

  ijgi-07-00476




ijgi-07-00476







ISPRS Int. J. Geo-Inf. 2018, 7(12), 476; doi:10.3390/ijgi7120476




Article



On the Statistical Distribution of the Nonzero Spatial Autocorrelation Parameter in a Simultaneous Autoregressive Model



Qing Luo 1,2[image: Orcid], Daniel A. Griffith 3[image: Orcid] and Huayi Wu 1,2,*





1



State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China






2



Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China






3



School of Economic, Political, and Policy Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA









*



Correspondence: wuhuayi@whu.edu.cn; Tel.: +86-27-6877-8311







Received: 27 October 2018 / Accepted: 6 December 2018 / Published: 12 December 2018



Abstract

:

This paper focuses on the spatial autocorrelation parameter  ρ  of the simultaneous autoregressive model, and furnishes its sampling distribution for nonzero values, for two regular square (rook and queen) tessellations as well as a hexagonal case with rook connectivity, using Monte Carlo simulation experiments with a large sample size. The regular square lattice directly relates to increasingly used, remotely sensed images, whereas the regular hexagonal configuration is frequently used in sampling and aggregation situations. Results suggest an asymptotic normal distribution for estimated  ρ . More specifically, this paper posits functions between  ρ  and its variance for three adjacency structures, which makes hypothesis testing implementable and furnishes an easily-computed version of the asymptotic variance for  ρ  at zero for each configuration. In addition, it also presents three examples, where the first employed a simulated dataset for a zero spatial autocorrelation case, and the other two used two empirical datasets—of these, one is a census block dataset for Wuhan (with a Moran coefficient of 0.53, allowing a null hypothesis of, e.g.,   ρ = 0.7  ) to illustrate a moderate spatial autocorrelation case, and the other is a remotely sensed image of the Yellow Mountain region, China (with a Moran coefficient of 0.91, allowing a null hypothesis of, e.g.,   ρ = 0.95  ) to illustrate a high spatial autocorrelation case.
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1. Introduction


Spatial autocorrelation (SA) is a common phenomenon of spatial data analyses, where there is a common naive hypothesis that SA is zero (e.g., [1,2,3]) for datasets involving, for example, georeferenced demographic, social economic, and remotely sensed image variables. A more reasonable postulate would be nonzero SA. Gotelli and Ulrich [4] (p. 171) also pointed out that one of the important challenges in null modeling testing in ecology is “creating null models that perform well with … varying degrees of SA in species occurrence data”. This is a challenge that is not unique to ecology. A main problem hindering the positing of a nonzero SA hypothesis, or varying degrees of SA, is the unknown sampling distribution of the SA parameter, which may be denoted by  ρ  of the simultaneous autoregressive (or SAR, which is called the “spatial error model” in spatial econometrics [5] (p. 5)) model in this paper. This parameter quantifies the degree of self-correlation in the error term (e.g., [6] (p. 42, which can be rewritten as Equation (1)); as when it deviates further from zero, its distribution becomes more skewed and peaked, and its variance decreases. Figure 1 shows this phenomenon, where its connectivity matrix comes from the Wuhan census block data that are employed in the moderate SA case. Four histograms with density curves for different  ρ  values of 0, 0.5, 0.9, and 0.99 reveal that as  ρ  increases, the distribution moves further from zero (see the red reference line perpendicular to the horizontal axis), and its shape becomes narrower.



To gain an understanding of the complications related to figuring out the sampling distribution of the test statistic under the nonzero hypothesis, it is always enlightening to look back to Pearson’s r (i.e., correlation coefficient) in standard statistics and the autocorrelation coefficient in time series models, because the SA coefficient resembles the “auto” version of the former, and extends the latter from a uni-direction (time dimension) to a multi-directions (space dimension) case. A parallel to what is commonly done in spatial scenarios is that a routine null hypothesis often sets the (auto)correlation coefficient to zero in classical statistics or time series (e.g., [7,8]). In order to test the nonzero correlation coefficient in standard statistics, a Fisher’s Z-transformation is used so that the transformed statistic is approximately normally distributed and its variance is stabilized (e.g., [9] (pp. 55–56); [10] (p. 487); [11]). However, for the original  ρ , the distribution becomes skewed as  ρ  approaches its extreme values. Fortunately, Provost [12] suggests closed-form representations of the density function and integer moments of the sample correlation coefficient to furnish a solution for the distribution problem. For time series autocorrelations, the research on a statistical distribution of a nonzero coefficient was developed from a more practical viewpoint. For example, Ames and Reiter [13] established the distribution of autocorrelation coefficients in economic time series by using empirical datasets so that hypothesis testing for the significance of (auto)correlation among economic variables could have “a more appropriate basis” (p. 638) than the null hypothesis on a basis of zero (auto)correlation. More recent literature [14] pertaining to this topic focused on the effect of the nonzero coefficient on the distribution of the Durbin-Watson test estimator. Similarly to the time series literature, studies on the distribution of the nonzero autocorrelation coefficient/parameter are rare in spatial statistics. One related work dates back to 1967, in which Mead [15] verified that the Fisher’s Z-transformation did not help to obtain a stabilized variance, and even its generalized form could only help in instances of a very small  ρ  (i.e., 0, ±0.05, ±0.1). This earlier work provides evidence that the variance problem seems to be a major obstacle for establishing a sampling distribution for nonzero  ρ . This paper furnishes a possible solution for this problem by representing the variance of   ρ ^   as a function of  ρ , and validates the asymptotic normality of this distribution through Monte Carlo simulation experiments. Moreover, it also establishes a function between  ρ  and the Moran Coefficient (MC, also known as Moran’s I, [16]), which bridges the most widely used SA statistic and spatial autoregressive model.



This paper contributes to the literature by establishing properties of the sampling distribution of nonzero  ρ , supplementing the asymptotic variance known for zero  ρ  in a regression framework. Its results also pertain to the conditional autoregressive (CAR) model, which is called the conditionally specified Gaussian (CSG) in spatial econometrics [17] (pp. 197 and 201), as well as the autoregressive response (AR) model, which is called the spatial lag model in spatial econometrics [5] (p. 5). A SAR model can also be written as a CAR model (e.g., [18] (p. 149); [19] (p. 123); [20] (p. 68)), both SAR and AR are of second-order (i.e., they also specify spatial correlation in terms of neighbors of neighbors), and their pure SA versions with no independent variables are the same model. The focus is on the SAR here because it is the most commonly used specification in spatial statistics, and the SAR uses the row standardized spatial weights matrix  W , not matrix  C  (see Section 2).



It is also necessary to explain the motivation of this paper from a more general perspective. Because Cliff and Ord [21] systematically introduced hypothesis testing for the existence of SA latent in spatial data, SA-related research, in terms of both its theoretical and applied aspects, has flourished in a wide range of domains employing datasets with geographical or locational information. Sokal and Oden [22,23] introduced SA into biology, which inspired biologists to take SA into account in their work because most biological or ecological datasets are closely related to geographical locations. Legendre [24] constructed a paradigm for ecologists to describe and test for SA, as well as to introduce spatial structure into ecological models. Other fields dealing with SA include, for example, spatial epidemiology (see [25] for a thorough overview), spatial econometrics (e.g., [26]), and urban planning (e.g., [27]), which often use Geographical Information Science (GIS, [28]) methods or tools. In all of these domains, testing the existence or presence of SA is a solved problem, where the next question which naturally arises is how the degree of SA could be tested. This paper furnishes an answer to this question.



This article consists of five sections. Section 2 presents model specification and parameter estimation. Section 3 furnishes the sampling distribution of the SA parameter estimate. Section 4 gives one simulated example for zero SA by setting the null hypothesis to be    ρ 0  = 0  , as well as two empirical examples. Empirical analyses from over the years disclose that most socio-economic/demographic attributes have a degree of correlation ranging from 0.4 to 0.6, which indicates a relevant range for  ρ  within 0.65 to 0.85 [29]; thus, a moderate SA case sets the null hypothesis as    ρ 0  = 0.7  , whereas a strong SA case sets the null hypothesis as    ρ 0  = 0.95  . Section 5 presents conclusions and discussion. There are also appendices with some supplementary materials.




2. Model Specification and Parameter Estimation


This paper focuses on the SAR model and its SA parameter  ρ . The first use of the word simultaneous as a descriptor of an autoregressive model was by Whittle [30], whose seminal article introduced an expression known as the SAR model for two-dimensional stationary processes. Concomitantly with the development of spatial statistics, the SAR model was frequently used by geographers, econometricians, ecologists, and other spatial researchers as one of the very popular specifications for describing georeferenced data.



This SAR model is specified as follows:


  Y = ρ W Y +  (  I − ρ W  )  X β + ε ,  



(1)




where  Y  is a response variable whose realizations    y 1  ,    y 2  ,   ⋯ ,    y n    can be observations of a geographic attribute (e.g., average house price) distributed across  n  regions,  ρ  is a SA parameter,  W  is a stochastic version (row standardized) of the n-by-n (   n 2    entries) binary contiguity matrix  C  (the entry of the ith row and jth column is 1 if region i and j are adjacent, and 0 otherwise)—both  W  and  C  reflect the spatial adjacency of a geographical phenomenon,  I  is the n-by-n (   n 2    entries) identity matrix,  X  is a n-by-(m+1) (  n m + n   entries) matrix with m explanatory variables (i.e., covariates) and one unit vector for the intercept,  β  is a coefficient vector of the order (m+1)-by-1, and  ε  is a n-by-1 white-noise error term, which conforms to a standard multivariate normal distribution,   ε ~ M V N  (  0 ,    σ 2  I  )   . In Equation (1),  Y  appears on both sides of the equal sign, which is why the regression has the prefix, auto; when the equation is rewritten for individual observations,  n  similar equations simultaneously appear.



Without loss of generality,  X  can be void of covariates and contain only the intercept term, rendering a pure SA specification. Then, Equation (1) is reduced to:


  Y = ρ W Y +  β 0   (  I − ρ W  )  1 + ε ,  



(2)




where  1  is the n-by-1 vector of ones contained in matrix  X . Equation (2) is also known as a pure SAR model, and is the specification employed in this paper. For the pure SAR specification, the error model and lag model are equivalent.



The parameters that need to be estimated in an SAR model are  ρ ,  β  (for Equation (2), it is only    β 0   ), and    σ 2   . As pointed out by Ord [31] (p. 122), the least squares estimator of  ρ  is inconsistent, and even if this problem is revised by choosing an auxiliary matrix, the estimator is less efficient than a maximum likelihood estimator (MLE). Thus, ML estimation is a commonly used technique to estimate  ρ  (e.g., [18,21]; [32]). Griffith [33] (pp. 176–177) provides explicit MLEs of these parameters, and furnishes an equivalent form for the MLE of  ρ  that can be executed with the SAS code employed by this paper, and    | ρ |  < 1   for square tessellation and the rook’s adjacency (for regular square queen, and hexagonal adjacencies, see §3.1). However, a well-known problem of the MLE is the computing burden of its logarithm determinant constituting its Jacobian term, i.e.,   l n  (   |  I − ρ W  |   )   , which becomes especially troublesome when a sample size becomes large. Griffith [34,35,36,37,38] (This work includes finding approximations of the Jacobian for regular, as well as irregular surface partitioning, exploring analytical or approximated expressions of eigenvalues of matrix  C  and matrix  W , and figuring out a simplified algorithm for calculating MLEs for massive sample sizes. In addition, this work establishes criteria to check the rationality of posited eigenvalue approximations, and to evaluate the Jacobian term approximations. Analyses summarized in this paper are based upon these contributions.) contributed some simplifications that reduced the computational burden of this factor. Another issue meriting attention here is the sampling variance of the model estimated  ρ  (i.e.,     ρ ^   S A R    , which is simplified to   ρ ^   hereafter), because it measures the uncertainty or quantifies the precision of the ML estimate. Capturing how this variance changes is helpful for evaluating the efficiency of the estimator; in addition, it is always necessary to know at least the first- and the second-order central moments of a sampling distribution of a parameter estimator so that statistical inference can be conducted. Ord [31] (p. 124) suggests an asymptotic variance-covariance matrix of  ρ  and    σ 2   , from which an expression of the asymptotic variance of   ρ ^   can be obtained. This lays the foundation for exploring the analytical expression of the sampling variance of   ρ ^   in this paper.



Another approach that can be used to estimate the SA parameter is the general method of moments (GMM) furnished by, among others, Kelejian and Prucha [39,40]. Walde et al. [41] present a thorough comparison between GMM- and MLE-based methods for very large-data spatial models, and suggest employing the former. A very important reason that led them to choose the GMM for large spatial data model estimation was that the GMM had a “directly computable” (p. 164) standard error of  ρ , which is also implemented in a MLE framework in this paper. Section 3 describes this implementation in detail.




3. The Sampling Distribution of   ρ ^  


Before discussing the sampling distribution, it is necessary to introduce three surface partitionings on which all works of this paper are based: a regular square tessellation with rook connectivity (squares A and B are defined to be neighbors if they have a common edge), a regular square tessellation with queen connectivity (squares A and B are defined to be neighbors if they have a common edge or a common vertex), and a regular hexagonal tessellation with rook connectivity (hexagons A and B are defined to be neighbors if they have a common edge). There are definitely many types of geographical configurations, e.g., some theoretical types that have been discussed in [42], a more practical one that is used to construct grids for the earth’s surface (i.e., ISEA3H, [43]), a soccer ball-like configuration (i.e., a combination of hexagons and pentagons). However, only these three were employed, because the rook and queen are frequently-used criteria in many GIS and spatial data analysis-related software or packages (e.g., Esri ArcMap; spdep in R, [6]); moreover, these two adjacency schemes with a more regular square lattice relate to increasingly used, remotely sensed images. Also, a hexagonal configuration is often used in spatial sampling design [44] (pp. 24–25) and aggregation [43]. In summary, these three configurations are frequently used in practice, and many irregular lattices tend to have connectivities that are between a regular square and hexagon lattice (e.g., [42]). As shown in Figure 2, for a square tessellation, A has four neighbors for a rook adjacency, eight neighbors for a queen adjacency, and six neighbors for a hexagonal tessellation. Suppose there are  n  observations of a geographical attribute distributed over one of these landscapes, considering the regularity, and let   n = P × Q  , where  P  is the number of rows,  Q  is the number of columns, and the dimension of the connectivity matrix is n-by-n (i.e.,    P 2  ×  Q 2   ).



3.1. The Relationship between   ρ ^   and the MC


In the literature, the most widely used statistic for quantifying SA is the MC. From a model perspective,  ρ  is the parameter that has the same function as the MC. Although these two quantities are related, they are not equivalent, and thus should not be interchangeably used [1]. Establishing their explicit relationship quantitatively supports evaluation of the SA level latent in georeferenced data. Griffith [45] (pp. 33–34) points out that the relationship curve of   ρ ^   against the MC is logistic (or sigmoid). This paper explores their relationship function further so that   ρ ^   can be quantitatively described by the MC for the three surface partitionings discussed in this paper.



Suppose a geographical configuration has  n  units. The estimates of  ρ  and the MC are closely related to matrix   M C M  , where  C  is defined as done previously,  M  is the projection matrix defined as   I − J / n  , and  J  is a n-by-n matrix whose entries are all ones. Jong et al. [46] (pp. 21–22) demonstrated that   M  C  e x t r e m e   =  (  n /  1 T  C 1  )   λ  e x t r e m e    , which is indicative of the relationship between extreme MC values and extreme eigenvalues (denoted by  λ ) of   M C M  ; in other words, the maximum eigenvalue corresponds to the maximum MC value, while the minimum eigenvalue corresponds to the minimum MC value. Because this equation restricts the feasible range of the MC, it is reasonable to generate a set of sample MC values by:


  M  C i  =  n   1 T  C 1    λ i  ,   i = 1 ,   2 ,   … ,   n .  



(3)




Ordering the eigenvalues such that    λ 1  ≥  λ 2  ≥ … ≥  λ n   , the corresponding  ρ  can be estimated for each by employing eigenvectors   E =  (   E 1  ,    E 2  ,   … ,    E n   )    to replace  Y  in Equation (2). That is:


   E i  = ρ W  E i  +  β 0   (  I − ρ W  )  1 + ε , i = 1 ,   2 ,   … ,   n .  



(4)




The eigenvalue    λ i    and eigenvector    E i     (  i = 1 ,   2 ,   … ,   n  )    correspond to the ith MC value, and this    E i    is also the response variable in the pure SAR model rendering an estimate for the ith  ρ  value.



To explore the relationship between the MC and   ρ ^  , 14 groups of experiments with different sample sizes were conducted for the three configurations (i.e., regular square rook, regular square queen, and hexagonal cases), where  n  ranged from 25 to 4900 (that is,   n = 5 × 5 ,   10 × 10 ,   … ,   60 × 60 ,   65 × 65 ,   70 × 70  , where  P  and  Q  increase in increments of five). The theoretical relationship functions for different spatial configurations were defined, and the parameters were estimated. Table 1 summarizes the resulting expressions. The bold  e  is the base of the natural logarithm, and    λ  m i n     is the minimum eigenvalue of matrix  W  (rook connectivity    λ  m i n     is about −1, queen    λ  m i n     is approximately −0.53, whereas    λ  m i n     of the hexagonal tessellation is around −0.57).



Figure 3 presents the selected fitted curves. This figure depicts the 70-by-70 (  n = 4900  ) configuration results for the square-rook, square-queen, and hexagonal cases. It presents the fitted curves (red), computed with the theoretical equation, superimposed on the observed data (blue), where the horizontal axis indicates the values of MC, and the vertical axis stands for the values of  ρ  (here,   ρ     denotes both the MC-estimated   ρ     and the SAR-estimated   ρ    .); the regression lines of     ρ ^   M C     (estimated by the functions of the MC in Table 1) versus   ρ ^   are shown in Appendix A. Figure 3a reveals that for the square rook connectivity, the feasible range of the MC is approximately      [  − 1 ,   1  ]   , and the range of  ρ  is    (  − 1 , 1  )   . For the square queen (Figure 3b) and hexagonal (Figure 3c) cases, the MC is about    (  − 0.51 ,   1  ]   ;  ρ  is approximately    (  − 1.90 ,   1  )    and    (  − 1.74 ,   1  )   , respectively (These intervals of   ρ     verify the inequality    λ  m i n      − 1   <  ρ ^  <  λ  m a x      − 1     (Ord, 1975, p124). While the most frequently used interval is    (  − 1 , 1  )    (refer to Section 2), intervals beyond this range can be transformed onto it.). These theoretical and original scatter plots match perfectly, with bivariate regression    R 2   s of nearly 1 (see Appendix A Figure A1).




3.2. The Sampling Variance of   ρ ^  


The sampling variance of   ρ ^   is important because it quantifies the uncertainty with which  ρ  is estimated. Ord [31] (p. 124) proposes the asymptotic variance-covariance matrix1 of  ρ  and    σ 2    (the value of diagonal entries of the variance-covariance matrix of error term  ε ); for illustrative purposes, it is rewritten as:


  V  (   σ 2  ,   ρ  )  =  σ 2     (       n  2  σ 2        t r  ( B )        t r  ( B )       σ 2  t r  (   B T  B  )  − α  σ 2       )    − 1   ,  



(5)




where   B =    (  I − ρ W  )    − 1   W ,   α = −   ∑   i = 1  n   λ i 2  /    (  1 − ρ  λ i   )   2   ,    λ i    is the ith eigenvalue of matrix  W , “tr” is the matrix trace operator, and superscript “T” is the matrix transpose operator. An asymptotic formula of the sampling variance of   ρ ^   derived from Equation (5) by inverting the 2-by-2 matrix is   V a r    (  ρ ^  )    a s y   =  (  n / 2  )  / Δ  , where   ∆ =  (  n / 2  )  t r  (   B T  B  )  +  (  n / 2  )    ∑   i = 1  n   λ i 2  /    (  1 − ρ  λ i   )   2  −    [  t r  ( B )   ]   2   . Hence, the variance expansion may be written as:


  V a r    (  ρ ^  )    a s y   =  1  t r  (   W T     (  I − ρ  W T   )    − 1      (  I − ρ W  )    − 1   W  )  +   ∑   i = 1  n     λ i 2       (  1 − ρ  λ i   )   2    −  2 n     [  t r  (     (  I − ρ W  )    − 1   W  )   ]   2    .  



(6)




This equation is still not easy to compute because it involves (inverse) matrix operations, as well as eigenvalues. The following sub-sections present some simplifications which only consist of sample size (or number of observations)  n , and the extreme eigenvalues of matrix  W  (specifically, for zero SA cases, only  P  and  Q ).



3.2.1. The Sampling Variance of   ρ ^   at Zero


When   ρ = 0  , Equation (6) becomes   V a r    (  ρ = 0  )    a s y   = 1 /  [  t r  (   W T  W  )  +   ∑   i = 1  n   λ i 2   ]   . Because   W =  D  − 1   C   ( D . is a diagonal matrix whose  n  diagonal entries are inverse row sums of matrix  C ),  C  and    D  − 1     are square matrices, and    c  i j     2  =  c  i j     because  C  is binary,   t r  (   W T  W  )  = t r  (   C T   D  − 1    D  − 1   C  )  = t r  (   C 2   D  − 2    )  =   ∑   i = 1  n   [    ∑   j = 1  n   c  i j     2  /   (   ∑   j = 1  n   c  i j   )  2   ]  =   ∑   i = 1  n   (  1 /   ∑   j = 1  n   c  i j    )   , then the asymptotic variance of  ρ  at zero is:


  V a r    (  ρ = 0  )    a s y   =  1    ∑   i = 1  n   1    ∑   j = 1  n   c  i j     +   ∑   i = 1  n   λ i 2    .  



(7)







Table 2 summarizes this variance for different surface partitionings; the formulae for summation of the inverse row sum of matrix  C  and summation of squared eigenvalues of matrix  W  are listed in Appendix B.



The expressions in Table 2 make Equation (7) extremely easy to compute, especially when the sample size is large. However, functions for  ρ  at nonzero points are more complex. As has been argued by [15], the variance of the inter-plant competition coefficient (which is the sampling variance of  ρ  that is discussed in this paper) cannot be stabilized by the Fisher Z-transformation, and even its generalized form only works on very weak spatial interactions (0, ±0.05, ±0.1) for three specific spatial configurations (i.e., 7, 12, and 19 hexagonally arranged points; see Figure 1 on p. 193). More recently, Griffith and Chun [47] emphasized that better quantifying the spatial variability of SA estimates is still a challenge. By exploring the distribution of the variance, this paper finds that the sampling variance of   ρ ^   is a function of  ρ  (which is implemented with   ρ ^  ), which is depicted by a Beta distribution curve with equal parameters larger than 1.




3.2.2. The Sampling Variance of   ρ ^   at Nonzero Values


To conduct the experiments, 30 groups of different sample sizes, ranging from 5-by-5 to 150-by-150 with  P  and  Q  increasing in increments of five, were employed; the sample size of each group was   P × Q  . The SA parameter  ρ  was uniformly sampled across its feasible ranges, namely,    λ  m i n      − 1   <  ρ ^  <  λ  m a x      − 1   = 1  , where  λ  is an eigenvalue of matrix  W . Theoretical functions of asymptotic variance versus   ρ ^   are presented in Table 3. In the formulae,    a 0    is the variance at zero (see Table 2),  G  is the standardized   ρ ^   with form   G =  (   ρ ^  − 1 /  λ  m i n    )  /  (  1 /  λ  m a x   − 1 /  λ  m i n    )   , and    λ  m a x     and    λ  m i n     are the maximum and minimum eigenvalues of matrix  W , respectively.



Figure 4 shows selected results of 150-by-150 (  n = 22 , 500  ) lattices for the square rook, square queen, and hexagonal cases. It presents theoretical plots (red) superimposed on the original scatter plots (blue), showing that the sampling variance of   ρ ^   is Beta-distributed with equal shape and scale parameters, and that the theoretical and the original plots closely correspond, which is also corroborated by the bivariate regression plots and their accompanying    R 2    values of nearly 1 (see Appendix A Figure A2).



To evaluate the validity of the theoretical equations listed in Table 3, simulation experiments were conducted.




3.2.3. Simulation Experiments


For each of the three cases, 24 groups of experiments of different sample sizes (from 10-by-10 to 125-by-125) were done, and for each sample size, combinations of two treatments (i.e., employing an approximated Jacobian term [36,37] and employing [35] a new algorithm for MLEs) were applied for the pure SAR model. For a square rook case,  ρ  took 21 values (from −0.9 to 0.9 with a 0.1 increment, and ±0.95) within its feasible range    (  − 1 , 1  )   , and 10,000 replications were executed per value per method. For a square queen case,  ρ  took 29 values (from −1.8 to 0.9 with a 0.1 increment, and 0.95) within its feasible range    (  − 1.9 , 1  )   , and 10,000 replications were executed per value per method. For a hexagonal case,  ρ  took 28 values (from −1.6 to 0.9 with a 0.1 increment, and −1.65, 0.95) within its feasible range    (  − 1.74 , 1  )   , and 10,000 replications were executed per value per method. Table 4 shows different treatment combinations that were employed by the three cases with sample size 100 (i.e., 10-by-10 lattice). Full information about the simulations appears in Appendix C (Table A2). For a specific  ρ , 10,000 simulated values were generated whose frequency distribution was approximately normal, and from which its mean and variance were extracted.



These experiments contend with two complications: approximating the Jacobian term, and clarifying its derivation for the nonlinear regression model in SAS. For the square rook adjacency case, two forms of approximation furnished by [36] were employed. For the square queen and hexagon adjacency cases, the following approximation [37] was used:


   J a c =  α 1  ∗  [    l n  (  1 − ρ ∗  λ  m i n    )    ρ ∗  λ  m i n     + 1 −  δ 1  ∗ ln  (  1 − ρ ∗  λ  m i n    )   ]  +  α 2     ∗  [    l n  (  1 − ρ ∗  λ  m a x    )    ρ ∗  λ  m a x     + 1 −  δ 2  ∗ ln  (  1 − ρ ∗  λ  m a x    )   ]  ,   



(8)




where   J a c   denotes an approximated Jacobian term. The default derivative of the Jacobian term employed in SAS is misleading. Its correct form, Equation (A2), is presented in Appendix D. Griffith [35] (p. 2149) furnishes a new algorithm to avoid the massive matrix calculation in the MLEs, which effectively reduces the execution time. This algorithm is employed in this paper.



Figure 5 includes 10-by-10 results for the regular square rook, regular square queen, and regular hexagonal tessellation cases. In all these figures, the theoretical values are presented by smooth orange curves. Selected sampling distributions of weak, moderate, and strong positive  ρ  for a 10-by-10 lattice are presented in Appendix E to illustrate the asymptotic normality of its sampling distribution.



Figure 5a portrays variance values for a systematic sample of 21 points (from −0.95 to 0.95) and a square rook case. Not including the orange graph, there are three other colored graphs in Figure 5a, where the blue stands for the exact values, and the red and green represent two different approximated calculations. The exact and approximated values are close, while a small gap appears between the blue-red-green and the orange graphs around the peak. The gap almost disappears when the sample size becomes 400 (20-by-20, see Appendix FFigure A4), and then appears again, but has no big change as the sample size increases. The gap is the difference between the theoretical and the exact values, and depicts the accuracy of the theoretical formulae—a smaller gap indicates a better approximation. Figure 5b portrays variance values for a systematic sample of 29 points (from −1.8 to 0.95) and a square tessellation with a queen adjacency case. To obtain the two results, one (the red) was calculated by approximating the Jacobian term and using a simplified algorithm for ML estimation [35], whereas the other (the green) was calculated by approximating the Jacobian term and using the conventional ML estimation implementation. Results calculated by these two methods are coincident, and they are not only considerably close to the exact graph (the blue in Figure 5b), but also close to the theoretical curves; the variance plots for larger sample sizes are shown in Appendix F (Figure A5), in which the theoretical (orange) and one approximation (red) are portrayed (except for the 20-by-20 case) because executing the nonlinear regression without the simplified algorithm is extremely time-consuming, and the gaps between the orange and the red are negligible. Figure 5c portrays variance values for a systematic sample of 28 points (from −1.65 to 0.95) computed for the hexagonal case. Here, the two approximations almost perfectly match the exact and theoretical values; variance plots for larger sample sizes appear in Appendix F (Figure A6); the exact variances would be slightly bigger around the maximum values than the theoretical ones when sample size exceeds 1600 (40-by-40), whereas values along the two sides match reasonably well.



Figure 6 presents convergence plots of variances at   ρ = 0  . The top row presents convergence curves whose horizontal axis is the square root of the sample size (from 5 to 150), and whose vertical axis is the standard deviation. Different colors indicate different calculation methods; for example, the orange denotes the theoretical calculated variance of  ρ  at zero, the blue denotes the asymptotic (formulae in Table 2) computed variance, the green and red respectively denote variance calculated with simulation experiments using the two methods approximating the Jacobian term (two methods exist for the square rook adjacency, whereas only one for the square queen and hexagonal adjacencies). The bottom row shows the standard-deviation-to-square-root-of-sample-size ratio (from 5 to 150); the green and red lines denote those standard deviations calculated with simulation experiments versus the asymptotically calculated standard deviations. Figure 6(a1,a2) are from the results of a square rook case, Figure 6(b1,b2) display the results from a square queen case, and Figure 6(c1,c2) portray the results from a hexagonal case. All of the trajectory curves appear to converge to zero, and all standard deviation ratios fluctuate around 1, when sample size goes to infinity.






4. A Simulated Zero Spatial Autocorrelation Scenario, and Two Nonzero Empirical Examples


Section 3 furnishes the sampling distribution of the nonzero SA parameter of the pure SAR model; one possible application of this contribution is to conduct hypothesis testing for a nonzero  ρ . Thus, the next section includes two empirical examples that represent moderate and strong positive SA, and to illustrate a zero SA case (rarely encountered in empirical data), simulated data were generated as well. Considering the normality of its sampling distribution, a Z test of the form    (  ρ −  ρ 0   )  / s d  ( ρ )    can be used to evaluate the estimated  ρ  value. Let the significance level  α  be 0.05, and for a two-sided hypothesis test as employed in this paper, the critical values would be ±1.96 (i.e., any value less than −1.96, or bigger than 1.96 leads to a rejection of the null hypothesis).



4.1. A Description of the Selected Datasets


For the zero SA case, a 100-by-100 (  n = 10 , 000  ) landscape (Goslee [48] furnishes R code for generating square lattices) with 10,000 numbers conforming to   N  (  0 , 1  )    randomly assigned on it was generated. Figure 7a illustrates this landscape, with colors ranging from red to green portraying values of different levels. For the moderate SA case, a census dataset with 184 subdistricts for Wuhan, China (2010) (The statistical data come from the “Tabulation on the 2010 population census of China”, http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm, and the blocks map comes from the Wuhan Land Resources and Planning Bureau) was employed. The target variable was set to be the percentage of 0-to19-year-old individuals in the population (denoted as 0–19%). Figure 7b illustrates the geographic distribution of 0–19% (ranging from 7.83 to 39.74) across Wuhan administrative districts, with the green representing areas of low rates and the red representing areas of high rates. Relatively low 0–19% areas cluster in the central urban sections, while relatively high 0–19% areas cluster in suburban regions. Because of the irregularity of its configuration, new simulation experiments were conducted to obtain the sampling variance of the SA parameter. Detailed information can be found in Appendix G. For the strong SA case, a Landsat 7 Enhanced Thematic Mapper Plus (ETM+) remotely sensed image downloaded from the USGS EarthExplore (https://earthexplorer.usgs.gov/) was employed. This image is of the Yellow Mountain region of China on 8 October 2002. Its original form is 7811-by-7051 (  n = 55 , 075 , 361  ) pixels, and it includes spectral bands B1-B8, with B1-B7 at a spatial resolution of 30 meters, and B8 having a spatial resolution of 15 meters. In order to be consistent with the magnitude of the other cases, a 100-by-100 patch, which displays the topographic landscape with green areas representing lower elevation and buff-to-white strips depicting mountain ridges with bare rocks, was cropped from the original image, and constitutes the study area across which the normalized difference vegetation index (NDVI) was calculated. The adjacency scheme employed to identify neighbors for all three cases was the rook (i.e., edge connections only), because for the irregular configuration (Figure 7b), the rook and queen (i.e., edge and point connections) would render very close results as adjacent administrative districts always have common boundaries; and for the two square cases (Figure 7a,c), although numerical results would be different, the adjacency definition has little impact on the conclusion.



In the case of moderate positive SA, the response variable 0–19% (YR, as denoted in Table 5) was subjected to an exponential transformation to make it better align with a bell-shaped curve, hence satisfying an assumption of the pure SAR model; the Shapiro-Wilk test statistic for the original 0–19% was 0.91, increasing to 0.99 after this transformation. For the strong positive SA case, an exponential transformation was also applied to NDVI to achieve better symmetry; considering its large sample size, the Kolmogorov-Smirnov (KS) normality test was employed, and the transformation decreased the KS statistic from 0.4250 to 0.0238. Thus, the transformed 0–19% and NDVI constituted the response variables of those SAR models for which the moderate and strong levels of SA parameters  ρ  were estimated, respectively. Data transformation and normality testing details for model residuals are presented in Appendix H, and scatter plots of residual-predicted values for assessing the homoscedasticity of model residuals, and thus the validity of the regression model, are also included.




4.2. Results and Explanations


Results are summarized in Table 5, which also includes the MC values.



There are two indexes appearing in this table to indicate the level of SA: the MC, and the SAR model estimated  ρ  (i.e.,   ρ ^  ), both of which represent the same level (i.e., nearly zero, moderate, and strong) of SA, but with different values; the MC is directly calculated with the observations, and   ρ ^   is the ML estimate for the pure SAR model in which the neighborhood was defined by rook adjacency. For the random case, the MC value is 0.0051, which indicates nearly zero SA, while   ρ ^   is 0.0101; the z-score and p-value indicate a failure to reject the null hypothesis of    ρ 0  = 0  , which verifies that those pseudo-random numbers conforming to   N  (  0 , 1  )    were randomly distributed on the 100-by-100 lattice. For the Wuhan census blocks case, the MC value of 0.53 indicates moderate SA, while    ρ ^  = 0.7080   corresponds to a first-order spatial correlation of roughly 0.45 (e.g., [29] (§2.2.1); [45] (p. 33)). Accordingly, a failure to reject the null hypothesis    ρ 0  = 0.7   for moderate SA is understandable. In the case of the Yellow Mountain remotely-sensed image, the MC value of 0.9077 indicates a high level of SA, and    ρ ^  = 0.9697   corresponds to a first-order spatial correlation of roughly 0.90. For this strong SA case, setting the null hypothesis of    ρ 0  = 0.95   is still rejected. Reasons for the rejection may include: (1) when referring to the logistic curve in Figure 3a, those  ρ  values that indicate strong positive SA may be restricted to a very narrow interval, say    (  0.95 ,   1  )   , while    ρ 0  = 0.95   corresponds to a moderate MC value (around 0.5); and, (2) the variance of   ρ ^   approaches 0 when the sample size becomes large and     ρ   approaches 1, and the nearly zero variance leads to a high z-score and a narrow confidence interval, and thus an extremely significant p-value.





5. Conclusions and Discussion


The main contribution of this paper is furnishing the sampling distribution of the nonzero SA parameter of the SAR model, which is frequently employed in a wide range of disciplines whose study observations are connected with geographical attributes or locations. More specifically, the sampling distribution was constructed for three specific spatial structures (i.e., regular square rook and queen, and hexagonal tessellations); the former two are usually used for remotely sensed images (raster data), while the latter is preferred for spatial sampling designs and aggregations. As shown with graphics and functions, the curve shape of the parameter  ρ  against the MC is sigmoid, which indicates that the MC should better differentiate SA levels and is more coincident with intuition (e.g., a MC value of 0.5 quantifies moderate SA, whereas the  ρ  value for the same level may be larger than 0.7, which conjures up a vision of moderate-to-strong SA at first glance). This may suggest that the MC could be better for assessing the level of SA. In addition, the sampling variance of the parameter seems to conform to a beta distribution with equal scale and shape parameters (larger than 1). A difference in these distributions between the square rook and the other two is that the parabola-shaped curve is symmetric at zero for the square rook adjacency, whereas the symmetry is at negative points for the square queen and hexagonal adjacencies.



One merit of this contribution is that it implements hypothesis testing for a nonzero null hypothesis. For illustrative purposes, two empirical examples for moderate and strong SA were selected, as was a zero null hypothesis case employing simulated data exhibiting a random map pattern. For this random case, the result indicates a failure to reject the null hypothesis, which is in accordance with our expectation. For the moderate case, prior knowledge that  ρ  and the MC have a logistic relationship (i.e., MC values beyond, e.g., (−0.3, 0.3) correspond to extreme  ρ  values) results in positing a null hypothesis of    ρ 0  = 0.7  ; thus, the null hypothesis is not rejected. For the strong SA case, the null hypothesis of    ρ 0  = 0.95   is rejected mainly because of the large sample size (i.e.,   n = 10 , 000  ) and the closeness between 0.95 and 1, both of which result in an extremely small variance. These examples verify that the uncovered sampling distribution results are credible (the standard error for    ρ 0  = 0   is 0.0141, corresponding to a z-score of 0.7188, which has a very small difference of 0.0066 with the z-score 0.7254 appearing in Table 5). In addition, a by-product of this contribution is the visualization of statistical power curves for SA statistics [42]. Because the SA parameter can be expressed in terms of the MC, their power curves can be plotted with a common measurement scale (see Appendix I).



Future work needs to refine, and hopefully simplify, the variance expression for the hexagonal case; one way to achieve this end is to increase the number of experiments (the current variance- ρ  function is based upon 14 groups of datasets (i.e., 7-by-7 to 70-by-70) to estimate its parameters). Extensions can be made for more complicated landscapes, such as a combination of hexagons and pentagons, partitionings with distorted hexagons (i.e., ISEA3H as a hexagonal Discrete Global Grid System; [43]); these may be described with appropriate spatial weights matrices, where for the former, expressions like those listed in Table 2 need to be derived, and for the latter, a spatial weights matrix containing metrics based upon side length or hexagon area may be more reasonable than a binary version. An important issue illustrated by the last example meriting emphasis is that the formal hypothesis testing or its p-value may no longer make sense because of the large-to-massive sample size involved. For example, the “confidence interval” of 0.9697 is [0.9659, 0.9735], in which the null hypothesis value should be contained; otherwise, the null hypothesis is rejected. A cause of this “always significant” phenomenon is the extremely small variance for a very big sample size, which creates the necessity to develop a new criterion to substitute for statistical significance when analyzing spatial data with large-to-massive sample sizes. This is a meaningful research theme that needs attention in the future.
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Appendix A. Bivariate Regression Results
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Figure A1. Bivariate regression results of     ρ ^   M C     as a function of   ρ ^   for three 70-by-70 (  n = 4900   ) regular tessellations: (a) square rook adjacency case; (b) square queen adjacency case; and, (c) hexagonal case data. 






Figure A1. Bivariate regression results of     ρ ^   M C     as a function of   ρ ^   for three 70-by-70 (  n = 4900   ) regular tessellations: (a) square rook adjacency case; (b) square queen adjacency case; and, (c) hexagonal case data.
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Figure A2. Bivariate regression results of the asymptotic variance of   ρ ^   as a function of its theoretical version for three 150-by-150 (  n = 22 , 500   ) regular tessellations: (a) square rook adjacency case; (b) square queen adjacency case; and, (c) hexagonal case. 






Figure A2. Bivariate regression results of the asymptotic variance of   ρ ^   as a function of its theoretical version for three 150-by-150 (  n = 22 , 500   ) regular tessellations: (a) square rook adjacency case; (b) square queen adjacency case; and, (c) hexagonal case.
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Appendix B. Components of the Denominator of the Asymptotic Variance of   ρ ^   at Zero for Different Landscapes
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Table A1. Components of the denominator of Equation (7).






Table A1. Components of the denominator of Equation (7).





	Landscape
	      ∑   i = 1  n  1 /   ∑   j = 1  n   c  i j      
	      ∑   i = 1  n   λ i 2     





	Square rook
	    [  3 P Q + 2  (  P + Q  )  + 4  ]  / 12   
	    [  18 P Q + 11  (  P + Q  )  + 12  ]  / 72   



	Square queen
	    [  15 P Q + 18  (  P + Q  )  + 28  ]  / 120   
	    [  300 P Q + 279  (  P + Q  )  + 234  ]  / 2400   



	Hexagonal
	    (  5 P Q + 5 P + 6 Q + 8  )  / 30   
	    (  30 P Q + 25 P + 24 Q + 23  )  / 180   









Appendix C. Basic Information about the Simulation Experiments


Because calculating the exact Jacobian is very time consuming, and nonlinear calculation iterations for the conventional MLEs are slow, sample sizes larger than 10-by-10 did not employ the pure SAR model with an exact Jacobian term and the conventional MLE implementation (except for the square queen 15-by-15 and 20-by-20 cases (SQ15-20), and the hexagonal 15-by-15 to 40-by-40 cases (H15-40)). Hence, the number of methods for all three cases using a 10-by-10 lattice is 3 (Table A2). For the square rook 15-by-15 to 125-by-125, two approximated Jacobian terms, plus Griffith’s new MLE equations [35] were employed. For the square queen 15-by-15, 20-by-20, and hexagonal 15-by-15 to 40-by-40, cases, an approximated Jacobian term plus the new MLE equations, as well as an approximated Jacobian term plus the conventional MLE implementation, were used; thus, the number of methods for these cases is two. The remaining square queen and hexagonal cases employed an approximated Jacobian term plus the new MLE equations; thus, the number of method here is one.
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Table A2. Simulation experiments employing  ρ  within its feasible range.
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Regular Square Rook

	
Regular Square Queen

	
Regular Hexagonal Tessellation




	
Sample Size

	
Number of Methods

	
Number of Replications

	
Sample Size

	
Number of Methods

	
Number of Replications

	
Sample Size

	
Number of Methods

	
Number of Replications






	
10-by-10

	
3

	
3*21*10,000

	
10-by-10

	
3

	
3*29*10,000

	
10-by-10

	
3

	
3*28*10,000




	
15-by-15

	
2

	
2*21*10,000

	
15-by-15

	
2

	
2*29*10,000

	
15-by-15

	
2

	
2*28*10,000




	
20-by-20

	
2

	
2*21*10,000

	
20-by-20

	
2

	
2*29*10,000

	
20-by-20

	
2

	
2*28*10,000




	
25-by-25

	
2

	
2*21*10,000

	
25-by-25

	
1

	
29*10,000

	
25-by-25

	
2

	
2*28*10,000




	
30-by-30

	
2

	
2*21*10,000

	
30-by-30

	
1

	
29*10,000

	
30-by-30

	
2

	
2*28*10,000




	
35-by-35

	
2

	
2*21*10,000

	
35-by-35

	
1

	
29*10,000

	
35-by-35

	
2

	
2*28*10,000




	
40-by-40

	
2

	
2*21*10,000

	
40-by-40

	
1

	
29*10,000

	
40-by-40

	
2

	
2*28*10,000




	
45-by-45

	
2

	
2*21*10,000

	
45-by-45

	
1

	
29*10,000

	
45-by-45

	
1

	
28*10,000




	
50-by-50

	
2

	
2*21*10,000

	
50-by-50

	
1

	
29*10,000

	
50-by-50

	
1

	
28*10,000




	
55-by-55

	
2

	
2*21*10,000

	
55-by-55

	
1

	
29*10,000

	
55-by-55

	
1

	
28*10,000




	
60-by-60

	
2

	
2*21*10,000

	
60-by-60

	
1

	
29*10,000

	
60-by-60

	
1

	
28*10,000




	
65-by-65

	
2

	
2*21*10,000

	
65-by-65

	
1

	
29*10,000

	
65-by-65

	
1

	
28*10,000




	
70-by-70

	
2

	
2*21*10,000

	
70-by-70

	
1

	
29*10,000

	
70-by-70

	
1

	
28*10,000




	
75-by-75

	
2

	
2*21*10,000

	
75-by-75

	
1

	
29*10,000

	
75-by-75

	
1

	
28*10,000




	
80-by-80

	
2

	
2*21*10,000

	
80-by-80

	
1

	
29*10,000

	
80-by-80

	
1

	
28*10,000




	
85-by-85

	
2

	
2*21*10,000

	
85-by-85

	
1

	
29*10,000

	
85-by-85

	
1

	
28*10,000




	
90-by-90

	
2

	
2*21*10,000

	
90-by-90

	
1

	
29*10,000

	
90-by-90

	
1

	
28*10,000




	
95-by-95

	
2

	
2*21*10,000

	
95-by-95

	
1

	
29*10,000

	
95-by-95

	
1

	
28*10,000




	
100-by-100

	
2

	
2*21*10,000

	
100-by-100

	
1

	
29*10,000

	
100-by-100

	
1

	
28*10,000




	
105-by-105

	
2

	
2*21*10,000

	
105-by-105

	
1

	
29*10,000

	
105-by-105

	
1

	
28*10,000




	
110-by-110

	
2

	
2*21*10,000

	
110-by-110

	
1

	
29*10,000

	
110-by-110

	
1

	
28*10,000




	
115-by-115

	
2

	
2*21*10,000

	
115-by-115

	
1

	
29*10,000

	
115-by-115

	
1

	
28*10,000




	
120-by-120

	
2

	
2*21*10,000

	
120-by-120

	
1

	
29*10,000

	
120-by-120

	
1

	
28*10,000




	
125-by-125

	
2

	
2*21*10,000

	
125-by-125

	
1

	
29*10,000

	
125-by-125

	
1

	
28*10,000










Appendix D. Correct Derivation of the Jacobian Term for SAS


For a pure SAR model (Equation (2)), the nonlinear model executed in SAS is of the form [33]:


  Y ∗ J a c =  [  ρ W Y +  (  1 − ρ  )   β 0  1 + ε  ]  ∗ J a c .  



(A1)




Taking the derivative with respect to  ρ  on both sides of Equation (A1), and considering


    ∂  (  Y ∗ J a c  )    ∂ ρ   =   J a c   ∂ Y   ∂ ρ   + Y ∗   ∂ J a c   ∂ ρ    








yields


  J a c   ∂ Y   ∂ ρ   =  [  ρ W Y +  (  1 − ρ  )   β 0  1 − Y  ]    ∂ J a c   ∂ ρ   +  (  W Y −  β 0  1  )  ∗   J a c .  



(A2)




The default derivative of the Jacobian term employed in SAS is   ∂  (  Y ∗ J a c  )  / ∂ ρ  ; however, what should be calculated is Equation (A2)2.




Appendix E. Asymptotic Normality of the Sampling Distribution of the Spatial Autocorrelation (SA) Parameter  ρ 


Considering the prevalence of positive SA latent in geographical datasets, selecting frequency distributions of positive parameters with weak (  ρ = 0.3  ), moderate (  ρ = 0.7  ), and strong (  ρ = 0.95  ) SA is representative. Figure A3a–c include these plots for the 10-by-10 square rook, square queen, and hexagonal cases, respectively.





[image: Ijgi 07 00476 g0a3 550] 





Figure A3. Frequency distributions of weak, moderate, and strong positive SA parameters: (a) square tessellation, rook adjacency; (b) square tessellation, queen adjacency; and, (c) hexagonal adjacency. 
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Simulation experiments were conducted to obtain these distributions, which become thinner and taller as the preset  ρ  value changes from 0.3 to 0.95. Estimated means and standard deviations are shown in the legends, and all means are marked on the histogram/density curve plots as red reference lines. Despite their widths and heights, all of these distributions are bell-shaped; thus, the SA parameter  ρ  is asymptotic normally distributed, with changing mean and variance across its feasible range.




Appendix F.  ρ  versus the Variance of   ρ ^  : Simulation Experiment Results for Three Adjacencies
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Figure A4. Theoretical variances (orange) versus exact variances (red and green) obtained by approximating the Jacobian term and employing new maximum likelihood estimators (MLEs) with different sample sizes for the square tessellation with rook adjacency. 
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Figure A5. Theoretical variances (orange) versus exact variances (red and green) obtained by approximating the Jacobian term and employing new MLEs with different sample sizes for the square tessellation with queen adjacency. 
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Figure A6. Theoretical variances (orange) versus exact variances (red and green) obtained by approximating the Jacobian term and employing new MLEs with different sample sizes for the square tessellation with hexagonal adjacency. 






Figure A6. Theoretical variances (orange) versus exact variances (red and green) obtained by approximating the Jacobian term and employing new MLEs with different sample sizes for the square tessellation with hexagonal adjacency.
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Appendix G. The Sampling Distribution of the SA Parameter  ρ  for the Wuhan Census Blocks Dataset


The 184 census blocks of Wuhan do not constitute a regular tessellation, so sampling distributions obtained with the three ideal configurations are no longer suitable for this irregular surface partitioning case. Thus, experiments need to be conditional on this empirical configuration in order to construct the correct sampling distribution. The same procedures as those in Section 3 are repeated. The theoretical functions for   ρ ^   versus the MC, and for its sampling variance versus  ρ , are expressed by Equations (A3) and (A4).


    ρ ^   W u h a n   =   4.3462   1 +  e     |  M C − 0.9839  |    8.3721       +   0.9619   − 0.7646   ,  



(A3)






  V a r  (    ρ ^   W u h a n    )  = 0.0761 ∗  G  1.0229   ∗    (  1 − G  )    1.4125   ,  



(A4)




where   G =  (    ρ ^   W u h a n   − 1 /  λ  m i n    )  /  (  1 /  λ  m a x   − 1 /  λ  m i n    )   ; for this landscape,    λ  m a x   = 1  , and    λ  m i n   = − 0.7646  . Figure A7 presents their fitted curves, where the    R 2    for the logistic curve and the beta curve with equal parameters larger than one are 0.9975 and 0.9993, respectively.
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Figure A7. Curve fitting plots and bivariate regression plots for Wuhan census blocks data. (a1,a2) The original MC-  ρ ^   scatter plot (blue) superimposed on the theoretical MC- ρ  curve (red), and a bivariate regression scatter plot for the original and predicted  ρ ; (b1,b2) the original   ρ ^   -var(  ρ ^   ) scatter plot (blue) superimposed on the theoretical   ρ ^   -var(  ρ ^   ) curve (red), and a bivariate regression scatter plot for the original and predicted Var(  ρ ^   ). 






Figure A7. Curve fitting plots and bivariate regression plots for Wuhan census blocks data. (a1,a2) The original MC-  ρ ^   scatter plot (blue) superimposed on the theoretical MC- ρ  curve (red), and a bivariate regression scatter plot for the original and predicted  ρ ; (b1,b2) the original   ρ ^   -var(  ρ ^   ) scatter plot (blue) superimposed on the theoretical   ρ ^   -var(  ρ ^   ) curve (red), and a bivariate regression scatter plot for the original and predicted Var(  ρ ^   ).
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Appendix H. A Data Analysis for One Simulated and Two Empirical Examples


The simulated data were sampled from a standard normal distribution (Figure A8a) within the interval [–4,4]. The accompanying quantile-quantile (Q-Q) normal plot of the regression model residuals (Figure A8b) conforms almost perfectly to its theoretical normal counterpart. The symmetry along the horizontal axis of the scatter plot of model residual-predicted values (Figure A8c) indicates homoscedaticity of the residuals; thus, results estimated by the model are reliable.
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Figure A8. Statistical properties of simulated data and their regression residuals: (a) a histogram of simulated data; (b) a Q-Q plot of the SAR model residuals; and, (c) a scatter plot of residual-predicted values for assessing the homoscedasticity of model residuals. 






Figure A8. Statistical properties of simulated data and their regression residuals: (a) a histogram of simulated data; (b) a Q-Q plot of the SAR model residuals; and, (c) a scatter plot of residual-predicted values for assessing the homoscedasticity of model residuals.
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Things are different for the two empirical cases. For the Wuhan census blocks data, the young population ratio range is    [  7.83 ,   39.74  ]   , the mean and the standard deviation are 18.33 and 4.67, respectively, and the median is 17.93, which indicates right skewness. An exponential transformation improves the Shapiro-Wilk normality diagnostic statistic from 0.91 to 0.99, and the p-value from   5.3 ×   10   − 9     to 0.06, which indicates a normal distribution. The normal Q-Q plot (Figure A9b) of the regression residuals shows deviation in the left tail; more specifically, three points deviate far from the reference line. The approximated symmetry along the horizontal axis of the scatter plot of residual-predicted values (Figure A9c) indicates that the model residuals are not heteroscedatic, meaning that results estimated by the model are be trustworthy.
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Figure A9. Statistical properties of the transformed young population ratio and its regression residuals: (a) a histogram of the exponential transformed young population ratio; (b) a Q-Q plot of the SAR model residuals; and, (c) a scatter plot of residual-predicted values for assessing the homoscedasticity of model residuals. 






Figure A9. Statistical properties of the transformed young population ratio and its regression residuals: (a) a histogram of the exponential transformed young population ratio; (b) a Q-Q plot of the SAR model residuals; and, (c) a scatter plot of residual-predicted values for assessing the homoscedasticity of model residuals.
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For the Yellow Mountain region image, the range of its NDVI is    [  − 0.2318 ,   0.3252  ]   , the mean and standard deviation are 0.1107 and 0.0941, respectively, and the median is 0.1287, which indicates left skewness; thus, the exponential transformation   a + b ∗  e  λ ∗ N D V I     was applied to the raw data, and the nonlinear regression procedure calculated estimates maximizing the likelihood are    a ^  = − 2.70 ,    b ^  = 1.46 ,   and    λ ^  = 4.78  . The KS normality test for the original NDVI as well as for the transformed data yields a KS statistic that decreases from 0.4250 to 0.0238, with respective p-values increasing from less than   2.20 ×   10   − 16     to   2.33 ×   10   − 5    . The histogram, as well as the density curve of the transformed NDVI appearing in Figure A10a, indicates an approximate normal distribution. The pure SAR model description of this transformed NDVI was estimated, and then its residuals were assessed. A Q-Q plot for the residuals appears in Figure A10b that has a conspicuous deviation from the Q-Q plot line occuring in the right tail of the quantile. Slight heteroscedaticity of model residuals (the range widens a little after −1) can be detected in the residual-predicted scatter plot (Figure A10c).
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Figure A10. Improved normality of transformed normalized difference vegetation index (NDVI) and regression residuals: (a) a histogram of the Exponential transformed NDVI; (b) a Q-Q plot of the SAR model residuals; and, (c) a scatter plot of residual-predicted values for assessing the homoscedasticity of model residuals. 






Figure A10. Improved normality of transformed normalized difference vegetation index (NDVI) and regression residuals: (a) a histogram of the Exponential transformed NDVI; (b) a Q-Q plot of the SAR model residuals; and, (c) a scatter plot of residual-predicted values for assessing the homoscedasticity of model residuals.
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Appendix I. Statistical Power Visualization of Different SA Statistics in a Single Plot


One of the applications of this paper’s contribution is the visualization of statistical power curves of different SA statistics/parameters. The Geary Ratio (GR, also known as Geary’s c) power curve can be constructed as well. In Figure A11, the green depicts the MC’s power, the red presents the GR’s power, and the blue shows the SAR  ρ ’s power. These graphics indicate that  ρ  is uniformly more powerful than the MC and the GR, while the MC is uniformly more powerful than the GR only for positive SA for the hexagonal tessellation.
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Figure A11. Statistical power curves for the MC (green), the GR (red), and the SAR  ρ  (blue): (a) the 7-by-7 square tessellation, rook adjacency case; (b) the 7-by-7 square tessellation, queen adjacency case; and, (c) the 7-by-7 hexagonal tessellation case. 
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	1
	
Ord, 1975, Appendix B, contains a typographical error: a minus should be inserted after the second equality sign of  α .





	2
	
There is a typo in [36] (p. 864), the brace needs to be removed.
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Figure 1. Selected frequency distributions of simultaneous autoregressive (SAR)-estimated  ρ . 
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Figure 2. Three regular surface partitionings: (a) square configuration with rook adjacency; (b) square configuration with queen adjacency; (c) hexagonal configuration. 
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Figure 3. Fitted curves of the MC against  ρ  for 70-by-70 (  n = 4900   ) surface partitionings: (a) square rook case; (b) square queen case; and, (c) hexagonal case. 
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Figure 4. Fitted curves of the asymptotic variance versus   ρ ^   for 150-by-150 (  n = 22 , 500   ) adjacencies: (a) square rook case; (b) square queen case; and, (c) hexagonal case. 
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Figure 5. Variance comparison plots for 10-by-10 (  n = 100  ) tessellations: (a) square rook case; (b) square queen case; (c) hexagonal case. 
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Figure 6. Convergence and variance ratio plots at   ρ = 0  . (a1,a2) Square rook variance convergence and ratio plots; (b1,b2) square queen variance convergence and ratio plots; (c1,c2) hexagonal variance convergence and ratio plots. 
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Figure 7. Landscapes with different degrees of spatial autocorrelation (SA): (a) a 100-by-100 lattice across which pseudo-random numbers from a standard normal distribution are randomly distributed; (b) 184 census blocks of Wuhan (2010) with 0–19% (ranging from 7.83 to 39.74, with green representing low rates and red representing high rates) displayed; (c) 100-by-100 pixels clipped from the Yellow Mountain region image (2002, with the green representing vegetation and buff-to-white strips depicting mountain ridges). 
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Table 1. Theoretical functions for  ρ  versus the Moran coefficient (MC).
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Geographical Configurations

	
Function Forms

	
Parameter Estimates






	
Square rook

	
    ρ ^    =  a  1 +  e  b ∗ M C + c     +  d   λ  m i n       

	
    a ^  = 2 ,    b ^  = − 8 ,    c ^  = 0 ,    d ^  = 1   




	
Square queen

	
    ρ ^    =  a  1 +  e     |  M C + b  |   c      +  d   λ  m i n       

	
    a ^  = 5.8 ,    b ^  = − 0.96 ,    c ^  = 8 ,    d ^  = 1   




	
Hexagonal

	
    a ^  = 5.5 ,    b ^  = − 0.96 ,    c ^  = 6.7 ,    d ^  = 1   
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Table 2. Asymptotic variance of   ρ ^   at zero for different surface partitionings.
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	Landscape
	    Asymptotic   Variance   for   ρ = 0 .      





	Square rook
	   72 /  (  36 P Q + 23 P + 23 Q + 36  )    



	Square queen
	   2400 /  (  600 P Q + 639 P + 639 Q + 794  )    



	Hexagonal
	   180 /  (  60 P Q + 55 P + 60 Q + 71  )    
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Table 3. Theoretical functions for asymptotic variance versus   ρ ^  .
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Geographical Configurations

	
Function Forms

	
    Parameter   Estimates   (  R 2  )    






	
Square rook

	
   V a r    (  ρ ^  )    a s y   = a ∗  a 0  ∗  G  b − 1     

   ∗    (  1 − G  )    c − 1     

	
    a ^  =   17.9181    n  0.5395     + 6.7144   ,    (  0.9999  )    

    b ^  = 2.4 ,    c ^  = 2.4   




	
Square queen

	
    a ^  =   32.4112    n  0.4482     + 6.4694 ,    (  0.9990  )    

    b ^  =   2.0836    n  0.3519     + 2.1107 ,  (  0.9975  )    

    c ^  =   1.0641    n  0.2982     + 2.2843 ,    (  0.9974  )    




	
Hexagonal

	
   V a r    (  ρ ^  )    a s y   = a ∗  a 0  ∗  G  c ∗ G + b − 1   ∗    (  1 − G  )    e ∗ G + d − 1     

	
    a ^  =   30.1752    n  0.3065     − 0.0160 ,    (  0.9941  )    

    b ^  =   3.0023    n  0.1121     + 0.5299 ,    (  0.9966  )    

    c ^  =  {      0.0110 ∗   ( ln  ( n )  − 6 )  2  + 0.02357 ,   n ≤ 400       − 0.0233 ∗   ( ln  ( n )  − 6 )  2  + 0.02357 ,   n > 400     ,       

    (  0.9917  )    

    d ^  =  n  − 0.0647 ∗ ln  ( n )  + 0.4876   − 0.0634 ,    (  0.9900  )    

    e ^  =   ln n   3.35013   − 1.1161 ,    (  0.9890  )    
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Table 4. Methods employed with a 10-by-10 lattice *.
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	Treatment
	ExactJacob
	AppJacob1
	AppJacob2
	AppJacob3





	Original MLEs
	SR, SQ, H
	-
	-
	SQ, H



	Griffith’s MLEs (2015)
	-
	SR
	SR
	SQ, H







* SR, SQ, and H represent square rook, square queen, and hexagonal cases, respectively. AppJacob1 and AppJacob2 refer to approximated Jacobian Equations (10) and (11) in [35]. AppJacob3 is Equation (8).
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Table 5. Results of zero, moderate, and strong positive spatial autocorrelation (SA) examples.
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	Dataset
	Random Landscape
	Wuhan Census Blocks
	Yellow Mountain Image





	Response variable
	Pseudo-random numbers
	   3.67 − 11.79 ∗  e  − 6.59 ∗ Y R     
	   1.46 ∗  e  4.78 ∗ N D V I   − 2.70   



	Null hypothesis (   H 0   )
	    ρ 0  = 0   
	    ρ 0  = 0.7   
	    ρ 0  = 0.95   



	MC
	0.0051
	0.5304
	0.9077



	   ρ ^   
	0.0101
	0.7080
	0.9697



	   s d  (  ρ ^  )    
	0.0139
	0.0598
	0.0019



	z-score
	0.7254
	0.1338
	10.1762



	p-value
	0.4682
	0.8935
	<2.5314e-24



	*95% CI of   ρ ^  
	[−0.0171, 0.0373]
	[0.5908, 0.8252]
	[0.9659, 0.9735]



	Conclusion
	Failed to reject    H 0   
	Failed to reject    H 0   
	Reject    H 0   







*95% confidence intervals of model estimated  ρ  are calculated to determine the range in which the    ρ 0    will not be rejected.














© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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