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Abstract: While governments, researchers, and NGOs are exploring ways to leverage big data sources
for sustainable development, household surveys are still a critical source of information for dozens
of the 232 indicators for the Sustainable Development Goals (SDGs) in low- and middle-income
countries (LMICs). Though some countries’ statistical agencies maintain databases of persons or
households for sampling, conducting household surveys in LMICs is complicated due to incomplete,
outdated, or inaccurate sampling frames. As a means to develop or update household listings in
LMICs, this paper explores the use of machine learning models to detect and enumerate building
structures directly from satellite imagery in the Kaduna state of Nigeria. Specifically, an object
detection model was used to identify and locate buildings in satellite images. In the test set, the model
attained a mean average precision (mAP) of 0.48 for detecting structures, with relatively higher values
in areas with lower building density (mAP = 0.65). Furthermore, when model predictions were
compared against recent household listings from fieldwork in Nigeria, the predictions showed high
correlation with household coverage (Pearson = 0.70; Spearman = 0.81). With the need to produce
comparable, scalable SDG indicators, this case study explores the feasibility and challenges of using
object detection models to help develop timely enumerated household lists in LMICs.

Keywords: sustainable development goals (SDGs); machine learning; object detection; household
enumeration; survey statistics; remote sensing

1. Introduction

In September 2015, the United Nations (UN) General Assembly created the Sustainable
Development Goals (SDGs), a list of 17 shared objectives to eradicate poverty, protect the planet,
and ensure global prosperity for all [1]. To monitor progress toward the SDGs, the Interagency and
Expert Group on SDG Indicators (IAEG-SDGs) developed a global indicator framework consisting of
232 specific statistical measures that member states could adopt and extend [2]. While comprehensive,
the SDGs have been criticized for their sprawling scope and the high expected cost of implementing
and monitoring the various indicators [3,4]. As of June 2017, even wealthy countries belonging to the
Organization for Economic Cooperation and Development (OECD) only have the capacity to evaluate
57% of all the SDGs targets [5]. Without support, it will be particularly difficult for LMICs to monitor
these indicators and measure progress toward achieving the SDGs.

While governments, researchers, and NGOs are exploring ways that big data sources may reduce
the burden of developing and monitoring SDG indicators, household surveys are still a critical source of
information. Roughly one-third of the SDG indicators can currently be derived from existing household
surveys, and up to two-thirds could be covered with further enhancements to these programs [6].
Furthermore, surveys are one of the only data sources capable of systematically collecting the desired
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level of information that can be “disaggregated by income, gender, age, race, ethnicity, migratory
status, disability, geographic location and other characteristics relevant in national contexts (SDG
Target 17.18)” [2]. Though bias may be introduced into survey data at many points throughout the
design, data collection, and data processing phases of a study [7], survey researchers have designed
methods to recognize and address risks of various error components [8,9].

While household surveys provide high-quality estimates to support the analysis of SDG indicators,
the scope and frequency of these programs is limited by their cost [10]. This is, in part, due to
the extensiveness of the operations required to select a probability-based sample of households.
In probability-based sampling, a sampling frame must exist so that each member of the population
has a known probability of being selected. The quality of this list is crucial, as it determines the
degree to which the observed sample represents the intended population. Some countries’ statistical
agencies are able to maintain comprehensive and up-to-date databases of persons or households for
sampling, but in many cases, including low- and middle-income countries (LMICs), it is necessary
to create a complete listing at the time of the survey. For example, the Demographic and Health
Survey (DHS) is a large-scale study that currently captures data to support up to 30 SDG indicators
across nearly 90 developing countries [11]. While impressive in its scope, the standard approach
of constructing a household listing for the DHS is cumbersome. While existing census data for
each country typically provide a list of logistically manageable geographic areas for a first stage of
sampling (e.g., counties or districts), field staff are typically required to visit sampled areas on foot to
roster households. The practice of enumerating households is not only expensive, but also potential
dangerous; researchers have noted concerns of robbery or violence when sending field staff into
high-risk areas [12,13], especially for listings that require field staff to spend the majority of time
surveying from the streets instead of inside respondents’ dwellings [14].

In this paper, we focus on a method to reduce data collection costs and timeline for household
surveys in LMICs: constructing the household listings required for probability-based samples.
We explore a streamlined approach to obtaining household listings using machine learning models to
detect and enumerate settlement units directly from satellite imagery. Specifically, we use the Kaduna
state in Nigeria as a case study for applying an object detection model to identify and locate buildings
from satellite images. These methods may reduce the level of effort required for probability-based
household surveys, thus mitigating a barrier to more frequent measurements of SDG metrics.

In Section 1, we introduce the issues of developing and maintain household listings in LMICs.
We also provide related work in the literature that complements this study. In Section 2, we describe
the data used to train and evaluate our building detection model, as well as describing the model and
associated evaluation metrics. In Section 3, we summarize the results of the study and conclude with a
discussion of the findings in Section 4.

Related Work

In the past few years, the application of deep learning to satellite images has become a
dominant trend in remote sensing [15,16]. Largely using variants of convolutional neural networks
(CNNs), this class of models have shown state-of-the-art performance on tasks as diverse as scene
classification [16–22], which assigns an aerial image into one of several distinct land-use or land-cover
categories (residential, industrial, agriculture, etc.), to aerial image retrieval [23,24], which returns aerial
images with similar visual content to a reference aerial image. The line of research most closely related
to methods used in this study are the use of deep learning models for building detection [25,26] and
building footprint segmentation [27–30]. Building detection tasks aim to determine both the presence
and location of any buildings within an image, providing rectangular bounding box demarcations
around the extent of any predicted buildings. Building footprint segmentation, while also concerned
with the presence and location of buildings, approaches the problem by predicting the class label of
every pixel in an image, allowing for a more flexible building boundary.
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Method advances in this area have also helped drive novel applications, including studies utilizing
satellite imagery to inform important SDG areas. Using a combination of publicly available daytime
satellite images and nighttime lighting images, Jean et al. [31] applied a transfer learning approach on
pre-trained CNNs to improve predictions of the average household expenditures or household wealth
in five African countries. Gebru et al. [32] used deep learning object detection models to identify the
make, model, and year of cars observable from satellite images in the United States. When aggregated,
these counts were found to be highly predictive of neighborhood sociodemographic characteristics,
such as household income, level of education, and race, as reported in the American Community
Survey. Oshri et al. 2018 [33] used CNNs on Landsat 8 and Sentinel 1 satellite imagery to predict
coverage of important infrastructure, such as sewage systems, piped water, and electricity services,
across 36 African countries.

Compared to prior work, our key contribution is training and assessing deep learning building
detection models to support household listing development in LMICs. While survey researchers
have proposed the use of aerial imagery to help with household enumeration [14,34,35], to the
authors’ knowledge, this is the first work to assess the feasibility of these recommendations through
use of machine learning models. Additionally, our study utilizes survey data from the Alive
and Thrive initiative as an on-the-ground verification of model predictions. Because “ground
truth” data are typically rare for aerial object detection tasks, we provide valuable insight into
implementation considerations.

2. Data and Methods

2.1. Data

2.1.1. Building Detection Data

To develop the building detection model, we used 200 satellite images covering 11 local
government areas (LGAs) in the Nigerian state of Kaduna. The Kaduna state occupies a land area
of roughly 46,000 km2 and despite rapid urbanization in past years, has vast areas of undeveloped
savanna vegetation and farmland [36]. The selected areas ranged from isolated, rural areas, to the
densely populated urban centers of Kaduna and Zaria. Due to the sample design described in
Section 2.1.2, the settlement patterns in images from the selected LGAs are generally similar to areas
found in the other 12 LGAs that were not included in the sample.

These images represent grid cells that are 100 × 100 m in size and were accessed using a layer
package in ArcGIS (ESRI, Redlands, CA, USA) that contained the Bing Maps aerial imagery web
mapping service. The Bing imagery data used in this study are sourced from organizations such
as Digital Globe and are the most recently available images from the service for any given location.
The use of the imagery for the purposes of this study complies with the terms of use agreement for
the service offering. The spatial resolution of the images ranges from 0.31 to 0.5 m, though the spatial
resolution of any particular image is difficult to verify because the image service provides a mosaic
of imagery taken on different dates within a small range of spatial resolution values. The date of the
imagery used for this analysis ranges from 2010–2016, with images in remote areas tending to be older
(with dates as old as 2010), and urban images exhibiting more recent updates (with dates ranging
from 2014–2016). The size and location of images were chosen to align with the application of the
geo-sampling methodology [37] used in the Nigeria Alive and Thrive baseline survey fielded from
2016–2017. The Alive and Thrive survey and geo-sampling methodology are explained in further
detail in Section 2.1.2.

These 200 images were allocated into training and test sets using a 64/36 split. We then created
bounding box annotations around all building structures visible in the images, resulting in 2711 labeled
buildings in the training set and 1844 labeled buildings in the test set. For the purpose of this study,
“buildings” were defined as roofed structures visible from overhead imagery. This high-level category
is expected to contain detached, semi-detached, and attached housing structures, as well as potentially
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commercial or agricultural buildings. Of the 200 satellite images, 192 contained at least one building
structure. Table 1 shows a summary of the data used for modeling. Figure 1 depicts an example of an
annotated image after bounding boxes were applied around buildings.

Table 1. Summary of training and test data sets.

Summary Statistic Training Test

Total images 128 72
Total annotated buildings 2711 1844
Annotated buildings per image

Mean 22.5 26
Min 1 1
Median 18 18
Max 107 76
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Figure 1. Example of an 100 × 100 m image annotated with human-labeled bounding boxes.

To use as model inputs, RGB (red, green, blue) values were extracted for each pixel in the
sampled satellite images. Specifically, we created a tensor of RGB values for each image representing
a 100 × 100 m gridded area. The RGB values for each pixel in each image were extracted using the
Python Imaging Library (PIL) and were resized from 720 × 720 px to 750 × 750 px to match the
pre-processing steps outlined in the papers for the model architectures used.

2.1.2. Alive and Thrive Survey Data

While building detection represents a step toward the automated construction of household
rosters, it merely serves as an approximation to household detection. This is because not all building
structures represent occupied households (e.g., buildings may be commercial or vacant). To understand
the relationship between predicted buildings and households, we use survey data from the Alive and
Thrive program to review the number of buildings and households within sampled areas.

Alive and Thrive (A&T) is a multinational program designed to increase the use of best nutritional
practices for infants and young children. An impact evaluation is currently underway in two states in
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Nigeria, Lagos and Kaduna, where a baseline and endline household survey are being used to assess
program effectiveness. The sample for the baseline survey was selected using a gridded population
method called geo-sampling. Geo-sampling applies layers of GIS grids to define manageable area
units for sampling. The first GIS layer creates a set of units called primary grid cells, which are 1 km2

in size. These grid cells are then further partitioned into smaller areas, called secondary grid cells
(SGCs), which depending on urbanicity, can be of sizes 50 × 50 m (urban), 100 × 100 m (semi-urban),
or 150 × 150 m (rural). To simplify the selection of households, all households within the sampled
SGCs are sampled for the survey, providing a complete representation of the number of households
within each sampled SGC. Because all households within sampled SGCs were captured regardless
of whether they met eligibility criteria for the survey, these data provide an opportunity to explore
the relationship between household and building detection. We specifically compare the household
counts from sampled 100 × 100 m grids from the Alive and Thrive baseline survey with building
counts generated by our model. This grid size was chosen because it captures the broadest diversity of
landscapes and development patterns of the three SGC grid sizes. While comparing geocoordinates of
sampled households would provide a stronger benchmark for building predictions, these data were
not used due to known measurement error in the household geolocations.

2.2. Methods

2.2.1. Building Detection Models

To determine the existence and location of buildings from satellite images, we developed
a building detection model using the Tensorflow Object Detection API [38]. The model uses
the Inception-Resnet-v2 [39] architecture for classification and Faster R-CNN [40] for localization.
Inception-Resnet-v2, a model exhibiting state-of-the-art classification accuracy on the ImageNet
benchmark dataset when it was published in 2016, combines the computational efficiency of Inception
units from the popular Inception V3 architecture [41] with the residential connections introduced in
the ResNet architecture [42]. Faster R-CNN is a meta-architecture that uses features from an object
recognition model (in our case, Inception-Resnet-v2) to predict class-agnostic box proposal regions
within an image where it believes there is a high probability of an object to exist. Then, focusing
on just these few proposal regions, a final classification prediction is made to guess the object type
(in our case, buildings). While relatively slower than other object detection model configurations,
we selected this combination because it tends to be more thorough when scanning for objects
within an image than models using only single stage detection (e.g., the Single Shot Detector (SSD)
meta-architecture [43]). Since our use case of training a building detection model for use in statistical
agency home offices does not require detection of buildings in real-time or on resource constrained
devices, such as mobile phones, we were willing to trade off speed for improved model performance.

Training deep learning models from scratch often requires large quantities of labelled data to
effectively generalize to new cases. To help our model learn a new task efficiently with less data, we
used a transfer learning approach [44] to initialize our model weights. The intuition behind transfer
learning is that information learned from performing a task in one domain can be built upon to more
easily learn the same (or a similar) task in a different domain. For our source domain, we use a
pre-trained model built on the Common Objects in Context (COCO) dataset [45]. The COCO dataset is
an object detection dataset containing a total of 2.5 million labeled objects from 328 thousand images
and spanning over 91 object types. While the COCO dataset does not contain labeled buildings,
researchers have nonetheless used transfer learning models pre-trained on COCO to effectively detect
new object classes not present in COCO, such as prohibited items in carry-on luggage [46] and traffic
signs [47]. In our case, we are using the underlying patterns learned to effectively detect objects in the
COCO dataset to initialize our model, thereby requiring our model to need less labeled data than if we
had started with naïve weight parameters of all zeros.



ISPRS Int. J. Geo-Inf. 2018, 7, 448 6 of 16

2.2.2. Model Evaluation Metrics

To determine how well our model detects buildings in the test set, we use the mean average
precision (mAP) evaluation metric [48]. For a given object type, the mAP summarizes the balance
between model precision (the number of true positives out of all observations that are predicted
positive) and recall (the proportion of true positives detected) by calculating the mean precision at a
set of eleven equally-spaced recall thresholds [0, 0.1, ..., 1]:

mAP =
1
11 ∑

r ∈{0,0.1,...,1}
pinterp(r) (1)

where pinterp(r) is the interpolated precision at each recall level, determined by taking the maximum
precision seen for predicted objects with recall exceeding r. If a model predicts multiple object
classes, the mAP additionally averages over all the class types. Note that Equation (1) assumes that the
predicted objects mentioned are ranked in order of their predicted probabilities of detection. Intuitively,
the mAP can be thought of as a summarization of the precision/recall curve, providing an average
precision metric across various thresholds for detected labeled buildings. A mAP value of 0 means that
no objects were correctly detected, whereas a value of 1 means that all objects were detected without
any false positives.

In this study, a building is considered “detected” if its predicted building footprint has an
intersection over union (IoU) of 0.5 or greater with a labeled building footprint. This is a common
threshold used in the object detection literature [48]. The intersection over union, also known as the
Jaccard index, is defined as:

IoU(A, B) =
A ∩ B
A ∪ B

(2)

where A is the set of pixels in a predicted building footprint and B is a set of pixels in a human labelled
building footprint.

Lastly, to compare the actual household counts to predicted building counts within a 100 × 100 m
gridded area, we use the Pearson correlation coefficient and Spearman’s rank correlation coefficient.
The Pearson correlation coefficient measures the linear relationship between two variables whereas the
Spearman’s rank correlation coefficient describes the extent two variables can be expressed using a
monotonic function.

3. Results

3.1. Building Detection

On a test set consisting of 1844 annotated buildings across 72 images, our trained model detected
1081 buildings with a mAP of 0.48. Table 2 shows the precision values at all recall thresholds.

Table 2. Precision at each recall cutoff—all images.

Cut-Off 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 mAP

Precision 1 0.86 0.86 0.86 0.85 0.85 0 0 0 0 0 0.48

To penalize models from indiscriminately canvasing images with predicted bounding boxes
(thereby maximizing the chance of finding buildings at the expensive of the false positive rate),
the mAP requires that model precision is reported at different recall thresholds. The decomposition
of the mAP in Table 2 suggests that our model tended to trade off precision for recall, producing
high-precision predictions for areas where it had high confidence, while struggling to detect several
buildings. Because the images in our test set had anywhere from 1 to 76 labeled building structures,
we hypothesized that there may be a relationship between the number of labeled building in an image
and the number of building detected by the model. To better understand the situations in which
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our model had low recall and did not detect all buildings, we assessed the sensitivity of the model
performance to building density.

Table 3 shows the precision values at all recall thresholds for images that contain less than
30 buildings. Using this cut-off, 408 out of a total 547 annotated buildings were detected across the
44 eligible images. These results indicate that, among areas with relatively fewer built structures,
the model was able to retain high precision while also locating a high proportion of buildings.

Table 3. Precision at each recall cutoff among images with less than 30 buildings.

Cut-Off 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 mAP

Precision 1 0.89 0.89 0.89 0.88 0.87 0.85 0.9 0 0 0 0.65

Figures 2 and 3 illustrate the difference in predictions for an area with low building density
(Figure 2), and an area with high building density (Figure 3). In the image representing low building
density, the model achieved both high recall and high precision, whereas in the image with high
building density, precision remained high but recall falls. For additional analyses comparing model
performance at different levels of building density, please see Appendix A.
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3.2. Correlation between A&T Households and Predicted Building Counts

As previously mentioned, an ideal detection model would perfectly identify households from
satellite images to efficiently construct household listings. Unfortunately, determining whether
buildings and households should be treated as synonymous is difficult without on-the-ground
validation. For example, there are many types of buildings, such as commercial or agricultural
structures, where people do not reside. Similarly, it may be common for a single structure, such as an
apartment building, to contain multiple households. To better understand this critical relationship,
we used data from the Alive & Thrive baseline survey to compare the number of households to the
number of predicted buildings within 100 × 100 m grids. More specifically, we calculated the Pearson
and Spearman’s correlation to assess the linear and ranked associations between the two measures.

Table 4 shows the Pearson and Spearman’s correlation between the number of households and
predicted number of buildings within a sampled 100 × 100 m gridded area. The Pearson correlation
of 0.702 suggests a strong linear relationship between the number of households and the number of
predicted buildings within a grid. Likewise, the Spearman’s rank correlation, which is more tolerant of
outliers by only assessing the relative ranking between two variables, also showed a strong relationship
with a value of 0.806.

Table 4. Correlation between A&T households and predicted building counts.

Type Correlation

Pearson 0.702
Spearman 0.806

To further assess the relationship between the number of households and predicted buildings,
we present a scatter plot of the two variables in Figure 4. Each point on the plot corresponds to a
different SCG grid area sampled in the Alive and Thrive baseline survey. From Figure 4, we see that
although the number of predicted buildings tended to increase as the number of households increased,
the variability in the differences between the household and predicted building counts also tended
to increase.
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For household counts, this heteroskedastic trend may be partially explained by our model
under-detecting structures in highly dense areas (as reported in Section 3.1). To examine this
hypothesis, the left panel of Figure 5 displays the relationship between the household count and
the difference between household and predicted building counts. For grids with greater than or equal
to 30 households, 89% had less predicted buildings than households (72 out of 81), suggesting a
scenario where multiple households reside in a single building. This contrasted sharply with grids
containing less than 30 households in which only 27% had fewer predicted buildings than households
(186 out of 698), suggesting that in addition to under-detecting structures in building dense areas,
households may also have been underreported.

For the plot of predicted buildings shown in the right panel of Figure 5, the shape appears to be
more symmetric, making the underlying cause of discrepancies in the building and household counts
less straightforward to diagnose. Due to this complication, this relationship is explored further in the
Discussion section.
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4. Discussion

Our findings suggest that, while not without flaws, deep learning models show promise in
performing building detection in LMICs settings. The model results suggest that building detection
is more difficult to perform consistently in areas with high building density for the class of models
examined. These results agree with similar findings in the Object-Based Image Analysis (OBIA)
literature, in which building extraction tasks are reported as being more difficult to perform in
residential areas than central business districts, where there is higher spectral complexity and building
displacement [49]. Additionally, other studies report difficulty identifying attached building types
more likely to be seen in dense urban areas (i.e., apartments) [50]. Detecting and counting objects
in highly dense scenes is an active area of research in the computer vision literature, spanning from
crowd counting and density estimation [51,52] to counting for cell microscopy [53,54]. Future work
that explores models designed specifically for these settings could enhance building detection in urban
areas and other settlement dense regions.

Furthermore, our findings suggest that predicted building counts have high correlation with
the number of households within a region, which is encouraging for moving towards an automatic
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listing of households. Interestingly, the trend between household counts and predicted building counts
appears to be heteroskedastic in our study area, showing larger variances in differences when higher
values of either variable are observed. While the grids with a notably higher number of households
than predicted buildings may be partially explained by the findings in Section 3.1, in which our model
detects a lower proportion of buildings in areas of high building density, the reason for having areas
with significantly more predicted buildings than households is less clear. To demonstrate, Figure 6
juxtaposes two images from our test data representing urban areas of Kaduna; both of these images
have a similar number of predicted buildings but vastly different number of reported households.
Figure 6a has 40 predicted buildings with only 6 households, whereas Figure 6b has 48 predicted
buildings with 91 households.
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There are many potential reasons why this might occur. One possible explanation is that the dense
areas from our study have greater diversity in the types of building structures present (e.g., some
images may represent a higher concentration of commercial buildings). Though Kaduna has a history
of weak land-use planning [55], which could allow for large variations in mixed-use development in
its urban corridors, more research is needed to confidently test this hypothesis. Another hypothesis
for the observed variation in household counts is that interviewers did not consistently adhere to the
survey’s household enumeration protocols within sampled SGCs. In urban neighborhoods where
buildings are dense, recording all households is logistically difficult (e.g., entrances to some residences
may be blocked or not visible from the road). In these cases, household counts may be underestimated.
Intentional data falsification by field interviewers is a well-documented phenomenon in survey data
collection [56,57] and may also contribute to some instances of low household counts in areas with
many predicted buildings. We are hopeful that advances in technology will offer improvements to the
“on-the-ground” meta-data typically collected during surveys. Enhancements to these data would
provide more robust information for validation of building detection tasks and strengthen researchers’
understanding of the relationship between buildings and households.

The adoption of building detection methods as a streamlined approach for constructing household
sampling frames ultimately depends on the minimization of prediction error. Prediction error
introduces two types of challenges for a survey: (1) overcoverage, where the constructed listing
includes buildings that are not of interest for the study, and (2) undercoverage, where the listing
excludes buildings that belong to the intended target population. To illustrate this point, let us imagine
a scenario where a list of predicted buildings is generated for an area and this list is used exclusively as
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the sampling frame for a household survey measuring SDG indicators. In cases where field staff visit
buildings that do not contain households (overcoverage), unnecessary costs may be incurred to the
project budget from the wasted time and travel resources; however, no bias should be introduced into
the survey estimates in this case, assuming that the nonresidential or vacant buildings can be identified
during data collection and appropriate adjustments can be made during analysis. Alternatively,
if the model fails to detect all buildings that contain households and thus excludes them from the
sampling frame (undercoverage), bias becomes a substantial concern. Survey estimates derived from a
sampling frame suffering from undercoverage may include error because the excluded households
may be systematically different from those represented in the sample. While methods are available to
compensate for housing unit undercoverage [58], they will add to the cost of the study.

Understanding these implications of prediction error allow us to better understand under what
conditions the current model should be used in the field. Given the favorable household coverage
enabled by the building detection model in rural areas within our study, there is support for it being
an effective option for developing household lists in low building dense areas. This is especially true
when considering the lack of high-quality existing frames in many LMICs. However, due to concerns
of potential bias introduced by undercoverage, the presented building detection model may be better
utilized as a supporting approach in urban areas where there is greater variability in differences
between households and predicted buildings. As modeling approaches advance and quality annotated
datasets become more widely available, we expect to see these methods become increasingly useful.

In addition to developing household lists, building detection models can provide research teams
with other valuable options for conducting high-quality household surveys. Though it is not a focus of
this study, predicted building counts could also be used as a measure of size for probability proportional
to size (PPS) sampling [59]. PPS is a sampling technique that selects units in one sampling stage with
probabilities proportional to a measure of size, followed by the sampling of a fixed number of units
at the next stage. The larger the unit’s size, the greater its chance of being included in the sample.
The advantage of PPS is that it leads to equal overall sampling probability, while at the same time
maintaining a uniform work load for each unit in the first stage. Additionally, for sampling designs
in which a full enumeration of households is conducted at the final stage of sampling, calculating
predicted building counts prior to data collection could provide a valuable quality check when the
actual household counts deviate greatly from the predicted building counts, empowering survey
managers to solicit context from field teams to better understand why differences occur.

While this study only assesses object detection models trained on imagery from one state in
Nigeria, there is potential for the same or similar methods to be scaled to larger areas to develop
regional or national household SDG indicators. One potential bottleneck to implementing these
models in new areas is the large amount of labeled training data required to train convolutional neural
networks from scratch. To address this in our study, we use transfer learning to initialize our building
detection model weights prior to model training. Tiecke et al. [30] take a different approach, reducing
the labeling problem to a binary classification task (labelling imagery of 30 × 30 m area grids as
“containing buildings” or “not containing buildings”), which is easier to obtain labels for. They then
use these labeled data to train a weakly-supervised semantic segmentation model to predict pixel-level
building labels.

Besides training data, a lack of computational resources in LMICs may also hamper usage of
these models in practice. While cloud computing options for even specialized Graphics Processing
Unit (GPU) servers are becoming increasingly accessible and affordable, reducing the areas required
for household listing can also help lessen the computational load of creating large-scale building
predictions. Using traditional image processing models that do not require training data, such
as conventional edge detectors, can help reduce the number of regions needed to be screened
and modeled [30]. Additionally, if incorporated into a clustered sampling design, only selected
enumeration areas would require household enumeration instead of requiring a comprehensive
national household listing.
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There are some limitations of the study. First, we do not have records that directly link buildings
and households and thus were unable to build models that detect residential structures specifically.
Given the existing limitations on the availability of household data in many LMICs, this information
would likely need to come from existing household surveys that use mobile devices, tablets, etc.,
to record the location of household units during interviews. Second, there may be error in the manual
labeling of building outlines for the training and test sets, as well as error introduced during data
collection with respect to household coverage. Labelling for different types of residential structures
(apartments, single family homes, etc.) should also help better characterize the heterogeneity in the
number of households per building. This may require recruiting labelers with in-country knowledge of
various building types, perhaps also using higher resolution imagery than was assessed in this study.
Additionally, this methodology assumes that available satellite data provides an up-to-date portrait for
the buildings and households that will be present during the survey data collection period. While it is
not uncommon in the literature to have a modest temporal gap between satellite imagery dates and
the survey data collection period for assessing these classes of models [30], recognizing the potential
for errors can help statistical agencies be proactive in identifying emerging issues. To a certain extent,
unmanned aerial vehicles (UAVs) could provide more detailed and timely imagery to help mitigate
this concern. While our findings suggest that building density was correlated with the model accuracy,
future work may benefit from a more exhaustive exploration into what conditions and settings are
challenging for current models used in building detection. In particular, an understanding of how
building size, geometry, and type might affect model performance would help survey researchers and
statistical agencies better assess where there are still opportunities for improvement. Lastly, while we
only provide evidence for a single state in Nigeria, we hope this case study encourages further research
and resources to examine a larger-scale implementation of these methods for household enumeration
in LMICs.

5. Conclusions

As countries strategize how to improve measurement of SDG indicators going forward, household
surveys will likely continue to play a major role in creating reliable and comparable statistics. Given
the extensive resources required to construct household listings in many LMICs, object detection,
and segmentation models could help enhance household enumeration exercises by presenting survey
researchers with building lists for direct sampling or quality checks. In particular, refined models
of the types discussed in this paper could eventually allow survey teams to send field staff directly
to sampled addresses/buildings and drastically reduce, if not eliminate, the need for on-the-ground
fieldwork. When considering the cost and time required to conduct household surveys, modeling
approaches to reduce the level of effort and increase data collection efficiency will be crucial for
widespread adoption and effectiveness of the SDG indicator program.
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Appendix A

Predicted Building Counts versus Building Density

To illustrate how building predictions are influenced by building density, we report the mean
absolute error (MAE) for various maximum building count thresholds. The MAE is calculated using:

MAE =
∑n

i=1

∣∣∣bi − b̂i

∣∣∣
n

(A1)

where bi is the number of human labeled buildings in grid i, b̂i is the number of predicted buildings
detected in grid i, and n is the total number of 100 × 100 m grid area units compared.

Table A1 compares the average labeled and predicted building counts for different building
density thresholds in the test set. For example, if considering only images with fewer than 10 buildings,
the test set contains 16 such images, and the MAE is 1.44.

Table A1. Errors for building counts at different maximum building count thresholds.

Maximum
Buildings in

Image

Test
Images

Percent of
Test Images

Average
Building

Count

Average Predicted
Building Count

Mean
Absolute Error

<10 16 23% 5.19 5.88 1.44
<20 37 52% 10.16 9.68 1.78
<30 44 62% 12.43 11.23 2.30
<40 50 70% 14.82 13.02 2.76
<50 62 87% 20.47 16.08 5.16
<60 64 90% 21.52 16.39 5.88
<70 69 97% 24.58 17.62 7.65
<80 72 100% 25.97 18.20 8.45

In low building density areas (images with less than 30 buildings), the model achieved an MAE
of 2.30, suggesting that the predicted building count per image differed from the actual building count
per image by 2.30 on average. However, as the number of buildings per image increased, so did the
MAE. For images that had a high number of buildings (50+), the model was unable to locate a high
number of the buildings. In particular, as we looked across all 72 images in the test set where up to
80+ buildings per image are present, the model underestimated the number of buildings per grid area
by 8.45 on average.
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