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Abstract: Every city is—quoting Plato—divided into two, one city of the poor, the other of the rich.
In this study we test whether the economic urban divide is reflected in the digital sphere of cities.
Because, especially in dynamically growing cities, ready-to-use comprehensive data sets on the urban
poor, as well as on the digital divide, are not existent, we use proxies: we spatially delimit the urban
poor using settlement characteristics derived from remote sensing data. The digital divide is targeted
by geolocated Twitter data. Based on a sample of eight cities across the globe, we spatially test
whether areas of the urban poor are more likely to be digital cold spots. Over the course of time, we
analyze whether temporal signatures in poor urban areas differ from formal environments. We find
that the economic divide influences digital participation in public life. Less residents of morphological
slums are found to be digitally oriented (“are digitally left behind”) as compared to residents of formal
settlements. However, among the few twitter users in morphological slums, we find their temporal
behavior similar to the twitter users in formal settlements. In general, we conclude this discussion,
this study exemplifies that the combination of both heterogeneous data sets allows for extending the
capabilities of individual disciplines for research towards urban poverty.

Keywords: urban society; morphological slum; digital divide; social media; Twitter; remote sensing;
geoinformation system; human geography

1. Introduction

“Every city, however small, is, in fact, divided into two, one city of the poor, the other of the rich;
[ . . . ]” [1] after Plato. With 32.7% of global city dwellers estimated to live in slums [2], with an expected
global population growth of 2.3 billion people until 2050 [3], and in a world where place of birth as
well as living environments have major influence on (economic) wealth [4], the pressure on cities
and their societies is increasing. Challenges related to the process of urbanization are echoed by
intergovernmental agreements on the Sustainable Development Goals (SDGs) [3]: ‘To end poverty’
(SDG1) and ‘to build sustainable cities and communities’ (SDG 11) are, among others, development
goals explicitly related to urban poverty. For creating sustainable development strategies, data and
information are crucial. However, for the ‘city of the poor’ most countries lack adequate data to identify
and monitor these places, to understand processes, their inhabitants, their behavior, etc. Although we
live in an era in which more (geo)data are available than ever before in human history, the World
Migration Report [5] states “we face a massive lack of basic data about urban poverty”; thus, the poorest
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people often remain invisible in statistics [5]. And, if data are available, the credibility of these data is
in doubt [6,7].

In this paper, we search for new ways of big data analytics to reduce knowledge gaps on urban
poverty, i.e., by the multidisciplinary combination of different data types from remote sensing and social
networks. Along the argument of [8], suggesting to go “beyond the geotag” by leveraging data from
social networks against ancillary data, we investigate whether these two different data types can be
complementarily used to exploit social phenomena regarding the urban divide. In this study, we
understand the term ‘urban divide’ by two different aspects: The economic divide characterizing different
social groups within the city. The digital divide exhibits different participations in online resources by
different social groups.

The initial quote in this paper provocatively culminates a simplistic, dichotomic perspective
towards the urban divide. Naturally, the ‘city of the poor’ and the ‘city of the rich’ are neither
geographically nor socio-economically strictly separated from each other, but they are interwoven
in complex, temporarily dynamic patterns of living, working, traveling, communicating, and many
other aspects. However, due to the lack of adequate data in many cities on these multidimensional
interwoven complex patterns, we approach the urban divide by applying commonly used proxies.
We investigate whether residential places of the urban poor, mapped by remote sensing, show different
spatio-temporal patterns of social network activity. Methodically, we quantitatively compare the
number of tweets across space and, we investigate tweet frequencies over the course of time. By doing
so, we aim to identify trends in human behavior at specific urban locations (i.e., morphological slums)
and whether these trends are similar. For investigating this social phenomenon, we apply this approach
at multiple cities across the globe.

The remainder of the work is structured as follows: Section 2 introduces the background on
urban poverty and presents the rationale of this work. Section 3 introduces the experimental set-up
with the selected cities under investigation, the data sets used, the methodology of mapping urban
poverty using Earth observation (EO)-data, the pre-processing of social media data and the combined
analyses of both data sets. In Section 4 the results on spatio-temporal social media activity for varying
living environments within the city are presented. This is followed by a discussion in Section 5, where
capabilities and limitations of the data sets are evaluated. Section 6 concludes with a perspective.

2. Background and Rationale

The scientific debate on urban poverty comprises a broad range of topics. These include measurements
of poverty either in an economic, e.g., [9], a spatial, e.g., [10], or a multidimensional, e.g., [11] sense.
Processes leading to urban poverty are analyzed, e.g., [12,13], questions on why the poor prefer to live
in cities are investigated, e.g., [14], physical living environments of the urban poor are characterized and
localized, e.g., [15], social phenomena, e.g., [16] such as effects of slum-upgrading on social cohesion
are described [17], among many other studies about the urban poor. From a political perspective, the
multitudes of challenges for the urban poor (and the global society as a whole) are on the political
agenda (e.g., SDGs) [3]. However, the demand for ‘sustainable data for sustainable development’,
i.e., improved data availability, quality, consistency, timelines and disaggregation is often not met and
creates a demand for exploring new (multidisciplinary) data sets and methods.

In this study, we explore the capabilities of combining two data sets—remote sensing and
social network data. We investigate urban poverty by addressing the economic divide as well as the
digital divide within cities. We understand the term ‘urban divide’ as two social groups’ representative
for the differentiation between the marginalized and poor urban residents on the one hand, and formal
and economically better off residents on the other.

Addressing the economic divide is complex as the measurement of poverty, and it is not
unambiguous. Varying methods such as conventional economic vs. participatory anthropological
approaches have been discussed, e.g., [18]. Commonly poverty is defined at household level; relative
measures usually relate to households having less than 50% of the median income of the population
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within a specific geographic entity [9]. However, these or related socio-economic data for the urban
poor are rarely available (or accessible) at household level in many cities (especially in the Global
South). When available, these statistics are mostly aggregated, outdated, or inconsistent [5,19].
Against this background, in this study we approach the economic divide spatially by the delimitation
of neighborhoods with poor building structures. Mapping places of residence of the urban poor
using remote sensing data has gained increasing attention by scholars since very high resolution (VHR)
satellite data became available in 1999, see review by [19]. Characteristic structures of the built
environment (organic lay-outs, high densities, small ground floors, among others) are generally used
as proxy for delimiting living areas of slums [10,15,20]. Manifold image classification approaches
allow the spatial classification of these places from VHR optical, e.g., [21,22] and radar, e.g., [23] data.
Nevertheless, this proxy also features shortcomings, as the inhabitants in these areas are naturally
not a fully homogeneous social group, nor is it vice versa. Although an inherent binary classification
into ‘poor’ and ‘not poor’ neglects the complexity of the spatial distribution of social groups in space,
studies prove that these spatially delimited areas are a feasible and legitimate proxy for localizing
living environments of the social group of urban poor [24,25]. Beyond, using characteristic structures
of the built environment allows for spatial consistency within and across cities, and at least with its
shortcomings, it provides completeness of comparable spatial extents. With it, we intrinsically follow a
spatial approach localizing places of residence.

The digital divide is commonly understood as a multidimensional phenomenon encompassing
divergence of Internet access across space (global divide), the gap between information rich and poor
areas (social divide), as well as the gap within online users, i.e., between those who do, and do not,
use the panoply of digital resources to participate in the public life (democratic divide) [26]. Ref. [27]
finds, that most frequently the literature on the digital divide identifies the poor as being most
vulnerable to negative impacts from participating in the online world. In this regard, social network data
have recently gained increasing attention by scholars to capture, analyze and understand the digital
divide, e.g., [28–30]. Focusing on urban poverty investigations reveal the relevance of social networks
for empowering people to participate in urban societies [31,32]. However, it is also shown that urban
inequalities with respect to usage of such communication platforms remain [33]. Other investigations
apply social network data for capturing dynamic patterns and human interactions. For instance,
scholars map urban land use by spatio-temporal activity patterns, e.g., [34], unusual events, e.g., [35],
mobility patterns, e.g., [36] or they define and characterize neighborhoods, e.g., [37]. Against this
background, we approach the digital divide in this study by data from the global microblogging
platform Twitter. The location-based twitter data functions as a proxy for the digital landscape of a
city. Nevertheless, we are aware that the twitter users cannot be taken as representative of the entire
population of the users being online. The proxy contains a highly non-uniform sample of the entire
population with inherent biases, e.g., [38,39]. Ref. [40], as an example, find a strong bias towards male
users; ref. [30] as well as [41] find a bias towards young, highly educated males with social upward
mobility using these communication streams versus lower-income residents tending to be less digitally
oriented. Focusing on urban poor living in slum environments, we suppose that technical aspects, such
as access to electricity or to devices with online access, as well as social aspects such as literacy rate or
education levels, influence the participation in these social online platforms. Further, it is important to
note, that residents of morphological slums can also tweet from within formal settlement structures
influencing our statistics. However, despite these restrictions, we assume the site-specific tweet activity
and the respective temporal patterns allow the general characterization of behaviors of residents and
presence of infrastructures related to modern communication technologies.

As a result, we combine the two data sets from satellite imagery and twitter to approach the
following specific research questions: (1) Are the physical built-up structures, used as proxy for the
economic divide in cities, reflecting the digital divide within the population of twitter users? (2) And,
do locations of urban poor feature different temporal behavioral patterns of twitter activity than
formal settlements?
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3. Experimental Set-Up: Materials and Methods

In general, we follow in our experimental set-up a hierarchical rationale by first mapping the
economic divide, and secondly, investigating whether spatially related behavioral patterns in social
networks participation exist and confirm a digital divide. The workflow is illustrated in Figure 1:
First, a sample of cities for our investigation is selected. Second, using the multi-source remote
sensing data, the settlement areas of our selected experimental cities are spatially sub-divided into the
thematic classes ‘morphologic slums’ and ‘formal settlements’. Third, the twitter data are preprocessed
and filtered to produce an unbiased sample. Fourth, two different types of analyses are conducted,
which are illustrated in Figure 1 as rectangles: One type uses the spatial tweet densities and the
other using spatio-temporal frequencies. The spatial tweet density analysis relies on the number of
tweets per spatial unit; thus, both datasets are aggregated on spatial units used within the respective
administrative area of the studied cities. With it, digital hot and cold spots are detected and statistical
variance analyses are conducted. The results are presented as mapping representation, by empirical
characteristics at cross-city and intra-urban scales and spatial statistics. The spatio-temporal analysis
relies on the number of tweets per hour and day. The correspondingly aggregated temporal signatures
per land cover class outline user behavior of different social groups.
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3.1. Selection of Experimental Cities

For the experiments we select a meaningful sample of study sites by the following reason:

• We select cities which feature a significant share of urban poor documented in literature or official
census data.

• We select cities containing building morphologies characteristic for slums, which are in line with
the conceptual ontology presented by [20] and the related empirical basis demonstrated by [15].
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This physical appearance differs to formal settlements and can be classified by VHR optical remote
sensing data.

• We select cities at different cultural areas and continents across the globe.

In addition to these attributes our selection process is guided by the limitation that every chosen
city needs an extensive and consistent classification of morphologic slum structures based on available
VHR optical remote sensing data. As of today, no such classification is generally or globally available
and as it has been reported in a comprehensive literature review [19], only few case studies exist.
In consequence, we limited the selection to eight cities, where consistent classifications of morphologic
slums in line with our conceptual ontology have been produced (cf. Section 3.2.2). Based on these
criteria, our selected sample contains heterogeneous cities by e.g., city size, population, economy,
cultural situation or politics: Dhaka (Bangladesh), Mumbai (India), Manila (Philippines) in Asia; Caracas
(Venezuela) and Rio de Janeiro (Brazil) in America; Cairo (Egypt) and Cape Town (South Africa) in Africa;
and Lisbon (Portugal) in Europe.

Our general area under investigation is the administrative area for each city. Therefore, we use the
spatial outlines provided by the Global Administrative Areas (GADM) database [42].

3.2. Mapping the Economic Divide

3.2.1. Remote Sensing Data

For the localization of living environments of different social groups within the urban landscape
remote sensing data are applied. For the analysis multi-source earth observation data from VHR optical
satellite sensor systems (1) as well as from high resolution radar systems (2) are used:

1. Optical sensors, such as QuickBird or WorldView, provide geometric resolutions of 1m and better
and thus, the urban morphology is represented by individual buildings. We apply these data
for the delimitation of morphologic slums. Figure 2a illustrates the complex urban environment
by contrasting geometric, planned, formal building structures with non-regular, unplanned,
non-formal building structures of morphological slums.

2. We use radar data from the TerraSAR-X and TanDEM-X missions at Stripmap mode providing
geometric resolutions of 3 m. For urban landscapes spatial complexity of varying objects within
small areas is characteristic. In radar data this is represented in highly textured image regions of
strong directional, non-Gaussian backscatter due to double bounce effects. This information is
used along with the intensity information to delineate ‘settlements’ from ‘non-settlements’ using
an unsupervised image analysis technique, for technical details we refer to [43]. The accuracies of
the settlement classification in dense urban areas (as in our case studies) have been measured
beyond 90% [44].

3.2.2. Mapping Morphologic Slums versus Formal Settlements

We use the Global Urban Footprint mapping product that bases on TerraSAR-X and TanDEM-X
data [43] providing the classification of ‘settlement’ areas in our experimental cities. Figure 2c illustrates
the respective binary classification. However, this classification does not account for intra-urban
structural differences. With respect to the urban poor, the appearances of building structures can be
used to delimit their living environments within cities when remote sensing data are applied. We
base our classification of ‘morphologic slums’ on the conceptual ontology suggested by [20] and the
empirical study done by [15]: They conceptualize spatial features such as ‘highest building density’,
‘non-regular, complex alignment of buildings’, ‘homogeneity of the pattern’, ‘small building sizes’, and ‘low
building heights’ for delineating areas terminologically named ‘morphologic slums’. Although algorithms
automatically deriving these areas in two-dimensional map representations have been developed to
a degree where accuracies of 80% and better become possible, e.g., [23,45], we opted for a manual,
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visual classification. We do so, as the authors of [10] remark, the visual interpretation still offers the
best capability and accuracy for deriving these complex structures.

We follow a standardized digitization protocol to derive a conceptually and spatially consistent
morphological slum classification within and across our experimental cities. Based on the VHR optical
satellite data, we digitize at a consistent scale of 1:1000 and represent each morphologic slum by a
single polygon. The polygons contain several vertices representing real shapes of these neighborhoods.
The spatial intersection of the classified ‘morphologic slums’ with the settlement classification derived
from the Global Urban Footprint, results in two thematic classes sub-dividing the built environment of
the city: ‘morphologic slums’ and ‘formal settlements’. This dichromatic spatial approach serves as
spatial proxy for the economic divide in a city.

3.3. Mapping the Digital Divide

3.3.1. Twitter Data

Twitter is a web-based message service with 140 characters per ‘tweet’ possible at the time of
monitoring (today 280 characters are possible). As of December 2017, Twitter has 330 million monthly
active users [46]. The tweet contains not solely semantic contents by a text message but also additional
metadata such as location and time information.

Our raw data consist of a 1% random sample of the entire population of tweets available through
the public API (Application Programming Interface). We spatially defined the API queries using a
50 × 50 km bounding box around each city center. The dataset was streamed over a period of almost
one year from 20 June 2016 to 4 June 2017. Ref. [39] find in their study, comparing the data from the
streaming API and the Firehose data set (the complete set of data available commercially), that the
1% sample almost returns the complete set of geotagged tweets despite sampling. In consequence we
can be highly confident that our geotagged data sets are representative for Twitter users. However,
as users can define the (spatial) information they want to share, the number of geotagged tweets is
generally comparatively small. In our case, 6.4% of our 1% random sample of tweets carries detailed
location information. Other biases integral to the data set are discussed in Section 5.

3.3.2. Filtering and Processing of Twitter Data

Our raw data sample of Twitter messages requires certain preprocessing steps before being
suitable for the analysis: For the analysis, we rely only on tweets with an explicit latitude/longitude
“point” coordinate. These are 6.4% of tweets from our entire sample.

First, we exclude tweets which are spatially associated outside of our two land cover classes
(formal settlements and morphologic slums) of interest, i.e., in non-built up areas of our test sites.
Urban parks or other places not classified as settlements are excluded (cf. Figure 2a upper left corner).

Second, a systematic bias occurs when exact geolocations are recorded multiple times. Tweets can
be located either by the device’s location (highest quality for this study), check-ins (requires account
to be linked with foursquare or path.com) or by geocoding hashtags or addresses. In the latter case,
Twitter automatically localizes the tweet. Unfortunately, the recorded twitter data do not include
information about how the coordinate pair was generated. Mapping the tweets, however, reveals
conspicuous hot spots. As one example, a large number of tweets using the hashtag #Mumbai, is
located right in front of Red Cross Street 15. While this place is central, it is not necessarily a crowed
place. Beyond, in contrast to crowded places, where a large number of tweets scatter closely, the
coordinates of our example coincide spatially perfectly. Consequently, we assume they were geocoded
automatically. In turn, we excluded tweets from the most frequent coordinate pair for each city.

Third, a first visualization of the spatial distribution of geolocated tweets reveals some extensive
hotspots, possibly induced by twitterbots and/or extraordinary users (mainly advertisers). We exclude
these hotspots by limiting the maximum number of tweets per user and day to one tweet per spatial
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grid unit. Figure 2b illustrates the remaining geolocated tweets of our one-year sample and the
emerging spatial pattern.

To capture the variance of twitter activity across space, we use site-specific standard grid
geometries. We use a spatial entity of a systematic 100 × 100 m grid. To account for the economic
divide within the city, we intersect this systematic grid with the mapped spatial outlines of the two
land cover classes ‘formal settlement’ and ‘morphologic slum’. In consequence, the maximum area of
a spatial grid unit is 1 hectare when one grid contains only one land cover class. However, the spatial
units applied may be smaller when different land cover classes create spatial subunits within the grid.
Figure 2c,d illustrate the consistent grid pattern and exemplify the different spatial grid units with
respect to varying land cover classes.

Based on the spatial grid units and its subunits we derive twitter activity with respect to location.
Therefore, we aggregate the filtered twitter data onto the respective grid unit. We calculate the tweet
density per grid unit as the ratio between the total numbers of tweets per hectare. Figure 2d illustrates
the aggregated tweet densities.
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3.3.3. Statistical Spatial Variations of Tweet Densities between Morphological Slums and
Formal Settlements

In our experiment we aim at analyzing whether systematic differences in tweet density exist
between morphological slums and formal settlements. For a consistent analysis across the sampled
cities, city specific tweet behaviors need to be eliminated. To do so, we plot the number of tweets
per spatial grid unit against the respective spatial extents and fit linear regression models per city
through the data. With it, the overall tweet density per individual city can be predicted. This allows
eliminating the covariance. For subsequent analyses we rely on the residuals, as they correspond to
the tweet density, independent of a city’s individual twitter activity characteristics (such as general
literacy, access to electricity or local attitude towards the social media platform Twitter). In other
words, the residual tweet density represents the ratio of tweets per hectare as if they were tweeted
from one generic city.

After the covariance is removed from the data, we conduct an analysis of variance (ANOVA) [47]
on the residuals. The ANOVA analyzes the differences among group means and their associated
procedures (such as “variation” among and between groups). In consequence, the approach tests if
differences are more frequently than random, and thus if they are statistically significant. The variances
among averages within a group of data are therefore compared to averages between groups of
data. The data groups in our case are the urban land cover classes ‘morphologic slums’ and ‘formal
settlements’. The amplitude of the variance between groups measures the differences, with the
determination of significance set to 0.01 (1%). For the analysis whether morphological slums or
formal settlements feature statistically different tweet densities, we apply an honest significance test
(Tukey-Honest Significance Difference Test (Tukey-HSD)). The approach compares the values of the
individual data groups to each other. Non-significant differences will be classified as one data group.
The confidence level here is set to 99%.

3.3.4. Detection of Digital Hot and Cold Spots

So far, our analysis strategy is related to the general differences of twitter activity in morphological
slums vs. formal settlements at city level. However, the analysis does not yet account for intra-urban
spatial differences. However, as illustrated in Figure 2b, the twitter activity strongly varies on an
intra-urban scale. While for the larger proportion of spatial grid units only few if any tweets were
observed, others contain up to multiple thousand individual tweets per hectare. Consequently, we
aim to detect digital hot and cold spots, i.e., neighborhoods which feature twitter activity significantly
above or below the average, and, of course, the digital median of a city.

Using the entire population of spatial grid units per city, we perform a categorical classification of
tweet densities. To do so, we use a classification scheme of three quantiles. The quantile embracing
the highest tweet density is considered digital hot spot. The middle quantile is titled digital median, and
the lower quantile a digital cold spot. Additionally, spatial grid units without any recorded tweets are
excluded from this empiricism and straightforward constitute a fourth class called no tweets. The latter
class of no tweets is subsequently combined with the lowest quantile to the class of a digital desert.

Beyond, we apply spatial statistics based on these tweet density classes, by cumulating the area
per land cover class for each land cover class. As the total area and fraction of morphological slums
highly varies across the cities (see Table 1), the spatial statistics are normalized by the entire area per
land cover class and per city. The resulting relative areas per categorical tweet density class show how
frequent each class can be found in morphologic slums as well as in formal settlements. Herewith the
spatial share of digital deserts is revealed. The normalized spatial statistics are illustrated in bar charts.
We analyze, whether a class, e.g., a ‘digital hot spots’, is more likely to occur in one of the thematic land
cover classes. For significance testing we use a Wilcoxon’s rank sum as the data for the tweet density
classes are not normal distributed. We test on a 95% confidence level, whether the spatial statistics
differs significantly between morphological slums and formal settlements.
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3.4. Temporal Analysis

All recorded tweets contain the local time when they were sent. This allows in a final step the
analysis of temporal patterns comparing morphological slums with formal settlements. Methodically
we follow the approach introduced by [34], counting the number of tweets per hour per land cover
class, grouped into weekdays and weekends. In contrast to [34] though, we do not use temporal
histograms to assess land use types; in contrast, we focus on similarities and differences in temporal
behaviors within the land cover classes under investigation. To do so, we aggregate the tweets into
temporal signatures for morphological slums as well as formal settlements on a city-wide scale.

In a subsequent step, the temporal trajectories are analyzed in quantitative manner. Therefore, we
adapt methods developed in a different discipline—analyzing the phonologic seasonality of time series
data, cf. [48]. We assume the daily temporal signatures follow a pattern which can be categorized by a
‘start and an end of a season’. To do so, we first fit a cubic spline model through the observed number of
tweets per land cover class and hour. We do this for weekdays and weekends separately. Then, secondly,
the most active phase of a day is extracted based on local extremes of the first derivate. Consequently,
the start of day (cf. start of season) represents the point in time with the largest increment of tweets
per hour and vice versa, the largest decrease marks the end of day (cf. end of season). Assuming that
users continuously tweet while using the micro blogging platform, these measures indicate the points
in time, when most users come online or go offline respectively. The amount of time between both
junctures is considered the length of day (cf. length of season). Last but not least, we test the hypothesis,
that the economic divide also influences the temporal tweet behavior, i.e., the frequency trajectories
and its derived metrics.

4. Results

In the title of this article we provokingly ask if the “urban poor are digitally left behind”? In the
following, we approach this question from different perspectives based on our experimental set-up:
We present the data and mapping results, we illuminate city-specifics in twitter activities, compare
behaviors in morphologic slums vs. formal settlements, and, we analyze whether different temporal
signatures between both locations exist.

4.1. Data and Mapping Results

Our approach is based on two main data products: (1) The classifications of ‘morphologic slums’
and ‘formal settlements’ for mapping the economic divide within the complex urban landscape,
and (2) the twitter data streamed over a period of almost one year.

1. In general, we classify 274,184 hectare of cumulated settlement areas for all our sample cities.
We find that only 5.54% of the settlement areas are occupied by ‘morphologic slums’. However,
for the area share of morphologic slums of the total settlement area we observe a strong variation
across cities from 18.90% in Caracas to only 0.11% in Lisbon (Table 1).

2. The preprocessed twitter data set contains 3.73 million geolocated tweets cumulated for all
sample cities. We find that twitter activity varies significantly across cities, with Manila featuring
more than 2 million tweets vs. Dhaka with only about 30,000 tweets within the time period of
monitoring. Beyond, we also find that a relatively small share of tweets of 2.7% is localized
in morphologic slum areas. However, we also observe strong variations of shares of tweets in
morphologic slums across cities from 8.74% in Caracas to only 0.07% in Lisbon (Table 1).
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Table 1. Detailed spatial classification results of settlement areas, spatial shares of morphologic slums,
number of recorded tweets and tweets in morphologic slums and related numbers of users.

City

Settlement Area Based on
Remote Sensing Data

Number of Recorded Tweets
and Shares of Tweets Number of Twitter Users

Total (ha) Morphologic
Slum (%) Total (n) Morphologic

Slum (%) Total (n) Morphologic
Slum (%)

Dhaka 20,817 6.79% 28,395 3.11% 17,773 3.1%
Mumbai 23,940 14.21% 133,161 3.5% 79,540 2.99%
Manila 47,552 6.09% 2,038,719 1.61% 1,265,235 1.36%
Caracas 16,333 18.9% 233,876 8.74% 108,346 7.81%

Rio 36,191 6.66% 999,525 4.55% 583,973 4.15%
Cairo 52,482 2.53% 122,192 0.43% 71,325 0.3%

Capetown 40,673 1.49% 87,779 0.64% 50,962 0.47%
Lisbon 36,196 0.11% 150,861 0.07% 98,136 0.04%

In a first general observation, we find that relative to the spatial shares comparatively fewer
tweets are sent from the locations of morphological slums (Table 1). This discrepancy becomes even
stronger when looking at the number of unique usernames compared to both—area and number of
tweets. Consequently, the latter measurements indicate that the ratio of tweets per user is higher in
morphological slums. Thus, we assume the twitter activities in formal settlements are based on a
broader user base.

We exemplify the land cover mapping results and the tweet density distribution for the city
of Manila. Figure 3a illustrates the administrative extent of the city, the morphologic slum and
formal settlement classification. From a general point of view, we observe morphologic slums located
dispersedly across the entire city. Figure 3b displays the tweet density at grid level, as it was classified
in Section 3.3.3. We observe a decrease in twitter activity in Manila from central areas along the western
waterfront to peripheral areas north and south.
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4.2. Variance Analysis of Tweet Densities Across Cities and Within Cities (between Morphological Slums and
Formal Settlements)

The cities under investigation feature very different social media activities (cf. Table 1). To account
for the city-characteristic local specifications, we use linear models to eliminate this heterogeneity
across the various sampled cities as a covariance a priori. With it, we find city specific usage quantities
for the two land cover classes morphologic slums and formal settlements (Figure 4a) as well as for the
entire cities in general (Figure 4b).

We find that the number of tweets per spatial unit is on average consistently lower in morphologic
slum areas than in formal settlements across all cities. In Manila, as one example, the number of
tweets per spatial grid unit is 3.72 times smaller as in formal settlements (Figure 4a). However, taking
a cross-city perspective, we find for example the tweet density in morphologic slums in Manila
significantly higher than in formal settlements of Cairo. In consequence, we find every city has unique
city-specific usage quantities of the twitter social media platform. Analyzing the tweet densities
across all study cities reveals Manila and Rio de Janeiro are the most active online cities of our sample.
The cross-city model predicts 45.1 (Manila) and 27.8 (Rio de Janeiro) geo-referenced tweets per hectare.
In contrast, the twitter activity in the other cities is significantly lower. With 2.5 or even less tweets per
hectare, the cities of Capetown, Cairo and Dhaka have the least overall tweet density (Figure 4b).

In the following, we proceed with the residual tweet density to reduce effects of the revealed
city-specific twitter activities of the sample cities. In general, we find that in all eight cities, the
median residual features lower tweet densities within morphological slums compared to formal
settlements. Beyond, the boxplot’s central quantiles are shifted towards a lower tweet density
(Figure 4c). Consequently, the Tukey’s HSD following the ANOVA identified a highly significant
difference in twitter activity between morphological slums and formal settlements (p-value < 0.0001).
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Figure 4. Empirical statistics on tweet densities, as well as the cross-city model residuals: (a) Linear
models illustrating tweet density depending on city and land cover class; (b) Cross-city model combing
both land cover classes used to extract overall tweet densities for each city; (c) Residual tweet density
after city-specific covariation was removed.
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4.3. Spatial Statistics of Digital Hot Spots and Cold Spots

We highlight spatial concentrations of twitter activity by using the classification of digital hot
spots, digital medians and the semantic digital desert class. In our analysis we relate the classification
scheme to our thematic urban land cover classes, morphologic slums and formal settlements, by
summarizing spatial statistics. In the following bar charts, the urban areas covered by the particular
digital activity class are cumulated (Figure 5a). The length of each bar is scaled relative to the total
area. Figure 5b summarizes these zonal statistics for each digital activity class over all cities.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  12 of 18 
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Figure 5. Zonal statistics of tweet density classes per city and land cover class: (a) Bar charts showing
the fraction of areas covered by the tweet density classes. As size of cities and especially morphological
slums vary (see Table 1), the areas are normalized to 100%, thus each bar cumulates to a total area
covered by the respective land cover class. The abbreviation F.S. represents formal settlements and M.S.
represents morphological slums; (b) Boxplots summarizing the zonal statistics by digital activity class.
The mean is additionally displayed with a cross.

In general, we find that only small shares of areas in every city can be considered digitally oriented
(Figure 5). Even for the most digitally oriented cities of Manila and Rio de Janeiro, we measure 53.2%
and 55.5% of the total areas being classified as digital deserts (cold spots and no tweets combined). For all
other cities, it is found that digital deserts cover at least 69.4% of the areas as in the case of Caracas.
In Mumbai (72.9%), Cairo (84.9%), Lisbon (86.5%), Dhaka (86.7) and Cape Town (87.9%) the shares of
digital deserts are even higher.

In detail, it is also worth noting that digital deserts are predominantly found in morphological
slums. As example, in Mumbai we find digital deserts in morphological slums (89.5%) 1.3 times more
likely than in formal settlements (70.2%). This trend is confirmed for the cities of Manila (1.2 times as
likely), Cairo (1.1), Dhaka (1.1) and Caracas (1.1). For Lisbon (1.0) and Cape Town (1.0) the relation is
basically even and for Rio de Janiero (0.9), however, this trend cannot be confirmed as morphological
slums feature a relatively lower share of digital deserts. Overall, these numbers thus hint at a general
trend that urban poor are digitally left behind.
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We find statistical differences between morphological slums and formal settlements by comparing
medians. In formal settlements on average 11.4% of the area are classified as digital hot spot, opposed
to 6.5% in morphological slums. For the other tweet density classes, this discrepancy is weaker—11.2%
vs. 7.4% concerning digital medians and is inverse for areas covered by digital deserts (88.8% in
morphological slums versus 77.4% in formal settlements).

4.4. Temporal Signatures of Twitter Activities

In general, we find residents in morphologic slum areas are less digitally oriented than in formal
settlements. In the following we investigate whether among the twitter users’ differences in temporal
behaviors exist. Therefore, we integrate the number of tweets per land cover class on an hourly basis.

For the temporal analysis, however, the quantity of tweets per time unit (one hour) reduces the
basic population of available twitter data. Thus, the least digitally oriented cities of Lisbon, Cairo,
Dhaka and Cape Town are disregarded for the temporal analysis, as for morphological slums not
enough data are existent within the one-year time period of monitoring.

For the four remaining cities with an adequate share of tweets per hour, we identify two phases in
temporal signatures: The first phase involves the morning hours before noon. Here the tweet frequency
increases sharply and reflects the start of online activity. The second phase involves the afternoon hours
with the daily maximum of twitter activity around 6 p.m. Both phases are predominantly separated by
a downturn around noon. It is important to stress though, that the amplitude of the downturn varies.
As example, this is especially evident in Caracas; however, the “lunchbreak” is also measured at a high
activity level, leading to a plateau shape in Rio de Janeiro and Manila. When comparing weekdays to
weekends, we observe in general similar temporal signatures; however, a temporal delay of twitter
activity on weekends is revealed (Figure 6).
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When we relate the measured temporal signatures of twitter activity to the economic
divide—morphological slums vs. formal settlements—we find that the general temporal signatures
are similar. In detail, we reveal that relative tweet frequencies in morphological slums are slightly
higher at night and in the late evening hours compared to formal settlements. Over the course of the
day, however, the number of tweets in morphologic slums is measured lower, which is particularly
significant during the first phase of the day.

From an intra-urban perspective—when comparing extracted benchmarks of the two land cover
classes defining the economic divide—we find no significant difference among user groups (Table 2).
Only slight differences with a temporarily longer average length of day in formal settlements (15.85 h)
compared to morphological slums (15.36 h) are measured (p-ValueLOD = 0.708). Beyond, the metrics of
the start and end of day do not differ significantly (p-ValueSOD = 0.477; p-ValueEOD = 0.212) between
the user groups defining the economic divide. In consequence, we find that among the twitter users in
morphological slums their temporal behavior is similar to the twitter users in formal settlements.

Table 2. Trajectory derivates and root-mean-squared error (RMSE) of the spline fitted temporal
signature. SOD = Start of day; EOD = End of day; LOD = Length of day.

Weekday Weekend

SOD EOD LOD RMSE SOD EOD LOD RMSE

Mumbai
Formal Settlement. 7.08 23.06 15.98 0.039 8.09 23.06 14.97 0.042

Morphological slum 7.08 23.06 15.98 0.073 7.08 23.06 15.98 0.080

Manila
Formal Settlement. 6.07 22.04 15.98 0.032 7.08 22.04 14.97 0.033

Morphological slum 16.04 23.06 7.01 0.044 7.08 23.06 15.98 0.056

Caracas
Formal Settlement. 5.06 22.04 16.99 0.052 6.07 22.04 15.98 0.048

Morphological slum 4.04 22.04 18.00 0.058 5.06 22.04 16.99 0.057

Rio
Formal Settlement. 6.07 23.06 16.99 0.035 8.09 23.06 14.97 0.028

Morphological slum 7.08 23.06 15.98 0.038 8.09 1.08 16.99 0.043

5. Discussion

The World Migration Report [5] stresses, that although we are living in times where more data are
available than ever before, we are facing a massive lack of data on urban poverty. This study explores,
whether the combination of two different data sets—from remote sensing and social networks—allows
for reducing the knowledge gaps on urban poverty.

Picking up the provocative question in the title of this study, we find that the economic divide
influences digital participation in public life. Fewer residents of morphological slums are found to
produce data on the twitter platform, so overall this social group appears to be less digitally oriented
(“digitally left behind”), compared to residents of formal settlements. At the same time, we find that
among the twitter user the temporal behavior is similar in morphologic slums and formal settlements.
These empirical findings only become possible with a comparatively large sample of cities at city-wide
scale, as the combination of these data sets allows extending the capabilities of individual disciplines
for research towards urban poverty. These main results need to be discussed from the perspective
of the limitations of our input data sets: The first limitation applies to working with remotely sensed
data. Our mapping approaches for morphological slums and formal settlements result in very precise,
high resolution data sets delineating the economic divide within cities. However, the economic divide
assessed by built-up structures is only a proxy for describing different social groups. As [15] reveal,
urban poor are also located in other structural types, such as in high rise facilities and vice versa.
In consequence, our proxy for mapping poor populations only comprises a subset of the targeted
social group. However, as socio-economic data are scarce, the remotely sensed approach is, as it has
been argued by [25] and [49], a legitimate and consistent one across cities. Additionally, a typical issue
concerning remote sensing is the difference between land use (related to activities on the ground) and
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land cover (related to surface structure). In this study, that difference introduces a bias concerning
the formal settlement class. The global urban footprint includes residential, as well as industrial
areas. When comparing the digital divide between morphological slums and formal settlements the
following issue is existent: the poor areas are mainly characterized by residential land use whereas
formal settlements are characterized by mixed land uses. This issue is illustrated in the detailed subset
of Figure 5.

The second limitation refers to twitter data: We utilized these data for describing the digital
divide. However, it is clear, that twitter is neither representing all online activity nor all internet users,
as not everybody with internet access also participates in social networks (or specifically our subset
of the Twitter platform). Further, studies of [30] as well as [41] have shown that especially Twitter is
populated by young, male, highly educated users. Being aware of these circumstances, we consider
our twitter data a proxy only. In contrast to actual internet service provider (ISP), the utilized network
data may even come with some advantages. Qualitative interviews with social network users in an
African slum revealed, that most users living in poor conditions are hesitant to close contracts bound
to fixed monthly fees: “[ . . . ] Like most users in developing countries, [they] use pre-paid airtime or credit to
access the mobile Internet” [32] (p. 2825). Further, acquiring and homogenizing all available ISP data
from the eight sample cities, was outside the scope of our study. Twitter, however, being used on
all inhabited continents of our planet [29], embodies one consistent data source. Hereby the freely
available 1% random sample is found to be representative for the firehose, especially when using
geotagged tweets [39]. However, the 1% random sample of Twitter data also poses methodological
challenges. Although overall 113 million Tweets were streamed, after the preprocessing, the numbers
of georeferenced tweets were reduced to a basic data population of 3.7 million. This is still a large
amount of data; however, in some less digitally oriented cities such as Lisbon, the basic population,
especially for the small spatial shares of morphological slums, resulted in a relatively small amount
of twitter data. By putting these numbers in spatial relation, this allows identifying cities where the
social network of Twitter is significantly less popular, but it generates statistical challenges due to
a too low basic population of data for our streaming period. This is especially true for the analysis
of temporal signatures, where the limited data volume relies on a statistical model. In addition, we
are aware that the smartphone’s location accuracy of geotagged tweets is around several meters [50].
Last but not least, we want to amend that our research design ignores the individual mobility of people
over the course of a day. As for example, inhabitants of morphological slums may work in formal
settlements. Thus, they influence tweet quantities related to other land cover classes. In consequence,
the combination of both data sets may inherit an unknown error of spatial misclassification to the
respective thematic classes representing the economic divide. Last but not least, the heterogeneity of
our city sample did not reveal any relationship between the size of a city and its twitter characteristics.

In spite of these underlying assumptions and challenges related to the input data sets, we find
this approach legitimate in the absence of better and more up-to-date data sets. Although these proxies
come with individual limitations, they allow comparing multiple sites in a globally consistent way.
And, combining both data sets allows reducing knowledge gaps on urban poor: We find that—as
we ask provocatively in the title—that the urban poor are digitally left behind to a certain degree.
We reveal that digital hot spots are found fewer in morphological slums and digital deserts dominate
here. However, the current study still relies only on eight cities and a one-year period of twitter data.
It therefore is important to apply this methodology with a larger sample of data.

In this study we relate the twitter activity relative to the area. [41], however, suggest that the
identification of digital cold spots is more appropriate when relating social media activity to population
density. This is especially relevant, as the mapped land cover classes feature very different population
densities. Unfortunately, population density at the spatial level of morphological slums is not available
or not even existing for most cities in the Global South. Other studies have, however, consistently
shown, that population densities in morphological slums are mostly significantly higher than in other
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parts of the city e.g., [7,51,52]. In consequence, it is very likely that the trend of morphological slums
being less digitally oriented is even stronger than measured here.

Last but not least, we transferred time series analyses on tweet frequency trajectories. We did
so, as our data feature similar characteristics as phonological data with respect to its seasonality.
Although this approach reached its capabilities for weekdays in the morphological slums of Manila,
where the first increasing tweet activity phase of the day is significantly less intense than the second
one. Thus, we measure the start of day here for 16:04. With this exception, the derived metrics allow
comparing the tweet frequency charts and temporal patterns in an objective manner. Consequently,
we propose to add these methods to the domain of social analyses.

6. Conclusions

This study combines two different data sets—remote sensing and twitter—and reveals that the
economic divide within cities reflects different digital participation in public life. The analysis supports
the assumption that the city is not only spatially divided by the appearances of morphologic building
characteristics but also by an invisible digital divide (“the poor are digitally left behind”).

First, it is found that participation in modern communication techniques such as social networks
is comparatively scarce for people living under precarious conditions compared to the city average.
The number of tweets in morphological slums is generated by a smaller number of users. However,
it needs to be noted that exceptions to this general trend have been identified. Second, most of the
morphologic slum areas are classified as digital deserts; and it is found vice versa, digital hot spots are
predominantly classified in formal settlements. Third, it is revealed that among the twitter users very
similar temporal behavior patterns over the course of a day exist at both sides of the economic divide.

We conclude that studies are in demand that allow confirming or declining these results with
better data then the proxies used in this study. Beyond, extending the analyses empirically by the
number of sample cities and the twitter data volume is in demand. And, last but not least, we suggest
that analyzing context information of the tweets will provide further insights into social group’s
behavior and thinking.
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