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Abstract: Several studies in the hydrology field have reported differences in outcomes between
models in which spatial autocorrelation (SAC) is accounted for and those in which SAC is not.
However, the capacity to predict the magnitude of such differences is still ambiguous. In this study,
we hypothesized that SAC, inherently possessed by a response variable, influences spatial modeling
outcomes. We selected ten watersheds in the USA and analyzed if water quality variables with
higher Moran’s I values undergo greater increases in the coefficient of determination (R2) and greater
decreases in residual SAC (rSAC). We compared non-spatial ordinary least squares to two spatial
regression approaches, namely, spatial lag and error models. The predictors were the principal
components of topographic, land cover, and soil group variables. The results revealed that water
quality variables with higher inherent SAC showed more substantial increases in R2 and decreases
in rSAC after performing spatial regressions. In this study, we found a generally linear relationship
between the spatial model outcomes (R2 and rSAC) and the degree of SAC in each water quality
variable. We suggest that the inherent level of SAC in response variables can predict improvements
in models before spatial regression is performed.

Keywords: spatial autocorrelation; water quality; spatial modeling; coefficient of determination;
residual autocorrelation

1. Introduction

Water is an element crucial for life on Earth and is closely linked to the well-being of societies as
well as the sustainability of aquatic ecosystems. A combination of natural and anthropogenic factors
can adversely impact water quality. Human impacts involve general land use practices (e.g., agriculture,
irrigation practices, urbanization, and deforestation), while natural factors include slope, elevation,
vegetation cover, soil type, precipitation, and streamflow [1–3]. River characteristics are generally
dependent upon land use and geomorphological features of the watershed under study. In addition,
water use patterns associated with the location of a region and its interactions with neighboring regions
influence the quality of water bodies [4]. These factors are responsible for the spatial variability of
water quality, and are often treated as predictor variables in many hydrologic models [5]. To provide
better insights to future watershed management policies, understanding spatial processes associated
with water quality variables is of extreme importance.

Space serves a vital role in structuring hydrological systems. Spatial autocorrelation (SAC) is
an inherent property of spatial features such as streams and rivers [6]. Legendre defined the concept
of SAC as “the property of random variables taking values, at pairs of locations a certain distance
apart, that are more similar (positive autocorrelation), or less similar (negative autocorrelation) than
expected for randomly associated pairs of observations” (p. 1659) [7]. For example, causes of positive
autocorrelation in stream water quality could be associated with similarities in local habitats or
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turbulent mixing and water chemistries of stream flows. In contrast, specific local built structures,
such as beaver dams, fallen trees in stream channels, and territorial fishes, could be causes of negative
SAC [8]. Given these interactions over space (i.e., water flow from upstream to downstream areas,
local biota, and water use patterns), it is necessary to consider the presence and potential effects of
SAC in water quality modeling.

Numerous studies in ecology, geography, and hydrology have noted the importance of
accounting for SAC [9–12]. These studies show that ignoring SAC can bias model outcomes
and parameter estimates, leading to poor statistical inference and violation of the independence
assumption of conventional regression approaches [8,13–16]. For example, models that ignore
spatial effects (e.g., ordinary least squares; OLS) are likely to produce autocorrelated residuals
violating the independent errors assumption. This can inflate the Type I error rate, wrongfully
rejecting a null hypothesis. Many spatial approaches have been developed in order to overcome
such limitations of non-spatial counterparts. These approaches include, but are not restricted to,
regression kriging, simultaneous autoregressive modeling, conditional autoregressive modeling,
spatial lag modeling, spatial error modeling, spatial eigenvector mapping, and geographically
weighted regression [8,9,17–26].

Several water quality studies have compared outcomes between spatial and non-spatial
regressions [2–4,10,11,27–29]. In general, spatial models presented significant increases in R2 values
and decreases in residual SAC (rSAC), indicating that spatial model performance exhibited clear
improvements over the non-spatial approach. However, as per the literature on hydrological modeling,
it is still uncertain when such improvements become large or small. Assuming that each water quality
variable presents a unique degree of inherent SAC, we hypothesize that this SAC (possessed by
a response variable; i.e., a water quality variable) influences the outcomes of spatial modeling. We
test if water quality variables with a higher amount of SAC would exhibit greater improvement in
model outcomes than those with a lower amount of SAC (see Figure 1). We evaluate this hypothesis
across divergent regions of the USA to enable a general understanding of the effect of SAC possessed
by water quality variables. We examine if SAC is a consistent determinant of the magnitude of
model improvements even when watershed characteristics diverge. If this is indeed the case, we can
potentially determine the degree of improvement in model fit before performing a spatial regression
simply by measuring the inherent SAC level of a water quality variable. This study can also serve as
a useful screening technique where modelers could use Moran’s I to predict the spatial pattern in the
independent variable using a spatially explicit method.
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Table 1. Description of the ten study sites investigated in this research.

Region Coordinates Land Cover Biogeographic
Region Geology Climate Soil Surficial Lithology

Arizona 34◦40′54” N,
112◦00′47” W

Herbaceous, low-intensity
urbanization, and
evergreen forest

North American
Warm Desert

Late and middle Pleistocene
surficial deposits and

Pliocene to middle Miocene
deposits

Cold semi-arid (BSk) Alfisols/Inceptisols

Non-Carbonate and Silicic
Residual Material; Alluvium

and Fine-textured Coastal Zone
Sediment

California 38◦00′00” N,
119◦21′33” W

Evergreen Forest, Barren
Land, and Shrubs

Mediterranean
California

Mesozoic granitic rocks, unit
3 (Sierra Nevada, Death

Valley area, Northern Mojave
Desert, and Transverse

Ranges)

Temperate
Mediterranean (Csb)

Rock
outcrop/Entisols Silicic Residual Material

Colorado 37◦56′58” N,
107◦56′10” W

Predominantly Evergreen
and Deciduous Forest Rocky Mountain

Mancos Shale; Pre-ash-flow
andesitic lavas, breccias, tuffs,
and conglomerates; Morrison,
Wanakah, and Entrada Fms

Warm-summer
humid continental

(Dfb)

Rock
outcrop/Mollisols

Non-Carbonate and Silicic
Residual Material

Delaware 39◦43′36” N,
75◦40′07” W

High-, medium-, and low-
intensity urbanization
with some deciduous

forest and pasture

Gulf and Atlantic
Coastal Plain Wissahickon Schist Humid Subtropical

(Cfa) Ultisols

Non-Carbonate and Silicic
Residual Material; Alluvium

and Fine-textured Coastal Zone
Sediment

Idaho 47◦31′01” N,
116◦04′27” W

Evergreen forest, shrub,
and some

medium-intensity
urbanization

Rocky Mountain

Siltite, argillite, dolostone,
and quartzite; Middle
Proterozoic Wallace

Formation

Temperate
Mediterranean
(Csb)/Warm,
dry-summer

continental (Dsb)

Andisols Non-Carbonate Residual
Material

Iowa 41◦37′38” N,
91◦29′31” W

High and medium
urbanization level with

crops and pasture

Eastern Great
Plains Cedar Valley Limestone Humid Continental

(Dfa) Mollisols

Glacial Till, Loamy; Glacial
Outwash and Glacial Lake
Sediment, Coarse-textured;

Alluvium and Fine-textured
Coastal Zone Sediment

Kansas 38◦55′00” N,
94◦41′14” W

Predominantly high-,
medium-, and low-

intensity urbanization

Eastern Great
Plains

Limestone—Kansas City and
Lansing Group

Humid Subtropical
(Cfa) Mollisols Non-Carbonate Residual

Material

Kentucky 37◦25′01” N,
82◦49′04” W

Predominantly Deciduous
Forest

Central Interior
and Appalachian

Middle part of Breathitt
Group

Humid Subtropical
(Cfa) Inceptisols Colluvial Sediment

Louisiana 31◦48′17” N,
91◦42′21” W

Predominantly cultivated
crops

Gulf and Atlantic
Coastal Plain Sub/supra-glacial sediment Humid Subtropical

(Cfa) Vertisols Alluvium and Fine-textured
Coastal Zone Sediment

Virginia 38◦55′51” N,
77◦18′25” W

Deciduous Forest and
developed open space

Central Interior
and Appalachian Schist Humid Subtropical

(Cfa) Alfisols/Inceptisols Non-Carbonate Residual
Material
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Table 2. Study areas (10 watersheds each in one state of the USA and their areas), number of stations per study area, and water quality parameters (response variables)
with the respective Moran’s I values in parentheses.

Study Areas

State LA AZ KS VA CA CO DE ID IA KY

Watershed
Bayou
Louis/

Lake Louis

Cherry
Creek

Indian
Creek

Difficult
River

Headwaters
Tuolumne

River

Upper San
Miguel
River

Clay, Mill,
Bradywine Creek,
and Cristina River

Lower South
Fork Coeur

d’Alene River
Iowa River Beaver

Creek

Area (km2) 288.58 586.26 193.8 150.84 553.66 763.71 352.24 308.49 193.96 407.07
Stations 29 31 33 33 31 32 36 32 32 54

Water quality
parameter
(Moran’s I)

pH (0.13) DO (−0.08) * TN (0.013) Tur (−0.28) * Csu (−0.20)
* DO (0.39) SC (−0.05) * Pb (0.11) DO (0.18) Al (0.005)

T (0.15) pH (−0.07) * SC (0.022) TDS (−0.26) * T (0.30) SC (0.36) T (−0.006) * T (0.15) pH (0.34) Ba (0.06)
SC (0.20) T (0.54) DIN (0.07) SC (0.06) Mg (0.42) pH (0.37) Chla (0.02) Zn (0.24) NO3

− (0.36) Alk (0.11)
DO (0.28) SC (0.59) KjN (0.10) Br (0.09) K (0.46) T (0.67) TN (0.03) pH (0.31) T (0.49) Na (0.14)
TDS (0.53) TP (0.15) Cl (0.12) Ca (0.55) Nin (0.05) Cd (0.35) PO4

3− (0.66) Cl (0.23)
T (0.20) Mg (0.15) Cl (0.58) Alk (0.08) As (0.47) Cl (0.67) K (0.26)

Tur 0.25) Na (0.15) Na (0.59) TP (0.12) SC (0.56) Nin (0.29)
DO (0.44) DO (0.16) SiO2 (0.62) DO (0.15) TDS (0.32)
pH (0.72) Ca (0.17) SO4

2− (0.65) pH (0.16) SO4
2− (0.38)

SiO2 (0.19) TDS (0.73) Cl (0.23) Fe (0.40)
Fe (0.21) Alk (0.80) TOC (0.32) KjN (0.43)
K (0.25) pH (0.82) DOC (0.32) Mg (0.47)

CO2 (0.34) Ca (0.55)
Mn (0.34) Mn (0.58)
pH (0.39)
Alk (0.40)
TP (0.42)

SO4
2− (0.45)

F (0.54)
T (0.69)

* Moran’s I values treated as absolute values. Note: Specific conductance (SC), dissolved oxygen (DO), total dissolved solids (TDS), total nitrogen (TN), dissolved nitrogen (DIN), total
ammonia plus organic nitrogen (also known as Kjeldahl nitrogen, KjN), total phosphorus (TP), turbidity (Tur), alkalinity (Alk), suspended carbon (Csu), chlorophyll (Chla), inorganic
nitrogen (Nin), total organic carbon (TOC), dissolved organic carbon (DOC), dissolved lead (Pb), dissolved zinc (Zn), dissolved cadmium (Cd), and dissolved arsenic (As).
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Figure 2. Land cover characteristics of each state and watershed shape. Idaho (a); Kansas (b); Iowa (c); Delaware (d); California (e); Virginia (f); Arizona (g); Colorado
(h); Louisiana (i); and Kentucky (j). To better visualize the water quality stations spatial organization, refer to Appendix A.
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2. Materials and Methods

2.1. Study Areas

The study areas are basins located in 10 states of the USA. The locations vary from east to west
of the country. We analyzed water quality parameters in watershed and sub-watershed segments in
Arizona (AZ), California (CA), Colorado (CO), Delaware (DE), Idaho (ID), Iowa (IA), Kansas (KS),
Kentucky (KY), Louisiana (LA), and Virginia (VA). The basins were delineated by the U.S. Geological
Survey (USGS), which states that as per the fifth and sixth levels of classification, these basins are
smaller scale hydrologic units. Overall, their areas ranged from 150 km2 to 764 km2. The climate and
geology of the regions vary significantly due to their differences in latitude, longitude, and altitude.
Tables 1 and 2 briefly present the climatological and geological characteristics of each state, and specific
site characteristics in terms of area and water quality parameters, respectively. Figure 2 illustrates the
watershed shapes and their land cover characteristics.

2.2. Dependent Variables

Water quality data from 2011 to 2017 were obtained online from the national Water Quality
Portal (WQP) [30]. The WQP integrates publicly available water quality data from three very
important and widely used sources for research in the US: the USGS National Water Information
System (NWIS), the EPA STOrage and RETrieval (STORET) Data Warehouse, and the United States
Department of Agriculture (USDA) Sustaining the Earth’s Watersheds Agricultural Research Data
System (STEWARDS) through the Water Quality eXchange (WQX).

Based on the data availability and site locations, 29–54 sampling stations were selected from
each study watershed (Table 2). Accounting for temporal variability in each watershed, the data were
selected within the same week, month, or season. Therefore, no seasonality effect was considered in
this study. Because we collected water quality data from different sources as explained above, the
number and type of variables varied across watersheds (Table 2). These water quality variables were
treated as dependent variables in this research.

2.3. Delineation of Upstream Area

Characteristics of the sub-watershed area upstream of sampling stations affect water quality
variables [11]. Thus, sub-watershed boundaries were delimited using the ‘ArcHydro’ package tool
of ArcGIS 10.3 (Environmental Systems Research Institute, Redlands, CA, USA). We downloaded
spatial stream data from the 2016 US Geological Survey (USGS) National Hydrography Dataset [31].
The distance between stations varied, as did the size of each upstream area delineated. Land use
characteristics as well as topography and soil far from the stream channel might contribute less to
changes in water quality across space [3]. Thus, we used the upstream area to separate the stream
network specific to each station, and delineated the riparian zone around the stream. Many studies
have conducted analyses at the riparian area scale, mainly by considering a buffer area on each side
of the stream. Overall, there was no specific buffering distance recommended [3,11,32]. In this study,
we used a buffer zone of 50 m each side of the stream (i.e., a 100 m buffer in total) as the area that can
contribute the maximum to water quality changes (Figure 3). We performed these analyses for all
watersheds in this study.



ISPRS Int. J. Geo-Inf. 2018, 7, 64 7 of 23

ISPRS Int. J. Geo-Inf. 2018, 7, 64 7 of 24 

 

2.2. Dependent Variables 

Water quality data from 2011 to 2017 were obtained online from the national Water Quality 

Portal (WQP) [30]. The WQP integrates publicly available water quality data from three very 

important and widely used sources for research in the US: the USGS National Water Information 

System (NWIS), the EPA STOrage and RETrieval (STORET) Data Warehouse, and the United States 

Department of Agriculture (USDA) Sustaining the Earth’s Watersheds Agricultural Research Data 

System (STEWARDS) through the Water Quality eXchange (WQX). 

Based on the data availability and site locations, 29–54 sampling stations were selected from each 

study watershed (Table 2). Accounting for temporal variability in each watershed, the data were 

selected within the same week, month, or season. Therefore, no seasonality effect was considered in 

this study. Because we collected water quality data from different sources as explained above, the 

number and type of variables varied across watersheds (Table 2). These water quality variables were 

treated as dependent variables in this research.  

2.3. Delineation of Upstream Area 

Characteristics of the sub-watershed area upstream of sampling stations affect water quality 

variables [11]. Thus, sub-watershed boundaries were delimited using the ‘ArcHydro’ package tool of 

ArcGIS 10.3 (Environmental Systems Research Institute, Redlands, CA, USA). We downloaded 

spatial stream data from the 2016 US Geological Survey (USGS) National Hydrography Dataset [31]. 

The distance between stations varied, as did the size of each upstream area delineated. Land use 

characteristics as well as topography and soil far from the stream channel might contribute less to 

changes in water quality across space [3]. Thus, we used the upstream area to separate the stream 

network specific to each station, and delineated the riparian zone around the stream. Many studies 

have conducted analyses at the riparian area scale, mainly by considering a buffer area on each side 

of the stream. Overall, there was no specific buffering distance recommended [3,11,32]. In this study, 

we used a buffer zone of 50 m each side of the stream (i.e., a 100 m buffer in total) as the area that can 

contribute the maximum to water quality changes (Figure 3). We performed these analyses for all 

watersheds in this study.  

 

Figure 3. Upstream area delineation and their respective buffer zones in tones of gray. The solid circles 

are water quality stations (sites). 

  

Water quality stations 

Upstream sub watershed area 

Buffer zones (100 m) 

Figure 3. Upstream area delineation and their respective buffer zones in tones of gray. The solid circles
are water quality stations (sites).

2.4. Independent Variables

Using the buffer zones of the upstream area, we extracted the land use, topography, and soil
types associated with each sampling station. These variables were treated as independent variables
in the subsequent modeling. The summary of these variables is shown in Table 3. We downloaded
the land use raster with 30 m resolution from USGS The National Map—2011 National Land Cover
Database (USGS TNM-NLCD) [33]. In this study, we considered the percentage of four major land
use types surrounding stream networks: urban, agriculture, forest, and wetland. To extract this
information, we used the ‘Zonal Statistics’ toolset in ArcGIS 10.3. The percentage of urban area in
each upstream buffer zone was calculated using the sum of the low-, medium-, and high-intensity
urbanization, and open space values in the land use raster. The sum of values for pasture and cultivated
crop was used to calculate the percentage of agricultural land in the area. The values for deciduous
forest, evergreen forest, and mixed forest were used to arrive at the percentage of forest, while the
values for woody wetlands and emergent herbaceous wetland were combined to calculate wetland
percentage. For the topographic variables, we used 10 m resolution digital elevation models (DEMs)
downloaded from USGS the National Map Elevation Products (USGS TNM 3DEP) [34]. Using the
same upstream area and zonal statistic toolset, we extracted the mean and standard deviation of the
elevation and slope respectively for each station’s upstream area. These variables were used to account
for topographic complexity.

We downloaded the hydrological soil groups (HSGs) from the Natural Resources Conservation
Service’s (2017 NRCS) Soil Survey Geographic (SSURGO) database [35]. We extracted the percentages
of A, B, C, D, A/D, B/D, and C/D categories of soil for each site. The HSGs are categorized by the
hydraulic conductivity level of a soil and how much runoff it produces. This is usually associated
with the percentage of sediment grain sizes a soil presents. Typically, group A soils have a low runoff
capacity because the water transmissivity through the soil profile is very high. Thus, group A soils are
composed of a high percentage of sediments with large grain size, such as sand or gravel. Group B
soils have a moderate runoff capacity. Nevertheless, water flows freely through the soil profile and the
percentage of large-sized grains is high. In this case, however, small grain size sediments such as clay
can reach up to 20 percent of the total. Group C soils have a moderately high runoff capacity and have
a higher clay percent, with less than 50 percent of sand. Group D soils are characterized as having
the highest percentage of fine grains such as clay and silt. The dual HSGs (A/D, B/D, and C/D) are
wet soils where the water table is within 60 cm below the surface but can still be drained adequately.
The first letter indicates the drained condition, and the second, the undrained [36].
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Table 3. Data sources and details of dependent and independent variables.

Agency Source Variable Year/Data PC Group Derived Variable Original Data

WQP Dependent 2011 to 2017—Water
quality parameters - Physical water quality data

USGS Independent 2017—National Elevation
dataset (10 m) Topographic Mean elevation Elevation

Elevation standard
deviation

Mean slope

Slope standard deviation

USGS Independent 2011—National Land
Cover dataset (30 m) Land use Agriculture Pasture, cultivated crops

Forest Deciduous forest, evergreen
forest, mixed forest

Urban Low-, medium-, high-intensity
urbanized areas, open space

Wetland Woody wetland, emergent
herbaceous wetland

USDA, NRCS Independent 2017—Hydrologic Soil
Groups Soil A, B, C, D, A/D, B/D,

C/D
Soil Survey Geographic

(SSURGO) database

Note: PC (Principal Component); WQP (Water Quality Portal); USGS (United States Geological Survey); USDA, NRCS (United States Department of Agriculture, Natural Resources
Conservation Service).



ISPRS Int. J. Geo-Inf. 2018, 7, 64 9 of 23

2.5. Data Preprocessing

We tested the normality of each dependent and independent variable using IBM SPSS Statistics
for Windows Version 23.0 (Armonk, NY, USA). In this study, the independent variables are likely to
present a high level of correlations due to their nature. For example, agriculture and urban zones
are land use types that might express a negative relationship because, as the area under agricultural
use increases, the urbanized areas will tend to decrease. Thus, to account for the multicollinearity in
the subsequent modeling, we applied principal component analysis (PCA), a multivariate technique.
This technique reduces the dimensionality of a multivariate dataset where variables are significantly
interrelated. This reduction results in principal components (PCs), which are considered uncorrelated
variables [37,38]. PCA is useful because it simplifies the description of the independent variables and
the modeling procedure. We divided the independent variables into three main groups: land use,
topography, and soil. Land use considered the percentage of urban, agriculture, wetland, and forest
areas. The topographic group encompassed the mean and standard deviation values of slope and
elevation. The soil groups represented the percentage of A, B, C, D, A/D, B/D, and C/D soil types
(Table 3). Overall, we had three main PC groups used as the predictors in the models. Each variable
category presents one to three PCs, depending on how significant the variables in the group are
to the area of study. This means that a model can have three to nine principal components as
independent variables.

2.6. Testing for Spatial Autocorrelation (SAC)

We quantified the inherent degree of SAC for each water quality parameter using Moran’s I
function (Equation (1)):

I =
n

∑n
i=1

(
Xi − X

)2

∑n
i=1 ∑n

j Wij
(
Xi − X

)(
Xj − X

)
∑n

i=1 ∑n
j Wij

(1)

where, Xi and Xj refer to the water quality at station i and station j, respectively. X is the overall mean
water quality, and Wij is the weight matrix. Moran’s I values vary between −1 to 1 for maximum
negative and positive autocorrelation, respectively. No-zero values of Moran’s I indicate that values at
a certain geographical Euclidian distance are more similar (positive autocorrelation) or less similar
(negative autocorrelation) than expected for randomly assigned values [39,40]. We used the geographic
coordinate system based on angular values (longitude and latitude) considering the North American
1983 as the datum for the distance calculation. We acknowledge that we did not perform projection in
this study, which would have been a serious issue if we were concerned with region-scale modeling
crossing multiple states. Instead, the current study examined the water quality of several stations
within local watersheds (<ca. 764 km2). Therefore, using the Euclidean distance should not be
a critical problem.

2.7. Statistical Models

GeoDa version 1.8 (Chicago, IL, USA) was used to run three models in this paper. First, OLS,
representing the non-spatial model, is a multiple linear regression approach (Equation (2)), where the
response variable is the water quality parameter and the independent variables are the PCs of the
topographic, land cover, and soil groups:

Yi = βo+ β1X1 + · · · + βiXi + εi (2)

where Yi is the response variable, βo is the constant in a linear model, βi are coefficients associated with
the independent variables, and εi is the error term. Notably, the same independent and dependent
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variables were used as in the spatial modeling approaches. The second model was a spatial lag model
(Equation (3)):

Yi = Xiβi + ρWYj + ε (3)

where Yi and Yj are the dependent variables at locations i and j, respectively, Xi is the independent
variable at i, βi is the regression coefficient, ρ is the spatial autoregressive coefficient, WYj is the spatially
lagged dependent variable, and ε is the error term. This model accounts for the fact that the dependent
variable is affected by the independent variables in adjacent places, and, thus, the dependent variable
is spatially lagged as a predictor. The third model used was the spatial error model (Equation (4)):

Wi = Xiβi + ε ε = ňWε + ε (4)

where Yi is the dependent variable at location i, Xi is the independent variable, βi is the regression
coefficient, ε is the error term, ň is the autoregressive coefficient, Wε is the spatially lagged error term,
and ε is the homoscedastic and independent error term. This model accounts for the error terms that
are correlated across different spatial units.

2.8. Model Comparison

After measuring the inherent degree of SAC for each water quality variable, we compared
the outcomes of non-spatial OLS and spatial regression approaches in terms of R2 and rSAC. To
quantify rSAC, we estimated Moran’s I for residuals. After the modeling procedure, we evaluated our
hypothesis by plotting Moran’s I values of the water quality variables against the R2 and rSAC values
for each water quality variable (Figure 4). A few water quality variables presented negative inherent
SAC values and were treated as positive in this graph. This is because we intended to concentrate on
the magnitude of SAC.
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Figure 4. Evaluation of the hypothesis—Moran’s I values of the water quality variables appear on the
x-axis, and the model outcomes, R2 and residual SAC, appear on the y-axis. After spatial regression,
water quality variables with a higher amount of spatial autocorrelation (SAC) were hypothesized to
exhibit improved hydrologic modeling (i.e., more increases in R2 and more decreases in residual SAC)
than those with lower SAC.

3. Results

3.1. Changes in R2 Values

Overall, Moran’s I values pertaining to water quality variables varied widely, from 0.01 to
0.82, across all watershed sites (Figure 5). The relationships shown in Figure 5 indicate that the
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improvements in R2 were proportional to the degree of inherent SAC in water quality variables
(i.e., the hypothesis predicting increases in R2 as a function of the degree of SAC is supported).
Whether we treated each state separately or combined them as a whole, strongly autocorrelated water
quality parameters over space (i.e., having higher Moran’s I values) exhibited greater increases in
R2 values after spatial regression compared to weakly autocorrelated variables (i.e., having lower
Moran’s I values). This pattern seemed to be less clear when water quality variables within a state had
a relatively narrow range of Moran’s I (e.g., Delaware).
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Figure 5. Relationship between the spatial autocorrelation (SAC) of each water quality variable
(represented by Moran’s I values) and the R2 indicating the amount of variance in each water quality
variable, explained by topographic, land use, soil groups, and spatial terms.

3.2. Changes in rSAC

The values of Moran’s I indicating rSAC produced by non-spatial OLS presented a wider range
than those from spatial regression (i.e., rSAC for non-spatial OLS from 0.01 to 0.72, while spatial lag
rSAC ranged from 0.00 to 0.44, and spatial error, from 0.00 to 0.07). We found a positive correlation
between the degree of SAC in water quality variables and rSAC from non-spatial OLS. Conversely,
as expected, rSAC values acquired by spatial regressions were in general near zero. Therefore, the
larger the Moran’s I values possessed by water quality variables, the greater the reduction in rSAC
after running models that consider spatial dependence (Figure 6; the hypothesis predicting greater
decreases in rSAC, proportional to the degree of SAC in water quality variables, is supported). All
states presented significant reduction in rSAC except Delaware, showing a narrow range of Moran’s I
values of water quality variables.
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Figure 6. Relationship between the spatial autocorrelation (SAC) of each water quality variable
(represented by Moran’s I values) and the SAC of model residuals (also represented by Moran’s I
values). “All states combined” showed a general reduction in residual SAC after accounting for spatial
autocorrelation in the models of each water quality variable.

3.3. Overall Changes between Non-Spatial OLS and Spatial Regression Models

In general, the improvement in R2 and reduction in rSAC after spatial regression were positive,
and the changes of R2 and rSAC showed to be linearly a function of the degree of SAC possessed by
water quality variables. We found this relationship in each study area, and the results were summarized
in Table 4.
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Table 4. Summary of mean values of spatial autocorrelation (I) in response variables, mean values of the non-spatial OLS outcomes and mean improvement in R2 and
reduction rSAC after spatial regression per state. Additionally, the linear regression model coefficients, R2, and p-value of the Changes in R2 and rSAC per state.

California Colorado Delaware Idaho Iowa Kentucky Arizona Kansas Louisiana Virginia All States
Combined

Samples 12 4 12 7 6 14 4 9 5 20 93
I 0.56 0.45 0.13 0.31 0.45 0.30 0.31 0.22 0.26 0.29 0.32

OLS
R2 0.28 0.31 0.27 0.25 0.44 0.23 0.34 0.23 0.15 0.37 0.29

rSAC 0.39 0.21 0.09 0.19 0.12 0.19 0.19 0.26 0.16 0.17 0.21

After spatial
regression

Improvement
in R2

lag-ols 0.26 0.16 0.03 0.09 0.05 0.09 0.13 0.11 0.09 0.03 0.10
error-ols 0.29 0.18 0.04 0.09 0.04 0.08 0.15 0.17 0.10 0.07 0.12

Reduction in
rSAC

ols-lag 0.37 0.13 0.05 0.09 0.02 0.15 0.13 0.14 0.11 0.04 0.12
ols-error 0.40 0.13 0.07 0.12 0.07 0.16 0.17 0.21 0.12 0.14 0.17

Linear regression
models for the

Change in R2 vs. I

Model fit
Spatial Lag

R2 0.55 0.12 0.07 0.85 0.68 0.61 0.51 0.91 0.94 0.46 0.58
βo 0.00 0.07 0.01 −0.09 −0.07 −0.04 −0.04 −0.07 −0.09 −0.05 −0.15
β1 0.46 0.19 0.11 0.58 0.26 0.44 0.55 0.86 0.70 0.30 0.74

p-value <0.001 * 0.10 * 0.60 0.10 * 0.53 0.08 * 0.39 0.09 * 0.38 0.28 <0.001 *

Model fit
Spatial Error

R2 0.40 0.03 0.00 0.77 0.64 0.55 0.42 0.77 0.93 0.29 0.36
βo 0.07 0.11 0.03 −0.13 −0.04 −0.04 −0.02 −0.01 −0.10 −0.04 −0.04
β1 0.39 0.15 0.02 0.68 0.19 0.40 0.56 0.83 0.75 0.40 0.60

p-value <0.001 * 0.06 * 0.52 0.15 0.62 0.10 * 0.33 0.02 * 0.39 0.06 * <0.001 *

Linear regression
models for the

Change in rSAC vs. I

Model fit
Spatial Lag

R2 0.33 0.56 0.58 0.66 0.42 0.60 0.67 0.67 0.80 0.03 0.31
βo 0.14 −0.32 0.01 −0.21 −0.10 −0.03 −0.07 −0.03 0.00 −0.01 −0.05
β1 0.41 1.01 0.36 0.98 0.27 0.57 0.66 0.80 0.42 0.17 0.18

p-value <0.001 * 0.18 0.01 * 0.20 0.71 <0.001 * 0.34 0.08 * 0.09 * 0.32 <0.001 *

Model fit
Spatial Error

R2 0.32 0.87 0.42 0.84 0.28 0.45 0.77 0.60 0.74 0.17 0.39
βo 0.22 −0.26 0.02 −0.15 −0.03 0.01 −0.05 0.05 0.00 0.05 −0.03
β1 0.32 0.88 0.33 0.87 0.22 0.51 0.70 0.71 0.46 0.30 0.17

p-value <0.001 * 0.17 0.00 * 0.11 0.15 <0.001 * 0.25 0.02 * 0.08 * <0.001 * <0.001 *

* significant at the 0.10 level. I: Moran’s I values; OLS: ordinary least squares; rSAC: residual spatial autocorrelation; lag-ols: improvement in R2 from non-spatial ols to spatial lag
regression; error-ols: improvement in R2 from non-spatial ols to spatial error regression; ols-lag: reduction in rSAC from non-spatial ols to spatial lag regression; ols-error: reduction in
rSAC from non-spatial ols to spatial error regression.
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3.4. Summary of Findings

Overall, in this study, we found that the magnitude of model improvement (i.e., increases in R2

and decreases in rSAC), after both spatial lag and error modeling, is significantly and linearly a function
of the SAC inherently possessed by water quality variables (i.e., response variables) (Figure 7). This,
in turn, supported our hypothesis that water quality variables with a higher amount of SAC would
exhibit greater improvement in model outcomes than those with a lower amount of SAC.
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Figure 7. Linear regression models demonstrating that the magnitude of improvement of model
performance after spatial lag and error modeling is significantly and linearly explained by the
SAC inherently possessed by water quality variables. The Moran’s I (x-axis) and Change in R2

(y-axis) values were transformed using square-root transformation, while the Change in rSAC (y-axis)
were log-transformed.

4. Discussion

The results support our hypothesis and offer insights into the field of water quality modeling.
Most importantly, the level of SAC in water quality variables has the potential to indicate how
much improvement a non-spatial model would experience if SAC was appropriately considered
(i.e., increases in R2 values and decreases in rSAC). We have demonstrated across divergent watersheds
in the USA that the higher the SAC in a water quality variable, the greater the improvements to the
model after accounting for SAC. Water quality studies, as previously mentioned, presented better
results when considering spatial modeling approaches that account for SAC [2–5]. However, these
studies have not considered the magnitude of SAC in the response variable as the main driver of model
improvements. Furthermore, we observed that variables with lower degree of inherent SAC (lower
Moran’s I values) underwent smaller changes in model outcomes compared to those that presented
larger Moran’s I values. In this sense, higher Moran’s I values imply more spatial organization
(e.g., strong connection among water quality stations through the stream network) than smaller
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Moran’s I values. This indicates that the need for (and potentially the benefit from) accounting for
SAC in water quality modeling increases as the degree of SAC increases.

In this study, we investigated water quality variables from 10 watersheds, each distinct in geology,
land use, soil, and topography. We analyzed a total of 93 water quality variables that also differed
among the watersheds. Despite such strong peculiarities among the watersheds, this study reveals
a consistent and linear relationship between the SAC of water quality parameters and changes in the
model outcomes (R2 and rSAC). This finding perfectly accords with the study of Kim et al. [13] who
evaluated the effect of SAC in soil–landform modeling to find that the degree of SAC in soil variables
(i.e., dependent variables) influenced model improvements after the SAC was properly accounted for.

Our findings suggest that future water quality modeling studies should account for SAC to
improve the performance of non-spatial approaches, principally when the predictors in the model
cannot sufficiently account for all SAC in the model [6,7,9,12,13,15]. Overall, the improvements include
increasing R2 and decreasing rSAC. The most important point is that the degrees of these increases and
decreases showed to be linearly correlated with the level of SAC in water quality variables. Therefore,
water quality studies should not only focus on accounting for spatial autocorrelation, but also on
understanding the magnitude of SAC inherent in water quality variables. Doing so, we could point
out the degree of connectivity within water quality variables, as well as the improvement in model
outcomes of a non-spatial approach before performing a spatial regression.

Adequate information on the degree of hydrologic connectivity among water quality variables
is needed in watershed management and policy decisions [41,42]. The level of SAC inherent in
a variable can allow managers to reveal the complex spatial relationship of water quality as well
as its changes from up to downstream. It can uncover dissimilarity patterns among water quality
parameters throughout the stream network in study and help in the implementation of policies that
are ecologically beneficial to the aquatic ecosystem. Therefore, we highlight that the investigation of
SAC in water quality modeling is not only beneficial in the model results, but also in the process of
watershed management.

Streams can be considered spatially structured ecological networks, where patterns are usually
associated with the in-stream flow and habitat, or even the physical structure of the network.
The understanding of these patterns can be limited when only using Euclidean distance [43].
For example, two sites that are near to each other can be considered neighbors due to distance in the
Euclidean technique, but they can present distinct water quality measures simply due to the water
quality origins from vastly different drainage areas. Therefore, we highlight that this is a limitation in
this study and further studies should focus on applying spatial network distance techniques to better
understand the SAC influence.

5. Conclusions

Spatial autocorrelation (SAC) is a property possessed by any ecological or environmental variable.
Consequently, its incorporation and impacts on modeling results have been studied in much detail in
a variety of scientific fields. Our study demonstrates that analyzing SAC in water quality modeling
provides benefits beyond just improvements in model outcomes (R2 and rSAC): it can potentially
lead to a better understanding of the extent of spatial organization of water quality variables, as well
as serve as a useful screening technique to anticipate the predictability of the spatial pattern in the
independent variable used in a spatially explicit model. We also highlight the benefits of understanding
the level of SAC possessed by a water quality variable in the process of watershed management and
point that network distances techniques could better account for the spatial pattern existent in spatially
structured ecological networks such as streams.

Acknowledgments: This research was supported by (1) the National Science Foundation (#1560907) of the USA,
(2) the National Research Foundation of South Korea (NRF-2017R1C1B5076922), (3) the Research Resettlement
Fund for the new faculty of Seoul National University, and (4) the 4-Zero Land Space Creation of the Ministry of



ISPRS Int. J. Geo-Inf. 2018, 7, 64 16 of 23

Education and the NRF (#1345258304). We appreciate the constructive comments of Heejun Chang and Yongwan
Chun on the earlier version of this paper.

Author Contributions: Lorrayne Miralha collected the data online, performed the data analyses, and wrote the
paper. Daehyun Kim devised the project and conceptual main ideas. Daehyun Kim encouraged Lorrayne Miralha
to investigate the idea in the hydrology field and supervised the findings of this work. Both authors discussed the
results and contributed to the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Larger Maps of the Study Areas for Better Visualization of the Water Quality Stations

ISPRS Int. J. Geo-Inf. 2018, 7, 64 17 of 24 

 

Miralha to investigate the idea in the hydrology field and supervised the findings of this work. Both authors 

discussed the results and contributed to the final manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A. Larger Maps of the Study Areas for Better Visualization of the Water Quality 

Stations 

 

(a) Arizona 

Figure A1. Cont.



ISPRS Int. J. Geo-Inf. 2018, 7, 64 17 of 23ISPRS Int. J. Geo-Inf. 2018, 7, 64 18 of 24 

 

 

 

(b) California 

(c) Colorado 

Figure A1. Cont.



ISPRS Int. J. Geo-Inf. 2018, 7, 64 18 of 23ISPRS Int. J. Geo-Inf. 2018, 7, 64 19 of 24 

 

 

 

(d) Delaware 

(e) Idaho 

Figure A1. Cont.



ISPRS Int. J. Geo-Inf. 2018, 7, 64 19 of 23
ISPRS Int. J. Geo-Inf. 2018, 7, 64 20 of 24 

 

 

 

(f) Iowa 

(g) Colorado 

Figure A1. Cont.



ISPRS Int. J. Geo-Inf. 2018, 7, 64 20 of 23
ISPRS Int. J. Geo-Inf. 2018, 7, 64 21 of 24 

 

 
 

 

(h) Kentucky 

(i) Louisiana 

Figure A1. Cont.



ISPRS Int. J. Geo-Inf. 2018, 7, 64 21 of 23
ISPRS Int. J. Geo-Inf. 2018, 7, 64 22 of 24 

 

 

Figure A1. Water stations organization in the stream network and land cover characteristics of each 

study area. Idaho (a); Kansas (b); Iowa (c); Delaware (d); California (e); Virginia (f); Arizona (g); 

Colorado (h); Louisiana (i); and Kentucky (j). 

References 

1. Calow, P.; Petts, G.E. The Rivers Handbook; Part 1; Blackwell Scientific: London, UK, 1992; Volume 1, ISBN 

0-632-02832-7. 

2. Yu, D.; Shi, P.; Liu, Y.; Xun, B. Detecting land use-water quality relationships from the viewpoint of 

ecological restoration in an urban area. Ecol. Eng. 2013, 53, 205–216, doi:10.1016/j.ecoleng.2012.12.045. 

3. Pratt, B.; Chang, H. Effects of land cover, topography, and built structure on seasonal water quality at 

multiple spatial scales. J. Hazard. Mater. 2012, 209, 48–58, doi:10.1016/j.jhazmat.2011.12.068. 

4. Franczyk, J.; Chang, H. Spatial analysis of water use in Oregon, USA, 1985–2005. Water Resour. Manag. 2009, 

23, 755–774, doi:10.1007/s11269-008-9298-9. 

5. Vrebos, D.; Beauchard, O.; Meire, P. The impact of land use and spatial mediated processes on the water 

quality in a river system. Sci. Total Environ. 2017, 601, 365–373, doi:10.1016/j.scitotenv.2017.05.217. 

6. Legendre, P.; Fortin, M.J. Spatial pattern and ecological analysis. Vegetatio 1989, 80, 107–138, 

doi:10.1007/BF00048036. 

7. Legendre, P. Spatial autocorrelation: Trouble or new paradigm? Ecology 1993, 74, 1659–1673, 

doi:10.2307/1939924. 

8. Isaak, D.J.; Peterson, E.E.; Ver Hoef, J.M.; Wenger, S.J.; Falke, J.A.; Torgersen, C.E.; Sowder, C.; Steel, E.A.; 

Fortin, M.J.; Jordan, C.E.; et al. Applications of spatial statistical network models to stream data. Wiley 

Interdiscip. Rev. Water 2014, 1, 277–294, doi:10.1002/wat2.1023. 

9. Kim, D. Incorporation of multi-scale spatial autocorrelation in soil moisture–landscape modeling. Phys. 

Geogr. 2013, 34, 441–455, doi:10.1080/02723646.2013.857267. 

(j) Virginia 

Figure A1. Water stations organization in the stream network and land cover characteristics of each
study area. Idaho (a); Kansas (b); Iowa (c); Delaware (d); California (e); Virginia (f); Arizona (g);
Colorado (h); Louisiana (i); and Kentucky (j).

References

1. Calow, P.; Petts, G.E. The Rivers Handbook; Part 1; Blackwell Scientific: London, UK, 1992; Volume 1,
ISBN 0-632-02832-7.

2. Yu, D.; Shi, P.; Liu, Y.; Xun, B. Detecting land use-water quality relationships from the viewpoint of ecological
restoration in an urban area. Ecol. Eng. 2013, 53, 205–216. [CrossRef]

3. Pratt, B.; Chang, H. Effects of land cover, topography, and built structure on seasonal water quality at
multiple spatial scales. J. Hazard. Mater. 2012, 209, 48–58. [CrossRef] [PubMed]

4. Franczyk, J.; Chang, H. Spatial analysis of water use in Oregon, USA, 1985–2005. Water Resour. Manag. 2009,
23, 755–774. [CrossRef]

5. Vrebos, D.; Beauchard, O.; Meire, P. The impact of land use and spatial mediated processes on the water
quality in a river system. Sci. Total Environ. 2017, 601, 365–373. [CrossRef] [PubMed]

6. Legendre, P.; Fortin, M.J. Spatial pattern and ecological analysis. Vegetatio 1989, 80, 107–138. [CrossRef]
7. Legendre, P. Spatial autocorrelation: Trouble or new paradigm? Ecology 1993, 74, 1659–1673. [CrossRef]
8. Isaak, D.J.; Peterson, E.E.; Ver Hoef, J.M.; Wenger, S.J.; Falke, J.A.; Torgersen, C.E.; Sowder, C.; Steel, E.A.;

Fortin, M.J.; Jordan, C.E.; et al. Applications of spatial statistical network models to stream data.
Wiley Interdiscip. Rev. Water 2014, 1, 277–294. [CrossRef]

9. Kim, D. Incorporation of multi-scale spatial autocorrelation in soil moisture–landscape modeling. Phys. Geogr.
2013, 34, 441–455. [CrossRef]

http://dx.doi.org/10.1016/j.ecoleng.2012.12.045
http://dx.doi.org/10.1016/j.jhazmat.2011.12.068
http://www.ncbi.nlm.nih.gov/pubmed/22277338
http://dx.doi.org/10.1007/s11269-008-9298-9
http://dx.doi.org/10.1016/j.scitotenv.2017.05.217
http://www.ncbi.nlm.nih.gov/pubmed/28570971
http://dx.doi.org/10.1007/BF00048036
http://dx.doi.org/10.2307/1939924
http://dx.doi.org/10.1002/wat2.1023
http://dx.doi.org/10.1080/02723646.2013.857267


ISPRS Int. J. Geo-Inf. 2018, 7, 64 22 of 23

10. Tu, J. Spatially varying relationships between land use and water quality across an urbanization gradient
explored by geographically weighted regression. Appl. Geogr. 2011, 31, 376–392. [CrossRef]

11. Chang, H. Spatial analysis of water quality trends in the Han River basin, South Korea. Water Res. 2008, 42,
3285–3304. [CrossRef] [PubMed]

12. Miller, J.; Franklin, J.; Aspinall, R. Incorporating spatial dependence in predictive vegetation models.
Ecol. Model. 2007, 202, 225–242. [CrossRef]

13. Kim, D.; Hirmas, D.R.; McEwan, R.W.; Mueller, T.G.; Park, S.J.; Šamonil, P.; Thompson, J.A.; Wendroth, O.
Predicting the Influence of Multi-Scale Spatial Autocorrelation on Soil–Landform Modeling. Soil Sci. Soc.
Am. J. 2016, 80, 409–419. [CrossRef]

14. Cliff, A.; Ord, J.K. Testing for Spatial Autocorrelation among Regression Residuals. Geogr. Anal. 1972, 4,
267–284. [CrossRef]

15. Dormann, C.F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data.
Glob. Ecol. Biogeogr. 2007, 16, 129–138. [CrossRef]

16. Beale, C.M.; Lennon, J.J.; Yearsley, J.M.; Brewer, M.J.; Elston, D.A. Regression analysis of spatial data.
Ecol. Lett. 2010, 13, 246–264. [CrossRef] [PubMed]

17. Václavík, T.; Kupfer, J.A.; Meentemeyer, R.K. Accounting for multi-scale spatial autocorrelation improves
performance of invasive species distribution modelling (iSDM). J. Biogeogr. 2012, 39, 42–55. [CrossRef]

18. De Marco, P.; Diniz-Filho, J.A.F.; Bini, L.M. Spatial analysis improves species distribution modelling during
range expansion. Biol. Lett. 2008, 4, 577–580. [CrossRef] [PubMed]

19. Miller, J.A. Species distribution models: Spatial autocorrelation and non-stationarity. Prog. Phys. Geog. 2012,
36, 681–692. [CrossRef]

20. Bini, L.M.; Diniz-Filho, J.A.F.; Rangel, T.F.; Akre, T.S.; Albaladejo, R.G.; Albuquerque, F.S.; Aparicio, A.;
Araújo, M.B.; Baselga, A.; Beck, J.; et al. Coefficient shifts in geographical ecology: An empirical evaluation
of spatial and non-spatial regression. Ecography 2009, 32, 193–204. [CrossRef]

21. Kissling, W.D.; Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models.
Glob. Ecol. Biogeogr. 2008, 17, 59–71. [CrossRef]

22. Hengl, T.; Heuvelink, G.B.; Stein, A. A generic framework for spatial prediction of soil variables based on
regression-kriging. Geoderma 2004, 120, 75–93. [CrossRef]

23. Griffith, D.A. A linear regression solution to the spatial autocorrelation problem. J. Geogr. Syst. 2000, 2,
141–156. [CrossRef]

24. Griffith, D.A.; Peres-Neto, P.R. Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses.
Ecology 2006, 87, 2603–2613. [CrossRef]

25. Ver Hoef, J.M.; Peterson, E.; Theobald, D. Spatial statistical models that use flow and stream distance.
Environ. Ecol. Stat. 2006, 13, 449–464. [CrossRef]

26. Lichstein, J.W.; Simons, T.R.; Shriner, S.A.; Franzreb, K.E. Spatial autocorrelation and autoregressive models
in ecology. Ecol. Monogr. 2002, 72, 445–463. [CrossRef]

27. Chang, H.; Jung, I.W.; Steele, M.; Gannett, M. Spatial patterns of March and September streamflow trends in
Pacific Northwest streams, 1958–2008. Geogr. Anal. 2012, 44, 177–201. [CrossRef]

28. Huang, J.; Huang, Y.; Zhang, Z. Coupled effects of natural and anthropogenic controls on seasonal and spatial
variations of river water quality during baseflow in a coastal watershed of Southeast China. PLoS ONE 2014,
9, e91528. [CrossRef] [PubMed]

29. Netusil, N.R.; Kincaid, M.; Chang, H. Valuing water quality in urban watersheds: A comparative analysis
of Johnson Creek, Oregon, and Burnt Bridge Creek, Washington. Water Resour. Res. 2014, 50, 4254–4268.
[CrossRef]

30. NWQMC (National Water Quality Monitoring Council). Water Quality Portal. Available online: http://www.
waterqualitydata.us/ (accessed on 19 June 2017).

31. United State Geological Survey. USGS National Hydrography Dataset (NHD) Downloadable Data Collection.
2016. Available online: http://nhd.usgs.gov (accessed on 22 June 2017).

32. Li, S.; Gu, S.; Tan, X.; Zhang, Q. Water quality in the upper Han River basin, China: The impacts of land
use/land cover in riparian buffer zone. J. Hazard. Mater. 2009, 165, 317–324. [CrossRef] [PubMed]

33. United State Geological Survey. The National Map, 2011, National Land Cover Database (USGS TNM-NLCD).
Available online: https://viewer.nationalmap.gov (accessed on 22 June 2017).

http://dx.doi.org/10.1016/j.apgeog.2010.08.001
http://dx.doi.org/10.1016/j.watres.2008.04.006
http://www.ncbi.nlm.nih.gov/pubmed/18490047
http://dx.doi.org/10.1016/j.ecolmodel.2006.12.012
http://dx.doi.org/10.2136/sssaj2015.10.0370
http://dx.doi.org/10.1111/j.1538-4632.1972.tb00475.x
http://dx.doi.org/10.1111/j.1466-8238.2006.00279.x
http://dx.doi.org/10.1111/j.1461-0248.2009.01422.x
http://www.ncbi.nlm.nih.gov/pubmed/20102373
http://dx.doi.org/10.1111/j.1365-2699.2011.02589.x
http://dx.doi.org/10.1098/rsbl.2008.0210
http://www.ncbi.nlm.nih.gov/pubmed/18664417
http://dx.doi.org/10.1177/0309133312442522
http://dx.doi.org/10.1111/j.1600-0587.2009.05717.x
http://dx.doi.org/10.1111/j.1466-8238.2007.00334.x
http://dx.doi.org/10.1016/j.geoderma.2003.08.018
http://dx.doi.org/10.1007/PL00011451
http://dx.doi.org/10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2
http://dx.doi.org/10.1007/s10651-006-0022-8
http://dx.doi.org/10.1890/0012-9615(2002)072[0445:SAAAMI]2.0.CO;2
http://dx.doi.org/10.1111/j.1538-4632.2012.00847.x
http://dx.doi.org/10.1371/journal.pone.0091528
http://www.ncbi.nlm.nih.gov/pubmed/24618771
http://dx.doi.org/10.1002/2013WR014546
http://www.waterqualitydata.us/
http://www.waterqualitydata.us/
http://nhd.usgs.gov
http://dx.doi.org/10.1016/j.jhazmat.2008.09.123
http://www.ncbi.nlm.nih.gov/pubmed/19019532
https://viewer.nationalmap.gov


ISPRS Int. J. Geo-Inf. 2018, 7, 64 23 of 23

34. United State Geological Survey. The National Map Elevation Products (USGS TNM 3DEP). 2017. Available
online: https://viewer.nationalmap.gov (accessed on 22 June 2017).

35. Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture.
Soil Survey Geographic (SSURGO) Database. Available online: https://sdmdataaccess.sc.egov.usda.gov
(accessed on 22 June 2017).

36. United States Department of Agriculture, Natural Resources Conservation Service. Part 630
Hydrology—Hydrologic Soil Groups. In National Engineering Handbook; Title 210-VI [Online]; U.S.
Department of Agriculture, Soil Conservation Service (SCS): Washington, DC, USA, 2009; pp. 1–7. Available
online: https://directives.sc.egov.usda.gov (accessed on 08 October 2017).

37. Jolliffe, I.T. Principal component analysis. In Principal Component Analysis; Springer: Berlin/Heidelberg,
Germany, 1986; pp. 1–9.

38. Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459.
[CrossRef]

39. O’sullivan, D.; Unwin, D. Geographic Information Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2014;
ISBN 978-0-470-28857-3.

40. Diniz-Filho, J.A.F.; Bini, L.M.; Hawkins, B.A. Spatial autocorrelation and red herrings in geographical ecology.
Glob. Ecol. Biogeogr. 2003, 12, 53–64. [CrossRef]

41. Pringle, C. What is hydrologic connectivity and why is it ecologically important? Hydrol. Process. 2003, 17,
2685–2689. [CrossRef]

42. Pringle, C.M. Hydrologic connectivity and the management of biological reserves: A global perspective.
Ecol. Appl. 2001, 11, 981–998. [CrossRef]

43. Peterson, E.E.; Ver Hoef, J.M.; Isaak, D.J.; Falke, J.A.; Fortin, M.J.; Jordan, C.E.; McNyset, K.; Monestiez, P.;
Ruesch, A.S.; Sengupta, A.; et al. Modelling dendritic ecological networks in space: An integrated network
perspective. Ecol. Lett. 2013, 16, 707–719. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://viewer.nationalmap.gov
https://sdmdataaccess.sc.egov.usda.gov
https://directives.sc.egov.usda.gov
http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.1046/j.1466-822X.2003.00322.x
http://dx.doi.org/10.1002/hyp.5145
http://dx.doi.org/10.1890/1051-0761(2001)011[0981:HCATMO]2.0.CO;2
http://dx.doi.org/10.1111/ele.12084
http://www.ncbi.nlm.nih.gov/pubmed/23458322
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Areas 
	Dependent Variables 
	Delineation of Upstream Area 
	Independent Variables 
	Data Preprocessing 
	Testing for Spatial Autocorrelation (SAC) 
	Statistical Models 
	Model Comparison 

	Results 
	Changes in R2 Values 
	Changes in rSAC 
	Overall Changes between Non-Spatial OLS and Spatial Regression Models 
	Summary of Findings 

	Discussion 
	Conclusions 
	Larger Maps of the Study Areas for Better Visualization of the Water Quality Stations  
	References

