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Abstract: As urban thermal environments are being caused by global climatic changes and
urbanization is not uniform on diurnal, seasonal, or annual scales, the spatiotemporal patterns
of surface urban heat islands (SUHI) similarly vary between cities across regions. This research
assessed the spatiotemporal variations in SUHI intensities (SUHII), and then revealed their
spatiotemporal patterns and relationships that existed within 32 major cities in China using
spatialization technologies, such as the self-organizing map (SOM) method and statistical methods.
Results showed that the spatial patterns of the SUHII patterns in China were significantly affected
by the climatic types, whereas human heat discharge also disturbed the patterns to a certain extent.
Specifically, the daytime SUHIIs in China had much higher seasonal variations in North China
than in South China. The nighttime SUHIIs were much weaker and more stable than the daytime
SUHIIs, and had far more obvious spatial patterns with much higher values in North China than
in South China. As for the temporal regimes, the temporal variation in the SUHIIs in one city was
more related to the development of the urbanization. To be specific, not all cities were experiencing
increasingly worse urban thermal environments with urbanization as reported by previous studies.
This research not only proposes a spatiotemporal framework to study the SUHIIs patterns and their
relationships, but also provides an in-depth and comprehensive understanding of SUHIIs in China.
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1. Introduction

Rapid urbanization has resulted in faster urban climate change compared with global changes,
especially in developing countries such as China [1]. One of the environmental consequences
of urbanization is the urban heat island (UHI) effect, whereby urban centers experience higher
temperatures than surrounding rural areas [2]. Although UHIs only cover a tiny fraction of the
global surface area and is just a small-scale phenomenon [3], they can, nonetheless, directly affect
the lives of local people in cities, indicated by the high demand for air conditioning energy, high
heat-related disease and air pollution [4–6]. Therefore, understanding the UHI phenomenon and
its patterns are of great importance to help the decision-makers take mitigation measures when
developing and executing rational land use policies.

Different types of UHIs have been defined according to the different urban layers, including
the surface urban heat island (SUHI) based on the land surface temperature (LST) of the urban
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surface layer, and the atmospheric urban heat island (AUHI) based on the air temperature of the
urban boundary or canopy layer [7]. Although these two kinds of UHIs have different underlying
meanings, they were related with each other and can both satisfactorily explain the UHI effect [2].
The station-based temperatures were discretely observed and cannot reveal the spatial heterogeneity in
urban environments [8–10]. LST derived from thermal infrared remote sensing (TIR) has been widely
used in SUHI studies due to its large-area coverage and relatively high temporal frequency advantages.
LST is especially useful for understanding the spatio-temporal variations in SUHI [7,11]. In these
SUHI studies, the SUHI intensity (SUHII) is a commonly used indicator when quantifying the SUHI
magnitude, which was defined as the LST differences between the urban and surrounding rural areas
(Section 2.2.1). Generally, the SUHI studies based on TIR can be categorized into two groups: studies
for one single city at the micro-scale and studies for multiple cities at the meso-scale. At the micro-scale,
considerable progress in the intra-city SUHI studies has occurred based on medium high spatial
resolution (e.g., Landsat TM/ETM+), which usually focuses on the spatial patterns of land surface
temperature (LST) and its relationship with the urban surface characteristics as indicated by land use
and land cover types, vegetation indexes, and urban landscapes or structures [3,7,11–19]. Although
these categories of research demonstrated the detailed spatial heterogeneity of the SUHII, the trade-off
between the spatial and temporal resolution complicated the conducting of continuous long-term
series monitoring and the comparative understanding of SUHII between cities in the regions. With the
accumulation of meteorological satellite datasets with high temporal resolution, such as Moderate
Resolution Imaging Spectroradiometer (MODIS), regional or global SUHI studies have attracted
considerable attention, as these categories of SUHI studies provide a comprehensive and comparative
understanding 0f the SUHIs [20]. A series of SUHI studies of tropical mega-cities, populous cities in the
United States, European cities, and even cities worldwide, have been reported [21–25]. These studies
demonstrated that the surrounding ecological conditions of one urban area may play an important role
in the variation of SUHI on the meso-scale, and the background and local climate zones also greatly
affected the SUHI [26]. Among the SUHI studies on the regional scale, those conducted in China
were prominent, as China has experienced rapid urbanization and the SUHIs have been recorded not
only in mega cities such as Beijing [27], Shanghai [28] Shenzhen [29], and Guangzhou [30], but also in
other smaller cities such as Kunming [31], Guizhou [32], and Baotou [33]. Meanwhile, China includes
many climatic types, which made it particularly practical and academically interesting to investigate
the SUHII in China on the meso-scale. Zhou et al. [34–36] and Yao et al. [37] determined the SUHIs
on the meso-scale for 32 major cities in China and highlighted the spatial patterns, drivers, and the
effect of urbanization levels on the SUHII based on statistical approaches using time-series remote
sensing images [34–37]. This series of works considerably progressed the understanding of the SUHI
in China. However, these works only focused on subjectively demonstrating the patterns, but did
not automatically or objectively reveal the internal spatial and temporal similarities and differences
between regions. Therefore, further studies are needed to present the regional regularity to fill this
research gap.

The self-organizing map (SOM) method is one kind of unsupervised neural network to automatic
cluster and reduce dimensionality [38]. As the weights of the neurons in the output layer in a trained
SOM are dependent on the number of neurons, a low dimensional model with high-dimensional
input space and a low-dimensional representation of high-dimensional vectors can be obtained after
mapping onto the trained SOM, which makes it particularly suited for handling voluminous and
high-dimensional datasets [39]. Additionally, as the SOM can reflect the local projection of the principal
components of the input data, SOM can be regarded as a manifold to the data space that is often
useful in explaining observed patterns and understanding complex relationships within the input
data [40]. These characteristics qualify SOM as a powerful geographic data analysis tool, enabling its
use with geographically referenced environmental data [41]. Therefore, we used the SOM method to
visualize spatiotemporal clustering and the inner regularities of the SUHIIs in China. By choosing
32 major cities in China for our study, this research aimed to provide spatiotemporal mapping and
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multi-perspective understanding of the SUHIs in China and then address the following questions:
(1) How did the background climatic types accompanied by intensive human activities affect the
spatiotemporal patterns of the SUHI? (2) Were the SUHIIs in major cities in China worsening or
improving during the past decades? Structurally, the spatiotemporal variations in SUHII across major
Chinese cities are first presented and the differences between climatic zones are highlighted. Following
this, the clustering and the spatiotemporal patterns of the SUHIIs in China are automatically recognized
and visualized. The potential factors are also presented to explain those recognized patterns.

2. Methodology

2.1. Study Area

China is located in the eastern part of the Asian continent west of the Pacific, and has experienced
rapid urbanization since initiating its reform and opening up policy in 1978. Increasing urban land
cover and population have caused a series of urban environmental effects in China, among which urban
heat islands are the most common. China has abundant climate types, including five climatic zones
from north to south, including Zone 1 (severe cold region); 2 (cold region); 3 (hot summer; cold winter
region); 4 (temperate region); and 5 (hot summer, warm winter region) (Figure 1). This classification
system is based on the different seasonal characteristics and is closely correlated with people’s lives
and the building design standard in China [42], both of which have obvious effects on the urban
thermal environment and are thus suitable for SUHII studies. Additionally, the differences allow the
division of varying geographic environments and energy use between North and South China divided
by the Qinling-Huaihe Line [43], which is also along these climatic zones. We selected 32 provincial
capitals and municipalities in China as the study area (Figure 1). The location of each city (latitude and
longitude) was derived from the geographical database from the GeoNames geographical database
(http://www.geonames.org/) and then visualized in projected coordinates (Albers conical equal
area), which is commonly used in China. The summarized information for the selected cities is listed
in Table 1.
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Table 1. Summarized information for selected cities examined in this research.

City Lat. Lon. Urban Area
(2010; km2)

Rural Area
(2010; km2)

Pop. in 2010
(Unit: 10,000, People)

Annual Change Rate
(CR) of Pop. (2003–2013)

Beijing 39.91 116.40 1902 5146 1258 15.99
Chengdu 30.67 104.07 582 6618 1149.07 13.96
Fuzhou 26.06 119.31 467 1371 645.9 5.40

Guangzhou 23.12 113.25 1069 1923 806.14 10.71
Guiyang 26.58 106.72 162 1504 373.16 3.63
Harbin 45.75 126.65 727 26,919 992.02 3.46
Haikou 19.96 110.52 111 596 160.44 2.40

Hangzhou 30.26 120.17 337 1957 689.12 6.15
Hefei 31.86 117.28 174 6256 493.42 28.63

Hohhot 40.81 111.65 187 1670 229.56 2.30
Jinan 36.67 117.00 279 7215 604.08 2.34

Kunming 25.04 102.72 838 3958 536.31 5.08
Laksa 30.17 91.13 31 176 48.46 1.49

Lanzhou 36.06 103.79 447 181 323.54 3.94
Nanchang 28.68 115.88 166 4988 502.25 5.61

Nanjing 32.06 118.78 230 4860 632.42 6.90
Nanning 22.82 108.32 427 2083 707.37 8.31
Shanghai 31.22 121.46 1503 4160 1412 9.44
Shzhen 22.55 114.07 680 293 259.87 15.37

Shenyang 41.79 123.43 668 11,343 719.6 3.86
Shijiangzhuang 38.04 114.48 986 10,154 989.16 10.42

Taiyuan 37.87 112.56 310 1866 365.5 4.12
Tianjin 39.14 117.18 970 7704 985 7.49
Urumqi 43.80 87.58 329 280 243.03 8.84
Wuhan 30.58 114.27 490 5572 836.73 4.26

Xian 34.26 108.93 447 4529 782.73 8.75
Xining 36.62 101.77 333 487 196.01 3.87

Yinchaun 38.47 106.30 118 1505 158.8 3.78
Changchun 43.88 125.32 586 18,245 758.89 4.04
Changsha 28.20 112.97 252 4055 650.12 6.01

Zhengzhou 34.76 113.65 552 6437 744.62 36.52
Chongqing 29.56 106.55 539 16,544 3303 24.26

2.2. Datasets and Methodology

2.2.1. Surface Urban Heat Island Intensity Calculation

As one main indicator of the SUHI, the (SUHII) is defined as the difference in the land surface
temperature (LST) between the urban area and its surrounding rural area. SUHII can be calculated by
the following formula:

SUHII = Turban − Trurual (1)

where, Turban is the spatially averaged LST over the urban area and Trural is the spatially averaged LST
over the rural area. Therefore, to calculate the SUHII, two key steps are needed: LST derivation and
urban/rural area extraction.

LST Derivation

Version 5 of MYD11A2 products were obtained to derive the long-term LST series from the
National Aeronautics and Space Administration (NASA) EarthData Search (https://search.earthdata.
nasa.gov/search). This dataset includes both the daytime (local time ~01:30 p.m.) and nighttime
(local time ~01:30 a.m.) temperature from 2003 to 2013, with a spatial resolution of 1 km and an
8-day interval temporal resolution. The dataset was improved by correcting noise due to cloud
contamination, topographic differences, and zenith angle changes. The dataset had high accuracy
with low root mean squares differences based on the surface emissivity evaluations [44]. The invalid
data were eliminated using the quality assurance (QA) flags included in the product. In this research,
only those pixels of good quality (Bits 0-1 are 00) were selected by reading the flags stored in an 8-bit
unsigned integer. The seasonal averaged method was also employed to reduce the noise effect. Finally,

https://search.earthdata.nasa.gov/search
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seasonal averaged LST datasets in both daytime and nighttime during the study period were derived
to calculate the SUHIIs.

Urban and Rural Area Extraction

Usually, relatively clear definition and approved extraction methods are available for urban areas,
which refer to the built-up areas in a city. The urban area can be determined based on the nighttime
lights or the land use and land cover (LULC) maps. For rural areas, at present there is no recognized
method for the SUHII calculation, but it is commonly subjectively derived based on the buffering zone
of the urban area [24,34,45]. Additionally, the LULC types surrounding urban areas can also affect
the temperature gradient between the urban and rural zones if the buffering zones are directly used
to extract the rural area [46]. Urban and rural areas have been clearly defined in urban geography
research. Urban areas refer to the center of the city and the surrounding continuous built-up area,
whereas rural areas refer to those areas other than urban areas within the administrative area [47].
Based on this definition and considering the effects of the elevation and water on the SUHII calculation,
the urban/built-up area and the cropland area within the administrative area were considered as the
urban and rural areas in this research, respectively.

For this purpose, the annual LULC products (MCD12Q1) from 2003 to 2013 were downloaded
from the NASA EarthData Search (https://search.earthdata.nasa.gov/search). The LULC maps
provide a land-cover type assessment and quality-control information. In this research, only those
pixels with good quality were used, and the International Geosphere-Biosphere Programme (IGBP)
global vegetation classification scheme layer was used, which included 16 land cover types. Further
detailed information in the report of Friedl et al. [48]. In this research, after pre-processing (mosaic,
re-project, and clip) using MODIS Reprojection Tool (MRT) software, the administrative boundary
of each city was then overlaid with the LULC maps year by year. The urban/built-up area type was
extracted as the urban area and the cropland type was extracted as the rural area for each year. That is,
there were 11 urban and rural areas for each city in the study area from 2003 to 2013. Using Beijing as
an example, its 2010 urban and rural areas are shown in Figure 2. Finally, the urban and rural areas in
grid format were batch converted into vector format for further calculating the spatially averaged LST
in the urban area (Turban) and the LST in the rural area (Trural). The remote sensing (RS) datasets used
in this research are summarized in Table 2.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  6 of 14 
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Table 2. The summarized details of remote sensing (RS) Datasets used in this research.

Name Product Pixel Size Temporal Granularity Timeframe Source

MYD 11A2 Land surface
temperature 1000 m 8-day 2003–2013 https://search.earthdata.

nasa.gov/search

MCD 12Q1 Land cover 500 m annually 2003–2013 https://search.earthdata.
nasa.gov/search

SUHII Calculation

The SUHIIs were calculated as the difference in urban LST minus rural LST. Daytime and
nighttime SUHII were calculated separately from Earth Observing System-Aqua-MODIS LST in the
early afternoon (local time ~13:30 p.m.) and at night (local time ~01:30 a.m.), respectively. The seasonal
and annual averaged daytime and nighttime SUHII were also calculated.

2.2.2. Spatiotemporal Mapping and Multi-Perspective Analysis of the SUHIIs

SOM Model

The SOM model is one of the unsupervised learning clustering methods, which is essentially a
neural network with only an input layer, a hidden layer, and a target output. A node in the hidden
layer represents a clustering that must be aggregated. The “competitive learning” method is used when
training the network, and each input sample finds a matching node in the hidden layer, which is called
the “winning neuron”. The parameters of the activation node are updated using the stochastic gradient
descent method. At the same time, the points adjacent to the activation node also appropriately update
the parameters based on their distance from the activation node. Therefore, one of the features of SOM
is that the nodes of the hidden layer are topological. Therefore, the SOM can discretize the input of
any dimension to the discrete space of one or two dimensions. The nodes in the computation layer are
fully connected to the Input layer nodes. Detailed information about the SOM algorithm can be found
in the report of Kohonen) [49]. This research used SOM packages in R software for data processing
and analysis.

Experiments in this Research

To provide a comprehensive and comparative mapping of the spatiotemporal patterns of the
SUHIIs, both the seasonally averaged daytime and nighttime SUHIIs for selected cities are first
presented. Then they were averaged over each climatic zone in China and analyzed comparatively
using statistical methods.

As the high summer temperatures directly impact human comfort in Chinese cities,
the spatiotemporal variations and clustering patterns in the daytime SUHIIs in summer during the study
period are presented using the SOM method. As the input data, the original datasets were first organized
into a matrix of 32 rows × 11 columns, which means that 32 cities were investigated, each with 11-year
daytime SUHIIs in summer from 2003 to 2013. The target output was the clusters generated by the
SOM. Before using the SOM method in this research, the SUHII values were normalized using three
alternative methods, each of which could illuminate different relationships among the cities. In each
case, normalization was based on scaling values in the range of 0 to 1, proportional to the minimum
and maximum SUHII values.

(1) Globally Normalized. All SUHII values were normalized to 0–1 in a single step, based on the
smallest and largest value ever observed for any city and any time period. Clusters among
cities observed in the visualization, as expressed by the same colors, is thus largely reflective of
differences in the SUHIIs.

(2) Column Normalized. Normalization occurred here in isolation for each time slice, based on
minimum and maximum values for the respective slice. Assuming that the geographic distribution

https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
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of relative SUHII at different times was relatively constant, in that the relative ranking of cities
does not change despite changes in absolute magnitudes, similar patterns of cities were expected
to be close to what is produced by global normalization.

(3) Row Normalization. This is another form of normalization occurring within cities, that is, within
rows of the input matrix. With the smallest and largest value ever observed for a particular city
driving the normalization, this leads to the ability to more directly compare temporal SUHII
signatures. For example, row normalization allows temporal alignment of local maxima and
minima of different cities to be recognized despite differences in magnitude. Broad regional
patterns affecting SUHII were expected to be highlighted using this approach, since regional
causes may drive SUHII up or down in similar patterns.

The target output clusters generated by SOM was visualized in ARCGIS software. The cities in one
cluster were labeled in the same color to demonstrate spatial patterns. To explain the above patterns
derived from the SOM method, the spatial patterns in the annual averaged daytime SUHIISs during
the study period are presented. The change rate was also computed using the least square method to
test whether the SUHI worsened or improved with the development of urbanization. The formula for
the change rate is as follows.

CR = (xy − x · y)/
(

x2 − (x)2
)

(2)

where CR is the change rate; x is the independent variable, which refers here to the time and; y is the
dependent variable, which refers here to the SUHII values. If the change rate was less than 0 in one
city, the thermal environment was improving, otherwise, it was worsening.

The work flowchart in this research is summarized in Figure 3. First, the LST and LULC datasets
were batch pre-processed in the MRT software. Then, the spatial overlaying analysis in ARCGIS
software was used to calculate the SUHII combined with the geographical databases. The SOM
method was programmed in the R software using R language. Finally, the SOM clustering results were
visualized in ARCGIS.
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3. Results and Discussion

3.1. Spatiotemporal Variation of the SUHIIs

To provide a comparative understanding of the spatiotemporal variations in the SUHIIs in the
study area, both the seasonal averaged daytime and nighttime SUHIIs values and their variances were
calculated in each climate zone over four seasons. The results are shown in Figure 4. We found that
both the daytime and nighttime SUHI had different intensities and seasonal variation between climate
zones. Whereas nighttime SUHIIs were significantly more moderate than the daytime SUHIIs and
more stable with smaller standard errors over the four seasons, daytime SUHIIs had more obvious
seasonal variations in each climate zone. The strongest SUHIIs occurred in summer in all zones
except in Zone 5, where the daytime SUHIIs in autumn had the largest value. This may due to the
effect of the special climatic type in Zone 5, which was characterized by a hot summer and warm
winter. The autumn was quite short and similar to summer. Therefore, the SUHII in autumn was
unsurprisingly quite high in Zone 5, as the autumn (including September, October, and November
in this research) was quite hot or even hotter in Zone 5. During the daytime, the lowest SUHIIs
occurred in winter in all zones, with a value of less than 1 K in Zones 1, 4, and 5. Notably, the cities in
Zones 2 and 3 had “urban cool islands” with negative SUHIIs in winter. Previous studies also found
similar results for a few single cities such as Beijing [27]. This study further demonstrated that this
is a universal phenomenon in Zone 2 in China. This may be due to the low thermal inertia of the
bare and dry soil in rural areas and the high thermal inertia of the concrete material used in urban
construction [50].
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Figure 4. Seasonal averaged surface urban heat islands intensity (SUHII) values and their variances
from 2003 to 2013 for different climate zones. Zone 1: severe cold region, Zone 2: cold region; Zone 3:
hot summer cold winter region, Zone 4: temperate region, and Zone 5: hot summer warm winter region.

The seasonal variation in the nighttime SUHIIs was relatively smaller than the daytime SUHIIs,
with about 2.5 K in Zones 1 and 2 about 1.5 K in Zones 3–5 over the four seasons. According to Oke [2],
the nighttime urban thermal environment is mainly dominated by anthropogenic heat and radioactive
cooling. Although the work generally focused on air temperature UHI, this was also helpful for
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explaining SUHI, as land surface temperature was significantly correlated with air temperature [51].
Additionally, at the city scale, the population during the daytime was almost double that of the
nighttime population, which may have increased anthropogenic heating magnitude with population
density [52]. The temporal variability in anthropogenic heating may also affect the diurnal variation
in the SUHI. These estimations explain why the nighttime SUHI was rather stable and reveal the
relatively higher SUHIIs during winter.

Above all, the described diurnal and seasonal spatiotemporal variations in the SUHIIs suggest
that daytime and nighttime SUHI had different mechanisms. The different physical processes for
different climate types also form the different characteristics of the SUHIIs. We should consider the
climatic types when studying the factors related to the spatial patterns of the SUHII.

3.2. Spatiotemporal Mapping of the SUHIIs

The results obtained using the SOM method using global, column, and row normalization are
shown in Figure 5. As the SOM method outputs clusters labeled with numbers for each group of
cities, the cities in the same cluster were labelled with the same color and then visualized in the GIS
environment. Notably, all the three sub-graphs were completely independent with no coordination of
color schemes. That is, cities with the same cluster were in red for the column normalized solution, but
may also occur in purple for the row normalized solution. The main purpose of these visualizations
was to observe multi-temporal regionalization of the SUHIIs across cities in different climatic zones.
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As expected, the column normalized and the globally normalized SOM method demonstrated
very similar patterns, which are shown in Figure 4a,b, respectively, which can be explained by the
mechanism of the SOM method. We have known that the column normalized way could emphasize
and highlight the spatial (regional) effect. As the spatial distributions of the relative SUHII values
between different years were relatively stable, the relative order of the cities remained unchanged
despite changes occurring in the absolute magnitudes of the SUHIIs. Therefore, the city patterns using
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the column normalized were expected to be similar to the patterns produced with global normalization.
Regardless, using both normalization methods, the clustering spatial patterns were affected by the
climatic zones, especially in Zone 5, as shown in Figure 4. All these cities are along the coast and
impacted by the land and sea breeze. Another obvious phenomenon is that almost all the SUHIIs
were clearly by the Qinling-Huaihe Line, although in Zones 1–4, the clusters were not so clearly
consistent as those in Zone 5. We conclude that the spatial patterns of SUHIIs across China coincide
closely with the geographical dividing line (Qinling-Huaihe Line) between North and South China
(Figures 1 and 4a,b), with Zones 1 and 2 located in North China, and Zones 3–5 in South China.

As mentioned above, row normalization reduces the effects of SUHII magnitude and emphasizes
similarities in temporal SUHII regimes. The SOM result obtained using row normalization in this
research showed quite a complex pattern (Figure 5c). This was no surprise, as the temporal variation
in the SUHII in one city was much more related to the development of urbanization [34]. The cities in
each cluster are listed in Table 3. We deduced that the temporal variation patterns in the SUHIIs were
related to the development of urbanization, but not the background climatic backgrounds of the cities.

Table 3. Cities in each cluster using self-organizing map (SOM) with row normalization.

Cluster Cities

1 Shanghai, Lanzhou, Shijiazhuang, Beijing, Urumqi
2 Kunming, Guiyang, Zhengzhou, Tianjin, Laksa
3 Shenzhen, Hangzhou, Taiyuan
4 Xi’an
5 Guangzhou, Nanchang, Nanjing, Hohhot
6 Nanning, Yinchuan
7 Changsha, Wuhan, Chengdu, Jinan, Haikou
8 Fuzhou, Chongqing, Hefei, Xining, Shenyang, Changchun, Harbin

3.3. Multi-Perspective Analysis of the SUHIIs Patterns

The obvious patterns indicated in the SOM method using column and global normalization could
be due to the physical geographical and radiative differences between North and South China playing
the dominant role in generating the significant spatial differences in SUHI, even though intensive
human activity may impact the regularity. Although obtaining direct quantitative parameters to
demonstrate this effect is difficult, the much more complex spatial patterns of the daytime SUHIIs
were helpful for this argument. Anthropogenic activities are much more intense and complex during
the day, which considerably impact the natural environment, thus further complicating SUHI [52].
Regardless, the overall spatial patterns of the daytime SUHII in summer were still powerful evidence
for this argument, as shown in Figure 6, which was derived from the annually averaged daytime
SUHIIs in summer from 2003 to 2013 for each city. Overall, the spatial patterns of the SUHIIs were
observed along the climate zones and obviously divided by the Qinling-Huaihe Line, exhibiting
different characteristics between North and South China. The spatial patterns of the nighttime SUHIIs
were also helpful in providing an explanation from the opposite point of view. As shown in Figure 4,
no obvious spatial patterns in daytime SUHI in spring, summer, and autumn were observed, whereas
relatively clear patterns were observed during the night. Overall, the nighttime SUHIIs in Zones 1
and 2 (North China) were significantly stronger than that in Zones 3–5 (South China).
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For the temporal regimes, the complex temporal patterns of the SUHIIs in China were due to
the variation in the SUHIIs in one city being much more related to the development of urbanization.
This can be inferred from urbanization background for each city listed in Table 1 and the change rate
of the SUHIIs in each selected city calculated using Equation (2) in Section 2.2.2. According to the
change rate presented in Figure 7 during the study period, only nine cities experienced worsening
thermal environments, which was indicated by a slope greater than 0.05. These cities included Harbin,
Shenyang, Changchun, Tianjin, Laksa, Kunming, Guiyang, Nanning, and Wuhan. The SUHIIs in the
following 14 cities were improving: Beijing, Shanghai, Shenzhen, Guangzhou, Hangzhou, Urumqi,
and Hohhot. Notably, in the first-tier mega-cities in China (Beijing, Guangzhou, and Shenzhen),
the change slope of SUHII was less than −0.1, which indicates an obvious improving trend. This may
be due to the urban environments in these developed cities attracting more attention and these cities
are working toward being more livable cities. Conversely, the cities where the SUHIs are worsening
were mostly developing cities. Regardless, the results indicated that not all the cities were experiencing
worsening urban thermal environments with the development of urbanization as reported by previous
studies. The urban thermal environments can be effectively improved by urban planning.
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The SUHIIs were rather complex and comprehensively affected by various factors. Although we
identified the dominant factors affecting the clusters in the spatiotemporal patterns derived from the
SOM method with different normalization methods, the inherent explanation for different regions and
clusters requires further study. The SOM method with the covariates and GeoDetector [53] could play
an important role here.

4. Conclusions

In this research, we proposed a powerful spatiotemporal framework to study the SUHII patterns
and their relationships. The results provided a regional understanding of the SUHIIs in China.
We assessed the spatiotemporal variation of SUHIIs across 32 major cities in China by combining
the time-series MODIS LST datasets and the LULC datasets. The SOM method was also used to
reveal spatiotemporal patterns and their relationships within the selected cities in this study area.
This research highlights that the significantly different processes and spatiotemporal patterns of
the SUHIIs between North and South China are affected by the climatic types, especially for the
background values of the SUHIIs. Moreover, the temporal variation trends in the SUHIIs in a city were
mainly affected by the development of urbanization in the city.

Significant differences were observed between daytime and nighttime SUHII and between North
and South China. Whereas daytime SUHIIs exhibited obvious seasonal variations across China,
with the highest in summer and lowest in winter, the variations of SUHIIs in North China were
comparatively much higher. Nighttime SUHIIs were much weaker and exhibited much lower seasonal
variation than daytime SUHIIs, with a standard error of less than 0.3 K over the four seasons. However,
nighttime SUHIIs exhibited much more obvious spatial patterns, with much higher values in North
China than in South China. The physical geographical and radioactive differences between North
and South China may play a dominant role in generating the significant spatial differences in SUHI.
Further research is recommended in order to focus on obtaining direct quantitative parameters for
examination of this finding.

In this study, another finding using the SOM method was that the SUHII in one city was much
more related to its urbanization, even though the background value of the SUHII in one city was still
affected by the location of the city. The urban thermal environments have effectively improved in
the first-tier mega-cities in China, whereas the cities where the SUHIIs were worsening were mostly
developing cities, which may be due to the focus on industrial development with little or no regard for
the environment. This may be due to the fact that the urban thermal environments in those developed
cities were attracting more attention and these cities have taken some measures such as green projects.
Future research is also suggested to reveal the mechanisms. In any case, the results indicated that not
all the cities are experiencing worsening urban thermal environments with urbanization as reported
by previous studies. Urban thermal environments can be effectively improved by urban planning.
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