1, T2q
3, P2, P1

b, P1
a, and P1

r. The vegetation
is mainly woods, grassland, and snow. The NDVI value of this area is high, which means that
this area has a high vegetation coverage. The rainfall is high relative to the whole study area, but
the rainfall commonly occurred as snowfall in the high elevation area. This area is far away from
the rivers and has little erosion from the rivers. The moderate, high, and very high susceptibility
areas had an area of 65.55 km2, 69.48 km2, and 62.93 km2, accounting for 18.00%, 19.08%, and 17.28%,
respectively. The vegetation of this area is mainly brush-forbs and bare soil. The NDVI value of this
area is low, which indicates that this area has low vegetation coverage. The strata of this area are
Qh

del, Q3
p, T2q

1, P2g, and D2q. This area is close to the rivers and faults. In the faulted zone, the rock
is relatively broken and the joint fracture is developed, which makes the slope of these areas less
stable, and landslides are more likely to occur. The study area belongs to the rapidly uplifting region,
and the interaction between the bedrock uplift and river incision made the landslides occur widely
along rivers.

As for the landslide occurrence, the very low, low, moderate, high, and very high susceptibility
areas had an area of 0.80 km2, 1.63 km2, 3.39 km2, 8.81 km2, and 11.85 km2, accounting for 3.02%, 6.12%,
12.76%, 33.15%, and 44.59% of the entire landslide area, respectively. The moderate, high, and very
high susceptibility area make up 90.86% of the total landslide area. According to the field survey,
the landslide mainly occurred within the high and very high susceptibility ranges. Hence, the landslide
susceptibility map that was produced in this study is reasonable.

The landslide susceptibility map shows that the very high, high, and moderate susceptibility areas
are mainly distributed in Guxue town, Taentong village, Yongduo village, Rancun village, Deze village,
Aluogong village, Jiaxue village, Senen village, Benzilan town, Waka town, and so on, all of which are
located near both sides of the Jinsha River and Dingqu River. These villages are densely populated,
with a high density of buildings and cultivated land, and some villages have developed industries.
Moreover, these villages are located in the high susceptibility areas of the landslide occurrence, so these
villages suffer a higher degree of landslide hazards. Therefore, there should be a focus on disaster
reduction and prevention in these villages. The low and very low susceptibility areas are mainly
distributed in the regions far away from the Jinsha River and Dingqu River. Human activities in this
area are relatively weak, and even if landslide occurs, the damage is relatively small.

In general, the areas with very high, high, and moderate susceptibility to landslide occurrence are
mainly distributed in the areas with intensive human activities, so disaster prevention and reduction
should be emphasized. Human activities are sparse in the areas with a low and very low susceptibility
to landslide occurrence, and the potential threat caused by landslide disasters is small or harmless,
but the prevention of disaster risk reduction should also be done.
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6. Conclusions

According to the field survey, the mechanism of the landslide, the local geo-environmental
conditions, and the previous studies, 13 influencing factors, including (a) lithology, (b) slope angle,
(c) slope aspect, (d) TWI, (e) curvature, (f) SPI, (g) STI, (h) topographic relief, (i) rainfall,
(j) vegetation, (k) NDVI, (l) distance-to-river, and (m) distance-to-fault, were selected to produce
the landslide susceptibility map in this study. In order to clarify the relationship between
the landslides and the influencing factors, the FR model was used to describe their relationship,
because the adjustment of the logistic regression model is sensitive to the linear correlation of
the influencing factors. In this paper, the principal component analysis (PCA) is used to reduce
the dimension of the preselected influencing factors and to change the factors, which are then reselected,
so as to make them independent of each other. According to the eigenvalue of the correlation matrix,
six principal components with eigenvalues greater than 0.9 were selected. The sum of variance
contribution rates of the six principal components was 82.36%, which means that they extracted
82.36% of the information of the original data. As for the logistic regression analysis, the p-value was
used to check the significance of the six factors obtained using the PCA. The factors with a p-value
more than 0.05 were excluded from the LR model. Because the P-value of Factor 4 is 0.784, it was
excluded from the model. The odds ratio was used to assess the relationship of the six factors
and landslide susceptibility. It can be seen that Factor 2 and Factor 5 were related with landslide
susceptibility, while Factor 1, Factor 3, and Factor 6 were negated with landslide susceptibility.
The slope angle, TWI, SPI, STI, and topographic relief are the preselected factors with the highest
correlation with Factor 2, and the lithology, slope aspect, vegetation, rainfall, distance-to-river,
and distance-to-fault are the preselected factors with the highest correlation with Factor 5. These
factors have been identified as key factors in the occurrence of landslides. The Cox and Snell pseudo
R2 test and the Negelkerke pseudo R2 test were used to evaluate the goodness of the fit of the logistic
regression model. Both the Cox and Snell R2 value and Negelkerke pseudo R2 value were greater
than 0.200, which indicates that the fitting result was good. The landslide susceptibility map that
was produced by the logistic regression model was divided into the following five classes using
the natural breaks method: very low, low, moderate, high, and very high. The ratios of the areas of
the susceptibility classes were 23.14%, 22.49%, 18.00%, 19.08%, and 17.28%, respectively. The total
proportion of the landslide pixels of the moderate, high, and very high susceptibility area was 90.86%.
The validation result shows that the prediction accuracy of the model was 84.9%, which means that
the landslide susceptibility map was reliable and reasonable. Consequently, this study could serve as
an effective guide for further land use planning and for the implementation of development.
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5. Raja, N.B.; Çiçek, I.; Türkoğlu, N.; Aydin, O.; Kawasaki, A. Correction to: Landslide susceptibility mapping
of the sera river basin using logistic regression model. Nat. Hazards 2018, 91, 1423–1423. [CrossRef]

6. Brabb, E.E.; Pampeyan, E.H.; Bonilla, M.G. Landslide Susceptibility in San Mateo County, California.
Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1972.

7. Corominas, J.; Westen, C.V.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S. Recommendations for
the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [CrossRef]

8. Bai, S.B.; Wang, J.; Lü, G.N.; Zhou, P.G.; Hou, S.S.; Xu, S.N. Gis-based logistic regression for landslide
susceptibility mapping of the zhongxian segment in the three gorges area, China. Geomorphology 2010,
115, 23–31. [CrossRef]

9. Yesilnacar, E.; Topal, T. Landslide susceptibility mapping: A comparison of logistic regression and neural
networks methods in a medium scale study, Hendek region (Turkey). Eng. Geol. 2005, 79, 251–266. [CrossRef]

10. YïLmaz, I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural
networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Comput. Geosci. 2009,
35, 1125–1138. [CrossRef]

11. Chen, W.; Pourghasemi, H.R.; Zhao, Z. A GIS-based comparative study of Dempster-Shafer,
logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto Int.
2017, 32, 367–385. [CrossRef]

12. Cao, C.; Xu, P.; Wang, Y.; Chen, J.; Zheng, L.; Niu, C. Flash flood hazard susceptibility mapping using
frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability 2016, 8, 948.
[CrossRef]

13. Chen, W.; Li, W.; Chai, H.; Hou, E.; Li, X.; Ding, X. GIS-based landslide susceptibility mapping using
analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji city,
China. Environ. Earth Sci. 2016, 75, 1–14. [CrossRef]

14. He, S.; Pan, P.; Dai, L.; Wang, H.; Liu, J. Application of kernel-based fisher discriminant analysis to map
landslide susceptibility in the Qinggan river delta, Three Gorges, China. Geomorphology 2012, 171–172, 30–41.
[CrossRef]

15. Pourghasemi, H.R.; Rossi, M. Landslide susceptibility modeling in a landslide prone area in
Mazandarn Province, north of Iran: A comparison between GLM, GAM, MARS, and M-AHP methods.
Theor. Appl. Climatol. 2017, 130, 1–25. [CrossRef]

16. Lombardo, L.; Bachofer, F.; Cama, M.; Märker, M.; Rotigliano, E. Exploiting maximum entropy method
and aster data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment
(north-eastern Sicily, Italy). Earth Surf. Process. Landf. 2016, 41, 1776–1789. [CrossRef]

17. Pham, B.T.; Bui, D.T.; Pourghasemi, H.R.; Indra, P.; Dholakia, M.B. Landslide susceptibility assesssment
in the Uttarakhand area (India) using GIS: A comparison study of prediction capability of naive bayes,
multilayer perceptron neural networks, and functional trees methods. Theor. Appl. Climatol. 2015, 122, 1–19.
[CrossRef]

18. Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new
ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geocarto Int. 2017, 305, 314–327.
[CrossRef]

19. Lee, S.; Ryu, J.H.; Won, J.S.; Park, H.J. Determination and application of the weights for landslide
susceptibility mapping using an artificial neural network. Eng. Geol. 2004, 71, 289–302. [CrossRef]

20. Wang, E.; Burchfiel, B.C. Late Cenozoic to Holocene deformation in southwestern Sichuan and Adjacent.
Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geol. Soc. Am. Bull.
2000, 112, 413–423. [CrossRef]

21. Can, T.; Nefeslioglu, H.A.; Gokceoglu, C.; Sonmez, H.; Duman, T.Y. Susceptibility assessments of shallow
earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 2005,
72, 250–227. [CrossRef]

22. Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide inventory
maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [CrossRef]

23. Yang, X.; Chen, L. Using multi-temporal remote sensor imagery to detect earthquake-triggered landslides.
Int. J Appl. Earth Obs. 2010, 12, 487–495. [CrossRef]

http://dx.doi.org/10.1016/j.geomorph.2006.04.007
http://dx.doi.org/10.1007/s11069-017-3145-3
http://dx.doi.org/10.1007/s10064-013-0538-8
http://dx.doi.org/10.1016/j.geomorph.2009.09.025
http://dx.doi.org/10.1016/j.enggeo.2005.02.002
http://dx.doi.org/10.1016/j.cageo.2008.08.007
http://dx.doi.org/10.1080/10106049.2016.1140824
http://dx.doi.org/10.3390/su8090948
http://dx.doi.org/10.1007/s12665-015-4795-7
http://dx.doi.org/10.1016/j.geomorph.2012.04.024
http://dx.doi.org/10.1007/s00704-016-1919-2
http://dx.doi.org/10.1002/esp.3998
http://dx.doi.org/10.1007/s00704-015-1702-9
http://dx.doi.org/10.1016/j.geoderma.2017.06.020
http://dx.doi.org/10.1016/S0013-7952(03)00142-X
http://dx.doi.org/10.1130/0016-7606(2000)112&lt;413:LCTHDI&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.geomorph.2005.05.011
http://dx.doi.org/10.1016/j.earscirev.2012.02.001
http://dx.doi.org/10.1016/j.jag.2010.05.006


ISPRS Int. J. Geo-Inf. 2018, 7, 438 27 of 29

24. Cao, C.; Wang, Q.; Chen, J.; Ruan, Y.; Zheng, L.; Song, S.; Niu, C. Landslide susceptibility mapping in vertical
distribution law of precipitation area: Case of the Xulong hydropower station reservoir, Southwestern China.
Water 2016, 8, 270. [CrossRef]

25. Wang, F.; Xu, P.; Wang, C.; Wang, N.; Jiang, N. Application of a GIS-based slope unit method for landslide
susceptibility mapping along the Longzi river, southeastern Tibetan plateau, China. ISPRS Int. J. Geo-Inf.
2017, 6, 172. [CrossRef]

26. Li, J.; Wang, C.; Wang, G.; Liu, W. Analysis of landslide influential factors and coupling intensity based on
third theory of quantification. Chin. J. Rock Mech. Eng. 2010, 29, 1206–1213.

27. Li, J.-X.; Wang, C.M.; Wang, G.C. Landslide risk assessment based on combination weighting-unascertained
measure theory. Rock Soil Mech. 2013, 34, 468–474.
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