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Abstract: Geographic data is growing in size and variety, which calls for big data management
tools and analysis methods. To efficiently integrate information from high dimensional data, this
paper explicitly proposes array-based modeling. A large portion of Earth observations and model
simulations are naturally arrays once digitalized. This paper discusses the challenges in using
arrays such as the discretization of continuous spatiotemporal phenomena, irregular dimensions,
regridding, high-dimensional data analysis, and large-scale data management. We define categories
and applications of typical array operations, compare their implementation in open-source software,
and demonstrate dimension reduction and array regridding in study cases using Landsat and MODIS
imagery. It turns out that arrays are a convenient data structure for representing and analysing many
spatiotemporal phenomena. Although the array model simplifies data organization, array properties
like the meaning of grid cell values are rarely being made explicit in practice.
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1. Introduction

An array is a storage form for a sequence of objects of similar type. In principle, data tables,
collections of records of identical type, are one-dimensional arrays when the records form
a sequence. Time series data, such as daily mean temperatures for a measurement site, form
a natural one-dimensional array with the time stamp unambiguously ordering the observations,
but more typically arrays will have rows and columns, creating two-dimensional arrays, or be
higher dimensional.

For geoscientific data, arrays typically arise when we try to represent a phenomenon that varies
continuously over space and time, or a field variable [1,2], by regularly discretising space and time.
Data on such phenomena can be the result of observation or computation. Examples of observed arrays
are remote sensing imagery or digital photography: image pixels represent reflectance of a certain
colour averaged over a spatial region and a short time period, the exposure time. The observed
area depends on the image sensor density, the focal distance of the lens, and the distance to the
observed object. As an example of a computed array, weather or climate models typically solve partial
differential equations by dividing the Earth into areas, which could be arrays with regular longitude
and latitude (e.g., a 0.1◦ × 0.1◦ grid). Two-dimensional arrays can partition a two-dimensional surface
in square cells with constant size, but representing a spherical (or ellipsoidal) surface, such as the
Earth’s surface, by a two-dimensional array leads to grid cells that are no longer squares or have
constant area [3]. Elevation, or depth, is often discretised in irregular steps.
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In addition to challenges that arise from irregularities in grid cell sizes, or irregularly chosen
grid distances [4], typical questions to geoscientific array data relate to what the array grid cell value
exactly refers to: does it represent the point value at the location of the grid cell centre, does it represent
a constant value throughout the whole grid cell (i.e., at all point locations within the grid), does it
represent an aggregation of the variable over the grid region, or something else [2]? In spatial statistics,
the physical area (or volume, or duration) an observation or predictions is associated with is called
support of the data [5]. The different possibilities may not matter much when combining arrays with
identical properties, but do play a role when comparing them to other arrays, converting (regridding)
one to the cells of another, or combining them with other, non-array data such as features (points, lines,
polygons) in a GIS [6].

Natural phenomena are commonly high dimensional and are represented into arrays when
digitalized. The high dimensionality of data makes them challenging to be analyzed and processed.
Dimension reduction methods are array methods aiming at finding a suitable representation of high
dimensional data to extract useful information. A classical orthogonal covariance/correlation-based
transformation method is PCA (Principle Component Analysis), which has various extensions.
For example, ICA (Independent Component Analysis, [7]) is a higher order entrophy-based
transformation that further minimizes variable independence. MNF (Maximum Noise Fraction, [8])
is specifically designed to remove noise from spatiotemporal data and apply to space-time
ordered matrices.

To efficiently access and analyze array data, array storage have been extensively discussed [9],
and a variety of array algebra and software systems have been developed [10–12]. A comprehensive
survey of array query languages, chunking strategies, and array database systems untill 2013 could be
found in [13]. Ref. [14] attempted to create a general benchmark (known as SS-DB) to quantitatively
evaluate performances of array database systems, and [15] further formalised the representation of
SS-DB. Our study distinguishes from surveying array data processing techniques [13] and establishing
benchmarks [15] and focuses on challenges from geoscientific arrays. We review array abstraction of
space-time phenomena, geographic data analysis methods on arrays and several array data analytic
and management systems in terms of their features in supporting geographical analysis and the array
operations that are implemented.

A variety of mathematical methods, algebra and software of arrays have been developed; however,
the progresses and challenges of using arrays to model geosicentific data have not been thoroughly
reviewed and discussed before. Our objective is to review the generic information storage model of
multidimensional arrays in the context of representing and analyzing geoscientific data. In addition,
we provide two small study cases applying regridding and dimension reduction, to make their link
with the array model more concrete, and to illustrate how array methods are implemented in array
model and to point out the different outcomes resulting from different software implementations for
identical methods.

The manuscript is structured as follows: We give an overview of arrays (Section 2) and
manipulation operations (Section 3). We compare different open source software implementations
suitable more and less dedicated to geoscientific data, and show that for similar operations the syntax
and function names used varies strongly (Section 4). We then focus on commonly recurring challenges:
regridding and dimension reduction (Section 5). We provide two small study cases applying regridding
and dimension reduction. The regridding study case shows how different array regridding methods
and implementations in different software affect results. The dimension reduction study case shows
how array operations and software are used to provide a clean and scalable data analysis process
(Section 6). In discussion (Section 7), we further discuss array abstraction of continuous spatiotemporal
phenomenon, the current challenges of sparse array, array software and regridding in handling
geoscientific data, multidimensional statistical methods such as joint spatiotemporal analysis and
dimension reduction on arrays, and finish with a conclusion.
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2. What Are Multidimensional Arrays?

Arrays are fundamental data structures in computer science that store collections of equally typed
variables. Array elements can be accessed by indexes that are directly translated to memory addresses.
In contrast to linked lists, arrays support random access in constant time. Array indexes are usually
integers though many programming languages implement associative arrays with arbitrary index data
type. Arrays can be indexed by multiple dimensions that map to a one-dimensional array in order to
fit linear computer memory.

Besides their use in programming languages, arrays can be extended to a flexible data
structure for data-oriented sciences [16]. A multidimensional array then can be seen as a function
that maps the Cartesian product of multiple discrete, totally ordered, and finite dimensions to
a multidimensional attribute space. Let D denote an n-dimensional index or dimension space and
V refer to an m-dimensional attribute or value space. An array A is then defined as A : D → V,
where D ⊂ D1 × · · · × Dn, V ⊂ V1 × · · · ×Vm, and individual dimensions Di are finite and totally
ordered. Implementations of the array model typically represent dimension values as integers. Due to
the finiteness property, however, there always exists an invertible dimension transformation function
that relates the array index integer number to the original dimension value.

Individual array dimensions may or may not have a natural physical interpretation such as space,
time, or wavelength. Examples for rather artificial dimensions are station identifiers or record numbers
that can be ordered as numbers or names with regard to their letters but do not have a natural order in
the physical world.

For the remainder of this paper, we make the following definitions. A cell or pixel x ∈ D is
a coordinate/point in the index/dimension space whereas a cell value denotes attribute values at that
particular cell A(x) . We denote the number of elements of the i-th dimension as |Di| and the total
number of cells as |D|. The array schema defines dimensions and attribute types. If a dimension has
a natural physical interpretation, cells have a well-defined size with regard to the dimension.

2.1. Types of Arrays

The above definition of multidimensional arrays is most generic. In the following, we distinguish
between sparse vs. dense arrays and regular vs. irregular dimensions. An array is said to be sparse if the
index space is a strict subset of the Cartesian product of individual dimensions. In practice, sparsity
assumes that |D| � |D1 × · · · × Dn| whereas arrays with only a few empty cells may be considered
as dense and letting empty cells point to a dedicated undefined value that is added to the attribute
space. Implementations for sparse arrays may reduce memory consumption and computation times in
array-based analysis (see Section 4 or common sparse linear algebra routines).

A dimension Di is denoted regular if all pairs of successive elements (cells) have the same distance
in that dimension. Let di,j the j-th element of the (ordered) dimension Di. Then a dimension is regular if

∀di,j, di,j+1 ∈ Di :
∣∣di,j+1 − di,j

∣∣ = ∆i

where ∆i is then referred to as the cell size or sampling interval of dimension i. This distinction only
applies to dimensions with meaningful distance measures. The advantage of regular dimensions is
that the transformation of true dimension values to integer indexes can be computed directly from
cell size and an offset value by an affine transformation, which does not require searching in the
dimension space.

Other important types of arrays are vectors and matrices. Both have a single numeric attribute
and artificial regular dimensions. Since most analyses of multidimensional data at some point involve
linear algebra operations on matrices, dimensionality must be converted to rows and columns by the
modeller. In Section 3.4, we describe specific array operations for that purpose.
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2.2. Array Abstraction of Space and Time

Most array representations of Earth data use two-dimensional arrays, in which case they are also
known as raster or gridded data in GIS (geographic information systems). Raster data map two array
dimensions either to (φ, λ) with a known datum, or to (x, y) with a known projected coordinate
reference system. Array dimensions may be aligned with (φ, λ) or with (x, y), in which case e.g.,
the mapping of row index of an array to the latitude or northing does not depend on the column
(longitude, easting).

A regular grid map or spatiotemporal cube is described by resolution and extent. The resolution of
a grid map is the density of grid cells. For the spatial dimensions, the grid cell size, defined in units of
the dimensions, is a more common measure to communicate when expressing resolution information
of geographic grids quantitatively. In contrast, for computer media (print or screen) the number of
dots per inch (dpi) and pixels per inch (ppi) are common spatial resolution measures. The temporal
resolution can be described by the sampling interval or its inverse, the sampling frequency. The extent
refers to the area covered and the time period covered by a time series. e.g., a one-degree grid with
180 rows and 360 columns have the global extent.

Time, in its simplest form, is considered to be evolving linearly and mapped on a single array
dimension. Various Time standards have been established to facilitate measuring and describing
time. For example, to avoid gaps and overlapping episodes, UTC (coordinate universal time) or Julian
day number may be preferred as time reference over local time zones subject to daylight saving time
changes. To study cyclic patterns, time is often mapped on more than one dimension (e.g., time of day,
day of week, week of year, year). When studying human behaviour patterns (e.g., traffic density) or
physical processes influenced by them (e.g., particular matter concentration in air), having local time
may be the most convenient, and calls for dealing with daylight saving time shifts in some other way
when mapping (sub)hourly time values to an array dimension.

Furthermore, spatial and temporal array dimensions may often be irregular. For example,
the spatial resolution of meteorological simulations or soil datasets varies strongly in the vertical
dimension and time defined as months or days is irregular by convention. Sometimes, dimensions can
be regularised by increasing sparsity of an array. As an example, representing a time series of Landsat
imagery from two tiles A and B in neighbouring swaths as a single array will lead to irregular temporal
observations: though the satellite has a regular revisit time of 16 days, observations from different
swaths are taken at different days, e.g., at tA = (Jan 1, Jan 16, Feb 2) and tB = (Jan 4, Jan 20, Feb 5)
respectively. The merged time series is clearly irregular but defining the temporal resolution as being
one day regularises the array at the potential costs of increased sparsity.

2.3. What Array Cell Values Refer to

The array model with spatial and temporal dimension resembles the definition of spatiotemporal
fields, defined as S× T → Q where S and T are continuously indexed space and time and Q denotes
a quality domain such as measurements, predictions, or simulations [1,2]. Discrete arrays are a natural
approximation of field variables where the space is regularly sampled and therefore fit spatiotemporal
data very naturally.

Depending on the studied phenomena and on the generation of the data, array cells may have
different interpretations. As illustrated in Figure 1, they may represent point values, areal values that
are constant within a cell (e.g., land use), or aggregations such as counts or averages (e.g., average
intensity of reflected light). The same challenge applies to the time dimension. A time interval can
reflect a temporal snapshot, an aggregation over a time period, or a constant value over a time period.
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Figure 1. Different meaning of cells in spacetime arrays.

Taking the different levels of imagery products from optical remote sensing as an example,
the energy of the Earth’s surface is recorded by forwarding the field of view of a imaging mechanism
along the satellite’s orbit [17]. The swath recorded is divided into pixels. At all the levels the grid
cell refers to the radiation that is gathered in each wavelength aggregated over each pixel. Each time
interval of the level 0 data represents a time snapshot. At higher product levels, a regular timestamp is
assigned to each imagery to correct the swath overlapping and to composite the best quality imagery.
The time interval of high level products thus represents aggregation (by selection or averaging) over
a time period.

Grid cells that represent a constant areal value are often seen when the variable is categorical,
such as gridded land-cover land-use classification maps. Similarly, values of survey data may remain
stable over a period of time.

3. Array Operations

Since arrays are functions, operations to modify array data can be formulated in the context
of array algebras. Schmidt [18] presents a simple algebra and defines a few basic operations
following relational algebra [19]. Array algebras are primarily used in designing database query
languages [16,20,21]. These languages are then used in practice by data analysts. We reviewed algebra
definitions [16,20–22] and software systems (Section 4) and present a categorisation of array operations
based on whether they change dimensionality and whether the amount of data reduces, increases,
or stays the same. We thereby concentrate on unary operations, i.e., operations that take a single
input and produce a single output array. These operations are often needed in preprocessing data for
analyzes. For instance, two-dimensional matrices must be constructed from higher dimensional data
in many cases or the spatial or temporal resolution of the data must be homogenised to be compatible
with other data. We categorised array operations into five types of operations (Figure 2), namely select,
scale, reduce, rearrange and compute operations. Figure 2 shows the alterations of array shapes before
and after applying these operations.
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Figure 2. Array operations, from top to bottom: select, scale, reduce, rearrange and compute operations.
“A” indicates original arrays, “B” indicates result arrays after certain array operations are applied.
The application of “reduce” functions changes array cardinality, the application of “rearrange" functions
alters array dimensions.

3.1. Select Operations

Select operations filter array cells by predicates. They involve both select and project operations
from relational algebra [19] and work on attribute as well as on dimensions values. Typical applications
include range queries on space and/or time, filtering cells whose attribute values meet certain
conditions, and slicing arrays e.g., to extract a temporal snapshot of remote sensing image time
series. Select operations may or may not decrease the number of dimensions and attributes of an array.
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3.2. Scale Operations

Scale operations do not reduce the number of dimensions but the number of cells along one or
more dimensions. Typical examples include spatial or temporal upscaling, such as computing daily
mean values of hourly time series or downscaling climate model output. Any operation that involves
resampling reduces the amount of information and thus can be categorised as a scale operation.
Reprojecting spatial data is one example that introduces errors by resampling. Scale operations are
generally meaningful only along dimensions with physical interpretation. In contrast, it is unclear
how upscaling observations over the dimensions “sensor index” or “record id” can be reasonably
interpreted. Scale operations are an important building block to homogenise datasets with different
spatial and/or temporal resolution. Specific scale operations must address the support of array cells.
Depending on whether cells represent point observations, aggregations, or constant values, applicable
interpolation methods vary (e.g., point vs. block Kriging). Besides downscaling and upscaling, scale
operations may introduce empty cells and thus might increase sparsity of arrays.

3.3. Reduce Operations

By applying an aggregation function along one or more dimensions, reduce operations decrease
the number of dimensions and the total number of cells |D|. They can be seen as an ultimate scaling
where dimensions are completely dropped. The application of reduce operations yields meaningful
results even for artificial dimensions. Specific aggregation functions could be simple statistics, such
as the mean or the standard deviation as well as frequency distributions or even fits of theoretical
models. Dimension reduction is an important task to extract relevant information and to make the
data comprehensible and presentable.

3.4. Rearrange Operations

Rearrange operations change the dimensionality of an array without removing or aggregating any
cells. They do not reduce the complexity inside datasets but offer an important degree of flexibility how
to represent the data. The simplest rearrangement operation dimension flattening converts dimensions
to attributes and adds a single artificial dimension like “record no.”, or “observation id”. This is
equivalent to building a table or relation from multidimensional data. Flattening can be applied to
subsets of array dimensions as well which is often applied to represent space in a single dimension
(see Section 6.2 for an example). Similarly, n-dimensional arrays can be trivially embedded as slices
in n + 1-dimensional arrays and attribute flattening reduces the number of attributes to one but adds
an artificial dimension “attribute no.” Another important operation is reordering or permuting array
dimensions or attributes.

A more general rearrange operation is the conversion from attributes to dimensions or vice versa.
The former is always applicable but creates very sparse arrays in the general case while a subset
S ⊂ {V1, V2, ..., Vm} of attributes can be converted to dimensions only if all attributes of V functionally
depend on S. In analogy with the relational model, S must be a superkey of V whereas the conversion
leads to cell conflicts and the rearrangement may involve a reduction otherwise.

The following array definitions illustrate typical examples how spatiotemporal data might be
represented as arrays with different dimensionality. A, B, and C represent in situ sensor observation
measurements, remote sensing imagery, and trajectories respectively. Subscript indexes present
different possible schemas that can be flexibly rearranged by the mentioned operations.
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A1 : (record no.)→ (lat, lon, year, day of year, temperature, precipitation)

A2 : (lat, lon, year, day of year)→ (temperature, precipitation)

A3 : (record no., attribute no.)→ (value)

B1 : (easting, northing, timestamp)→ (red, green, blue)

B2 : (cell id)→ (easting, northing, timestamp, red, green, blue)

B3 : (easting, northing, timestamp, wavelength)→ (reflectance)

C1 : (record no.)→ (lat, lon, elevation, timestamp, speed, accuracy)

C2 : (timestamp)→ (lat, lon, elevation, velocity, accuracy)

3.5. Compute Operations

Simple compute operations derive new attributes based on existing attributes and dimensions.
They do not change dimensionality but computations may include attribute values of other cells
(e.g., neighbours in moving window operations).

4. Implementations

The implementation of array can be found in different data acquisition and analysing stages:
array-based file formats and libraries (e.g., netcdf), programming languages for data analysis (e.g., R),
data warehouses (e.g., OLAP, SOLAP), and databases for storage, access, and analysis (e.g., SciDB).

Programming languages, such as FORTRAN, C/C++, IDL, Matlab, Python, and R, support array
data structure. We list array operations of three high-level data analytics and graphic systems, R,
Matlab/Octave, Python, and array database management systems, Rasdaman and SciDB in Table 1.
The table lists selected implemented array operations according to the categories described in Section 3.
The amount of available compute operations strongly differs between data management systems and
high-level analysis systems. The most generic multidimensional array model is implemented by SciDB
and Rasdaman. They both support arbitrary amounts of dimensions and attributes. Refs. [23,24]
extended SciDB and combine it with gdal to facilitate accessing and processing spatiotemporal data.
For a similar goal, an extension of Rasdaman, Petascope [25], has been developed to handle spatial
and temporal reference of arrays. ArrayUDF [10] is an UDF (User Defined Function) mechanism
that optimizes operating UDFs on neighbouring cells of an array. With ArrayUDF, the shape of
neighbourhoods to be processed can be flexibly defined instead of specifying a rectangular shape as
is required for SciDB and Rasdaman, and each of the neighbouring cells are processed individually,
indicating different algorithms can be applied to different neighbouring cells [10]. The Hadoop [26]
distributed processing framework has been extended or optimized for array data querying and
processing. For example, SciHadoop [27] is developed to avoid data conversion between array-based
and Hadoop data models (HDFS) by allowing logical queries over array-based data models. Ref. [28]
proposed a spatiotemporal indexing structure for grid partitian to link the logical (e.g., space, time) to
physical location information(e.g., node, file). Base R, GNU Octave, and Python consider only a single
attribute, multiple attributes can be represented as an additional dimension. In R, packages have
been developed to facilitate manipulation of different types of spatiotemporal arrays. For example,
the spacetime package [29] allows the spatiotemporal data to be indexed by space and time. Similarly,
the raster package [30] is used to directly manipulate geographic data with the raster format.
The packages are limited to 3 to 5 dimensions respectively but in terms of geographical analysis,
they clearly proved the richest set of functionality.
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Table 1. Comparison of natively supported array operations in open-source data analysis software.
UDF indicates user defined functions. Support of specific features is encoded as single letters where:
0 and I indicate support of sparse storage and irregular array dimensions respectively, G denotes
whether geographic dimensions (space, time) are handled explicitly, and S represents whether the
support of cells is considered appropriately. Dn and Vm are the maximum number of dimensions and
attributes with n and m the limits, absence indicates no limits. LA indicates that linear algebra routines
for vectors and matrices are available.

Features Select
Operations

Scale
Operations

Reduce
Operations

Rearrange
Operations

Compute
Operations

R ( base) V1, LA []
which

apply apply aperm
dim <-
t
as

apply
+,−,*,/
!,&&,||
...

R (raster) G, D3,
V1

[]
crop
which

aggregate
disaggregate
calc
resample

calc as focal
calc
+,-,*,/
!,&&,||
...

R
(spacetime)

S,0,G,
I, D4

[] aggregate apply as +,-,*,/
!,&&,||
...

GNU Octave V1, LA ,
[]

accumarray
sum
prod
sumsq

reshape
permute
ipermute
vertcat
horzcat
flipud
flip rot90
rotdim vec

arrayfun
cumsum
cumprod
+,-,*,/
not,and,or
...

Python
(NumPy)

V1, LA []
take
clip

apply_
over_axes

apply_
along_axes

min max
trace prod
sum mean
var std
apply_
over_axes
apply_
along_axes

flatten
ravel
swapaxes
transpose
reshape
resize
squeeze

cumsum
cumprod
+,-,*,/
not,and,or
...

Rasdaman
CE (RASQL)

G select
where
[]
.

scale condense +,-,*,/
not,and,or
...

SciDB CE
(AFL)

0,G,LA subarray
between
project
filter
slice

regrid
xgrid

aggregate redimension
reshape
transpose

window
cumulate
+,-,*,/
apply
not,and,or
...

ArrayUDF G UDF UDF UDF UDF UDF
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5. Methods on Arrays

5.1. Regridding and Change of Support

A common operation on array data is regridding: deriving values for grid cells that are not aligned
perfectly with the original grid cells. Regridding is particularly needed when data from different
sources are integrated [31–35] or models acting at different grid configurations are combined, as in the
CSDMS [4] or OpenMI [36] frameworks.

A utility that carries out regridding is gdalwarp, which is available as a binary executable and
an API call in the GDAL library. This utility has 12 methods for obtaining new grid cell values. Several
of these interpolate (nearest neighbour, bilinear, cubic, cubic spline, Lanczos windowed sinc [37]),
others aggregate points covered by the new cell (Figure 3, lower right) using as aggregation function
the average, mode, max, min, median, first quartile, or third quartile. None of the methods provides
the aggregation of intersecting grid cell sections, such as depicted in the lower-left of Figure 3.

Figure 3. Regridding: original values are available for the grid indicated by grey lines, new values are
required for the black lined grid (e.g., the red cell), or vice versa (e.g., the green cell). New cell values
can be calculated from the intersecting grid areas (lower left), intersecting grid cell centre points (lower
right), or using interpolation (e.g., from black cells or cell center points to the green cell).

Which regridding method is most appropriate primarily depends on the measurement scale [38]
of the regridded variable: if it is on a nominal scale (such as land use type), only nearest neighbour
and mode are meaningful. If the origin grid cells are considered as points, and are much larger than
the destination grid cells (Figure 3: regrid from the black to the grey cells) then interpolation methods
make sense. If the origin grid cells are much smaller and aggregate values over the target cells (black
cell in Figure 3) are needed, then aggregation methods make more sense. In any case, geostatistical
methods for regridding are preferred because they adopt and parametrise an explicit model for the
spatial variation of the variable being regridded [39,40]; they also allow for addressing grid points
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or cells outside the target grid cell for optimal spatial prediction, and cope with change of support,
the dependence of variability of cell aggregated values on the aggregation area [41].

Regridding in the time dimension involves the same procedures as in space, and needs aggregation
or disaggregation, possibly using smoothing methods. The temporal information may be associated
with time instances, constants over time intervals, or aggregates over time intervals. For both spatial
and temporal regridding, information gets lost: from the regridded information alone, typically the
original information cannot be recovered.

5.2. Dimension Reduction

High dimensional data often contains redundant information, which mixes with the signals and
is burdensome to computation and data storage. Such redundancy can be reduced with aggregation
and feature extraction methods to turn the complex process to lower orders, so that useful information
can be extracted or displayed. Aggregation and feature extraction are typical array functions that
respectively reduce the dimensionality and cardinality of an array. Feature extraction methods linearly
transform dependent variables to independent variables.

We briefly review a group of spatiotemporal feature extraction methods that are based on PCA
(Principal Component Analysis). PCA is a classic orthogonal feature extraction method that is
computed with singular vector decomposition (SVD) of the data matrix or an eigen decomposition of
the covariance matrix. The ordering of columns and rows of a matrix for PCA is not pertinent; however,
depending on the applications, the matrix can be ordered for a meaningful analysis. In remote sensing
image processing, classification, atmospheric and meteorologic studies, PCA has been extended
to concern space and time. For instances, the spatial dimension of a matrix is ordered in the
MNF (Maximum Noise Fraction, [8]) to utilise the spatial correlation for noise estimation before
applying PCA on a noise-to-signal ratio to isolate noise. EOFs (Empirical Orthogonal Functions),
the discrete form of PCA, has been applied to ordered spatial or temporal dimensions to analyze the
pattern or fluctuation in space or time. The temporal dimension is ordered in the Complex Hilbert
EOF analysis to study the evolving of the spatial pattern along time, i.e., wave propagation. Similar to
the complex Hilbert EOF, the POP (Principal Oscillation Pattern) analysis models the cyclical patterns
of spatial time series by applying singular value decomposition to the estimated parameters of an
auto-regressive model. Moreover, multiple response variables can be analyzed with multivariate
EOF and CCA (Canonical Correlation Analysis). For example, the MAD (Multivariate Alteration
Detection, [42]) uses CCA to minimise correlation between two paired images to model change.
The time dimension is ordered when the time lagged versions of multivariate EOF and CCA are used
to study the EOF or canonical correlation patterns between fields at two time stamps. In Section 6.2,
we describe a study case that applies PCA to extract information from a multi-spectral spatiotemporal
data. The array operations that were used in the study case and the corresponding functions in R and
SciDB are shown.

6. Study Cases of Regridding and Dimension Reduction

6.1. Study Case: Regridding

This study case is developed to show the role of array regridding in integrating satellite images
from different resolution and projections, and compare the results of same regridding functions
implemented in different software. As is reviewed in Section 5.1, various regridding methods are
implemented and in different software. Does the same regridding method implemented in different
software obtain the same results, and do different regridding methods make a significant difference?

Satellites are designed with different spatial and temporal resolutions depending on their missions.
A high spatial or temporal resolution is achieved with a compensation of the other. For example,
satellites operating at low altitudes are capable of capturing details on Earth surface, but low revisiting
frequency and global coverage as the swath widths of these sensors are narrow. Consequently,
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integrating satellite imagery products has become important to obtain more spatiotemporal information.
Regridding is required to bring satellite imagery grids of different sources to the same grid.

We compare different software implementations of regridding methods and different regridding
methods with a study case that reproject and align the grid of Landsat 8 (16-day, 30 m resolution,
UTM projection) to the grid of MODIS 09Q1 product (8-day, 250 m resolution, Sinusoidal projection)
of same location and time. The red bands of both products are used and are cropped to San-Diego city.

We compared the results of converting the landsat UTM grid to MODIS sinusoidal grid using the
gdalwarp and projectRaster of the R raster package. For both methods, the bilinear interpretation is
used for the resampling process. After reprojecting, the resample function of the R raster package
is used to aggregate the Landsat 8 grid cells and register them to the MODIS grid. We regrid the
near-infrared band reflectance of the Landsat 8 grid and filtered out pixels that are beyond the valid
reflectance range (valid range: 0–1).

The result is shown in Figure 4, which indicates similar results obtained for the majority pixels
using projectRaster and gdalwarp. However, the disparity between the two implementations are not
trivial and it is higher for pixels with high reflectance. Same as gdalwap, the projectRaster converts
between coordinates using the PROJ.4 library [43]. Therefore, the different reprojection results showed
in Figure 4 may be due to the differences in implementations of the bilinear resampling in gdalwarp and
projectRaster, the later uses an doBilinear function implemented in the raster package for the bilinear
interpolation. The bilinear resampling in gdal is implemented in an GWKBilinearResample function.
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Figure 4. Comparing using the bilinear resampling of projectRaster and gdalwarp to reproject and
resample the grid of Landsat 8 image to the grid of the MODIS 09Q1 image.
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The projectRaster includes two methods: bilinear and nearest neighbour. We compared these
two methods to project and align the landsat 8 near infrared band to the MODIS grid. Figure 5 indicates
the differences obtained using these two methods. The result of using bilinear and nearest neighbour
methods are more consist comparing to the regridding results using two different software as is shown
in Figure 4.
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Figure 5. A comparison between using the bilinear and the nearest neighbour methods to align the
Landsat TM band to the MODIS grid.

We compared the CPU times for code execution of the gdalwarp bilinear resampling,
the projectRaster bilinear resampling, and the projectRaster nearest neighbour resampling. The CPU
times for execution is measured using the “user time” returned from the R function proc.time.
We repetitively ran the resampling process for each method 30 times and the shortest times
for projectRaster bilinear, projectRaster nearest neighbour, and gdalwarp bilinear resampling are
respectively: 0.19 s, 0.25 s, and 0.05 s, indicating the gdalwarp bilinear is computed faster than the
projectRaster bilinear, and the projectRaster nearest neighbour takes longer to compute than the
projectRaster bilinear method.
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6.2. Study Case: Dimension Reduction

To show how PCA introduced in Section 5.2 can be applied to extract information from different
array rearrangement of multidimensional data, and to show how array data structure, operations
and software contribute to a clean and scalable multidimensional data analyzing process, we develop
a study case that explores spatiotemporal change information from Earth observations. The study
case applies PCA to Landsat (TM and ETM+) image time series. The study area is a subset (23.3 ha)
of a pine plantation field located in Lautoka, Fiji (17.34◦ S, 177.27◦ E, 9570 ha), where detailed forest
inventory data is available [32,44]. The plantations in the study area were logged on 27 May 2010
and were immediately replanted. The Landsat TM and ETM+ scenes (Path 75, Row 72) from 2000
to 2010 (5667× 6100× 150× 6, longitude× latitude× time× band) were downloaded and cropped.
Pixels containing clouds and cloud shadows were masked using an Fmask (Function of mask) [45]
and were considered as missing values. The cropped and preprocessed images that contain more than
50% of missing values are removed. The Dimensionality of the final 4-d array is 37× 7× 43× 6.

As PCA works on 2-d matrices, different composites of dimensions are rearranged from the 4-d
array. The matrices are formed as:

• bands are variables (columns), temporal-spatial points are observations (Mb11137×6)
• times are variables, spectral-spatial points are observations (Mt1554×43)
• spectral time series are variables, spatial points are observations (Mbt259×258)

For each matrix, the variables are scaled (column mean subtracted and divided by column
standard deviation).

Principal Component (PC) loadings are the coefficients of original variables forming the PCs
variables, and can be seen as the correlations between the original variables and the PC components.
Therefore, the patterns of PC loadings of each PC component may reveal i.e., change information from
matrices with spatial, spectral and temporal dimensions.

The loadings of the first PC (PC1) and the second PC (PC2) of Mb (Figure 6a) show a distinction,
i.e., low correlation, between band 4 (near infrared) and the other bands (bands 1–3, 5, and 7),
which may be explained by the different vegetation reflectance exhibited by band 4 and the other
bands. The PC loadings of the Mt are shown in Figure 6b. PC1 may indicate the brightness of the area
since the correlation between all the spectral partial bands at each time are similarly strong. PC2 shows
a contrast between the times before and after 27 May 2010, which is explained by the harvesting event.
The PC loadings of Mbt (Figure 6c) reveal spectral temporal information. Between each two grey,
dashed lines are the PC loadings of the time series of a spectral band. The brown line indicates the
time when the deforestation occurred. The PC1 loadings may indicate general brightness, the spatial
points of time stamps show positive correlations between most of the spatial points of time stamps
of each band. The spatial points of a few time stamps that are negatively correlated with other time
stamps are at the time when the deforestation event occurred. PC2 shows that the reflectance at all the
time stamps of band 4 are positively correlated (the band 4 of PC2 shows the same pattern as other
bands of PC1). For other bands, the PC loadings show the same direction after the deforestation event,
the directions are different from most of the PC loadings before the deforestation event.

The procedure of the study case, the corresponding array operations, and the functions that
are used in R and SciDB in each step are shown in Figure 7. The implementation in SciDB requires
additional join and project steps due to the multi-attribute storage feature of SciDB. The scripts are
available at https://github.com/ifgi/rearrange.

https://github.com/ifgi/rearrange
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the harvesting event. The points between two grey vertical lines are spatial points of a spectral band.
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Figure 7. The procedure of the study case and the corresponding array operations, R and SciDB functions.

7. Discussion

This paper emphasizes arrays for representing spatiotemporal phenomena to analyze geoscientific
data. Arrays discretise continuous spatiotemporal phenomena, where grid cell values reflect point
values, grid cell aggregates, or constant values over grid cells. Constant valued cells are relevant for
phenomena that have a categorical measurement scale. As was mentioned in Section 2.3, the arrays of
raw optical satellite images aggregate continuous spatial phenomena and sample the time: grid cells
reflect an aggregation over a region for a given time stamp. Arrays may aggregate continuous temporal
phenomena and sample the locations, such as arrays of monthly average rainfall amounts gathered
from rainfall gauge networks. In this case, the array cells convey aggregation over a time interval
at a spatial location. Arrays may also sample locations and times, with most in situ sensors being
examples. The array cells here indicate a point in space and time: although physical constraints
imply that every measurement must have a size and duration, in the context of the extent of the
measurements we conceive them as point measurements.

We categorised array operations and list their implementation in several open-source software
environments in Table 1. These environments not only offer quite different functionality, they also use
very different names for identical operations, which complicates the comparison of analysis scripts
developed for different environments. Also, there are strong differences in support for sparse and
irregular arrays, as well as to the extent they scale up for analysing massive data. None of the systems
considered support to register or query whether grid cell values refer to grid cell aggregates, constants,
or point values, even if this is information obvious from the operation used to compute an array.

We illustrated the challenges from multidimensional data analysis in array applications.
Array regridding has implications in satellite image registration, array data up-/down-scaling, missing
data interpolation, and multi-source data fusion. It is worth noting that a change of support [46] may
be caused by the array regridding process.

Arrays naturally store geoscientific data with the order and the neighbourhood information
preserved, which may facilitate multidimensional information integration [47]. Analysing spatiotemporal
information jointly, rather than first analysing space and then time or vice-versa, may result in
more effective use of multidimensional information [5]. Spatiotemporal analysis methods commonly
either focus on spatial pattern/feature over time, or the time series structure of each location over
space [5]. The separate analyzes in space and time lose joint spatiotemporal information [48] and
may lead to an uninterpretable modeling process [5]. Joint spatiotemporal statistical methods [49–51]
address the spatiotemporal modeling problems by building hierarchical models or jointly accounting
for spatiotemporal dependency. In addition, rich data are needed for the complex spatiotemporal
modeling process, which often requires multi-source data integration. Developing multidimensional
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information extracting methods and applying them to solve real-life problems remain a challenge in
array modeling.

Dimension reduction methods (such as principle component analysis) apply to a matrix, where the
ordering of columns and rows is irrelevant. The dimensions of a matrix can be ordered to extract
spatiotemporal information for specific purposes (e.g., POP). A study case is given to illustrate how
dimension reduction methods can reveal important information from different rearrangement of
multidimensional arrays, and shows how array operations are applied to accomplish this.

The array model facilitates going from high-dimensional data to matrix-based statistical analyzes.
At the same time, the array model presents an efficient organization of geoscientific datasets.
Array dimensions, such as space and time, define distances between cells which can be used to store
nearby observations at nearby locations in computer memory or on hard disks. Array partitioning as
implemented in SciDB [11] and Rasdaman [12] also facilitates the data distribution in large distributed
computing environments in order to balance computational load and memory consumption. However,
the choice of the order of dimensions and the partitioning schema may have a strong impact on
computation times and often needs consideration.

Much progress has been made [11,52] to store sparse arrays with minimum memory consumption.
Analysing sparse and irregular arrays remains a challenge. For instance, if a sparse array is used to
store an irregular spatial array, the cell size of the data can no longer be computed from the sequence
of spatial index values (e.g., Northing and Easting, [53]). Irregular dimensions of an array may
confine the application of many spatiotemporal statistical methods that were designed for regular data.
Regularising the irregular arrays by aggregation or interpolation may come at the cost of accuracy
and resolution. In addition, treating a sparse array as dense when applying an algorithm will greatly
increase the workloads. Statistical methods that concern irregular or sparse time series [54–56] and
sparse spatial arrays [50,57] have been developed. These methods often come with added complexity
and restrain, making their application less general. Furthermore, the irregularity may lead to improper
statistical methods to be used. For example, an empirical orthogonal function (EOF) decomposition
of observation locations with irregularly spaced area without considering the relative area leads to
misinterpretation of the results [49].

Arrays are a type of DGGs (Discrete Global Grids). Bauer-Marschallinger et al. [3] proposed
a regular grid called Equi7 and concluded that projecting with the Equi7 grid causes the least geometric
distortion compared to the global and hemispherical grids. Irregular grids polygons and meshes
from other DGGs [58,59] may provide a more accurate projection of the spherical data; but will add
difficulties in storing and analysing array data.

This study shows arrays to be a convenient data structure to apply multidimensional algorithms
and shows the potential of arrays as a uniform data structure to handle big geoscientific data.
The increasing use of Earth observations calls for solutions to the array challenges we mention in this
paper: the semantics of grid cell values, regridding, information integration and dimension reduction.
In many applications, other data types such as meshes, tables, polygons, may more efficiently represent
spatiotemporal phenomena.
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Abbreviations

The following abbreviations are used in this manuscript:

DGGs Discrete Global Grids
PCA Principal Component Analysis
EOF Empirical Orthogonal Functions
MNF Maximum Noise Fraction
CCA Canonical Correlation Analysis
Fmask Function of mask
SVD Singular Vector Decomposition
UTC Coordinate Universal Time
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