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Abstract: In recent years airborne Light Detection and Ranging (LiDAR) technology has received
a great deal of attention. Using airborne LiDAR, analysts have successfully related height
measurements to forest characteristics such as tree size, basal area, and number of trees. Similarly,
National Agricultural Imagery Program (NAIP) digital aerial imagery in combination with elevation
datasets such as the National Elevation Dataset (NED) have been used to estimate similar forest
characteristics. Few comparisons, however, have been made between using airborne LiDAR, NAIP,
and NED to estimate forest characteristics. In this study we compare airborne LiDAR, NAIP, and
NAIP assisted NED based models of forest characteristics commonly used within forest management
at the spatial scale of field plots and forest stands. Our findings suggest that there is a high degree
of similarity in model fit and estimated values when using LiDAR, NAIP, and NAIP assisted NED
predictor variables.
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1. Introduction

Airborne Light Detection and Ranging (LiDAR) is an active sensor technology that has recently
gained attention in forestry as a predictor variable for commonly quantified forest characteristics.
Because airborne LiDAR is an effective tool for measuring heights, some have investigated the
relationships between those heights and common forest metrics used to inform land management and
planning activities [1,2]. While studies have shown promise in relating LiDAR obtained heights to
metrics such as basal area weighted diameter (BAWD), quadratic mean diameter (QMD), basal area
per ha (BAH), and trees per ha (TPH) [3,4], it is important to recognize that the precision and accuracy
of those estimates are only based on the strength of the relationship between remotely sensed and plot
data, and not the technology itself.

Similarly, fine resolution passive airborne imagery produced by organizations such as the
National Agricultural Imagery Program (NAIP) [5] have also been used to estimate forest metrics [6–9].
In particular, strong relationships have been developed between BAWD, QMD, BAH, and TPH using
spectral values, measures of image texture [10], and topographic variables derived from imagery such
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as the National Elevation Dataset (NED) [11]. Despite these similarities, few direct comparisons have
been made between the quality and costs of forest metric estimates produced from LiDAR datasets
and those derived from high resolution imagery and topographic data such as NAIP and NED.

In isolation, the quality and cost of using various remotely sensed sources of data as model
predictor variables for forest characteristics is fairly straight forward to calculate and compare.
Metrics such as root mean squared error (RMSE) and dollars per hectare can be calculated, attributed
to each of the different remotely sensed data sources, and evaluated to determine which source of
data produces the least error and cost the least to acquire. However, when both quality and cost
are simultaneously assessed within the context of informing forest management, tradeoffs in model
precision and data acquisition costs can be made to justify the use of a given dataset. This assumes
there is a difference between quality (model error) and cost (currency per hectare) in using different
remotely sensed data.

Assuming that costs associated with collecting field data used to train predictive models of forest
characteristics are the same and that data processing costs are similar for the different sources of
remotely sensed data, the vast majority of cost difference among different remotely sensed data can
be attributed to data acquisition. Aerial imagery such as NAIP are acquired across the continental
USA every two years, and are readily available, free of charge, to the public through United States
Department of Agriculture Aerial Photography Field Office [12]. Similarly, seamless 10 m elevation
data for the continental USA have been collected by USGS and is readily available, free of charge to the
public [13]. Airborne LiDAR on the other hand can have variable cost per unit area to acquire and is
typically contracted on a project basis, costing both time and money for data acquisition and contract
management across a relatively limited spatial extent.

Given that NAIP and NED products are readily available across broad spatial extents and free to
the public, these data represent low cost potential predictor variables for modeling forest characteristics
within the continental USA. Adding additional remotely sensed data, especially at an increased
cost, is really only justifiable from a practical standpoint when the quality (less error) of models
are substantially improved. It follows then that acquiring airborne LiDAR for the sole purpose of
estimating forest characteristics within the continental USA is really only justifiable when the quality
of model predictions substantially improve, and that the added expense of acquisition is less than
the gains associated with improved model prediction. Similarly, in the event that this situation is
reversed (airborne LiDAR data freely available and there is an additional cost to acquire imagery) the
same line of reasoning would apply. However, the improvement in predictive model quality of forest
characteristics such as BAWD, QMD, BAH, and TPH given different sources of remotely sensed data is
seldom tested. While these different sources of data have been successfully related to forest metrics
and measure different aspects of the forest (spectral, elevation, and height) it is important to recognize
they are only correlated with BAWD, QMD, BAH, and TPH, and are more than likely highly correlated
with one another for a given geographic area. Moreover, given the similarity in reported model errors
in studies that solely use imagery [6–9] or LiDAR [3,4] based predictor variables to estimate forest
characteristics, it may be that both sources of data provide similar predictive capability.

This has lead us to hypothesize that there is little difference between modeled estimates of BAWD,
QMD, BAH, and TPH derived from NAIP, NAIP assisted NED, and LiDAR based remotely sensed
data. To test this hypothesis we compare BAWD, QMD, BAH, and TPH estimates from Random
Forest regression models that relate plot measurements to LiDAR, NAIP, and NED derivatives in the
Bitterroot National Forest, Montana, USA. Our comparisons evaluate model fit and complexity using
RMSE and Akaike’s information criterion (AIC) [14,15] at the spatial resolution of the plot and the
forest stand.
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2. Materials and Methods

2.1. Study Area

This project is located at the headwaters of Daly and Gold creeks, in the Sapphire Mountains,
on the east side of the Bitterroot Valley, approximately forty miles south of Missoula, MT (Figure 1).
The Daly–Gold Study Area encompasses 39,354 hectares, and approximately 70 percent of this areas is
within the Bitterroot National Forest. The lowest and highest elevations are 1152 m and 2578 m, with a
wide range of slope and aspect distributions [11]. This setting is generally representative of moderate
elevation mountains of western Montana, USA. Mean annual elevation-weighted precipitation is
71 cm, ranging between 43 cm to 97 cm. Temperature ranges from an average minimum of −1.78 ◦C
to an average maximum of 13.89 ◦C [16]. The forest types in this area are representative of patterns
found elsewhere in montane environments of the Rocky Mountains, where Ponderosa pine (Pinus
ponderosa), Douglas-fir (Pseudotsuga menziesii), and western larch (Larix occidentalis) occupy lower to
mid elevations, transitioning to lodgepole pine (Pinus contorta) and subalpine fir (Abies lasiocarpa)
at higher elevations. On wet sites and in riparian areas, quaking aspen (Populus tremuloides), black
cottonwood (Populus balsamifera), and Engelmann spruce (Picea engelmannii) are commonly found [17].
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Figure 1. Daly-Gold Study Area in the Sapphire Mountains of the Bitterroot National Forest in western
Montana, USA is shown. The yellow linear features describe the National Forest Systems administrative
boundary and the land within it, and the yellow point features illustrate the location of plots and
associated field measurements used in this study.
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2.2. Data Sources

Field data used in this study include plot coordinates derived from a Trimble RTX global
positioning system (GPS; horizontal accuracy < 3 m), tree counts, and measurements based on common
stand exam (CSE) procedures [18,19]. The allocation of field plots across the study was based on
a clustered sampling design of a previous study [20]. Inputs for the clustering process included a
normalized difference vegetation index (NDVI) derived from Landsat 5 imagery and elevation and
solar insolation derived from the NED 30 m digital elevation model (DEM). In all, 27 clusters were
created and three plots were randomly located within each of the 27 clusters to insure samples were
drawn across a wide range of topographic and spectral conditions. All 81 plot locations were visited
and tree data were collected by Bitterroot National Forest silviculture staff from June to October 2011.
At each location a 0.04 ha circular plot (radius 11.4 m) was installed and all trees greater than or equal
to 12.7 cm diameter at breast height (DBH) were counted, described, and measured. Additionally, for
trees less than 12.7 cm DBH a second 0.0013 ha circular sub-plot was installed (radius 2 m). At 21 of the
plot locations, GPS readings did not meet minimum spatial accuracy requirements for our study and
were removed from the comparisons. In total, 60 GPS locations and corresponding plot data constitute
our field sample dataset. An illustration of the dimensions and layout of plots is given in Figure 2.
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Figure 2. Composition and structure of common stand exam plot design, with outer circle (orange)
representing a 0.04 hectare plot for trees greater than or equal to 12.7 cm diameter at breast height
(radius = 11.4 m) and inner circle (yellow) representing a 0.0013 ha plot for trees less than 12.7 cm
DBH (radius = 2 m). The outer square represents the area summarized for the NAIP imagery and
LiDAR data.

Spectral data acquired for our study came from the National Agricultural Imagery Program
(NAIP). NAIP collects fine resolution, four-band digital aerial imagery during the agricultural growing
seasons across the continental United States, repeated every two years [21]. NAIP imagery is acquired
at a 1 m spatial resolution with a horizontal accuracy that locates 95% of photo-identifiable ground
control points within 6 m of their actual location. The spectral bands of NAIP include red, green,
blue, and near-infrared [22]. NAIP imagery is made publicly available to download through the aerial
photography field office (APFO) website [12] as a series of quarter quadrants image tiles that have been
mosaicked and color balanced. Using USGS file transfer protocol image service [20], we downloaded
19 NAIP tiles that covered our study area. From those tiles we created one continuous image mosaic,
and this is the source of our 2009 NAIP data.

Elevation data acquired for our study consisted of 1/3 arc-second (~10 m) digital elevation
models [13] (DEM) and were acquired using the USGS file transfer protocol image service [23].
These data are the source for our topographic dataset (TOPO). Light Detection and Ranging (LiDAR)
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data used in our study were collected in two separate acquisitions. The first data collection flights
occurred between June 24th and 28th, and the second acquisition took place between August 8th and
9th, 2010. In both cases, the Leica ALS50 Phase II and Leica ALS60 laser systems were mounted on a
fixed wing Cessna Caravan aircraft, and used with a scan angle of ±15◦ from nadir and pulse rate
designed to yield an average native density of ≥6 points per m2 over terrestrial surfaces. The entire
study area was surveyed with an opposing flight line side-lap of 50% to reduce laser shadowing and
increase surface laser painting. The sensor recorded up to four returns per pulse, and all discernable
laser returns were processed for the output dataset [22]. Table 1 briefly describes the datasets used for
our comparisons.

Table 1. Description for baseline datasets.

Source Description Tiles/Plots

NAIP Four band aerial imagery: 1 m, color infrared [12,21] 19
LiDAR Point cloud elevation data ≥6 points per m2 [24] 752
TOPO USGS 10 m national elevation dataset [23] 8
Plots Field measured height, DBH, and count [18,19] 60

2.3. Data Processing

Tree data collected at each field plot were processed to yield summarized values of size and
density. Using the location and extent of 0.04 ha field plots (~23 m by 23 m), summary statistics
were computed from NAIP, TOPO, and LiDAR data sources. Summary statistics from NAIP data
included metrics related to central tendency, dispersion, and texture for each image band. From the
TOPO dataset, mean elevation, slope, and trigonometrically transformed aspect values were computed.
From the LiDAR dataset, a bare earth model was generated and used to filter the point cloud, and
all standard FUSION-based height metrics [25] were computed for the extent of each plot (Table A1).
Following the generation of plot-based cloud metrics, associated grid metrics were computed and
assigned to a cell size that matched the extent of the plot.

Many of the spectral (NAIP), topographical (TOPO), and height metrics (LiDAR) derived from
each data source were highly correlated. To remove redundancy in the data, normalize values,
and produce independent (orthogonal) predictor variables, we performed three singular vector
decomposition principal component analyses (PCA) [26]. Relevant component scores from the PCAs
were used to develop a suite of Random Forest regression models [27–29] predicting BAWD, QMD,
BAH, and TPH.

Candidate models for BAWD, QMD, BAH, and TPH were compared using RMSE and AIC [14,15].
From those models and relevant principal scores for each data source, raster surfaces were generated
for the extent of the study area. To evaluate mean stand level estimates of BAWD, QMD, BAH,
and TPH, we summarized the raster cells within the boundary of 100 randomly chosen forested
polygons extracted from the most current, vector-based Bitterroot National Forest existing vegetation
database [30–32] and compared mean polygon estimates using paired t-tests (Figure 3). The remainder
of this section describes the detailed procedures used to process the different sources of data, build
predictive models, and compare models and estimated stand values.
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Figure 3. Flow diagram of the data sources, processing steps, modeling, and comparisons made within
the study. NAIP, LiDAR, and TOPO data were converted to texture, height, and elevation metrics
and transformed to spatial surfaces using principal component analysis (PCA). PCA surface values
were then related to field data based on plot locations (Overlay) and were used to model basal area
weighted diameter (BAWD), quadratic mean diameter (QMD), basal area per hectare (BAH) and trees
per hectare (TPH) relationships. Modeled relationships were then used to create raster surfaces that
were compared at the spatial resolution of the plot and stand.

2.3.1. Processing Plot Data

The forest tree size and density characteristics we focused on in this study include: BAWD, QMD,
BAH, and TPH. Each of these provide meaningful information related to the health and condition of a
given forested stand and are used within the discipline of forestry to inform when, where, and how
treatments occur across the landscape [33,34]. The metrics BAWD and QMD describe tree diameter,
while BAH and TPH relate to the cross-sectional stem area and tree density. In the field, tree status (live
or dead), species, counts, DBH, and height within the boundary of a fixed 0.04 ha plot are recorded
(Figure 2). Once collected, plot summaries of BAWD, QMD, BAH, and TPH were calculated using
only information from live trees [35,36]. Calculation of size and density metrics are based on the
following equations:

BA = DBH2 ∗ 0.0000785 (1)

BAWD =
∑ BA ∗ DBH

∑ BA
(2)

TPH = EF ∗ tree count (3)

BAH = EF ∗ ∑ BA (4)

QMD =

√
BAH
TPH

0.0000785
(5)

where DBH is measured in cm, BA is calculated in m2 ha−1, and EF is the expansion factor used to
bring plot summaries to per hectare values for 0.04 and 0.0013 ha plots.
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Some plot locations contained no trees (no tally) while others contained only small trees (<1.37 m
tall). For metrics such as BAWD and QMD these two conditions do not represent the same meaning on
the ground, especially with regards to the spectral signature captured at those locations. To account
for this discrepancy, plots with no tallies were given a BAWD and QMD value of 0 cm while plots that
only contained trees less than 1.37 m tall were given BAWD and QMD values of 1.27 cm. The values of
0 cm and 1.27 cm were also translated to the BAH and TPH records to ensure consistent representation.

2.3.2. Processing NAIP Data

To remove areas outside of our study, we clipped our continuous NAIP mosaic to a 90 m
buffer around the Daly-Gold study boundary. Using that clipped mosaic we then passed a moving
window of 23 by 23 cells (approximate extent of each field plot) across each band to calculate mean,
standard deviation, and gray level co-occurrence matrix (GLCM) [10] horizontal contrast values [8].
Combined, these 12 surfaces (4 mean, 4 standard deviations, and 4 GLCM) make up the base NAIP
predictor variables.

2.3.3. Processing TOPO Data

Similar to the base NAIP variables we clipped our DEM to a 90 m buffer around the Daly-Gold
study boundary. From the DEM, slope (degrees), northing, and easting surfaces were created.
To convert terrain orientation to northing and easting values, we transformed degrees of aspect,
derived from the clipped DEM, with cosine and sin functions, respectively [8]. We then passed a
moving window of 3 by 3 cells (approximate extent of a plot) across the DEM, slope, northing, and
easting raster datasets to calculate mean values for the approximate extent of a plot. Combined, these
four surfaces were then resampled to the same spatial resolution as the NAIP imagery and constitute
the base TOPO predictor variables.

2.3.4. Processing LiDAR Data

LiDAR data was processed using FUSION software [1,2,25]. To automate the procedures within
FUSION, we developed a specialized set of tools that handled file and data management. We also
constructed a data handling architecture to process the original LiDAR (*.las) files with the algorithms
(*.exe files) contained within FUSION. These algorithms produce a bare earth model, point cloud
metrics for all plots, and corresponding grid metric surfaces for the study area.

As a first step, we used the default GroundFilter algorithm within FUSION to identify laser returns
that lie on the probable ground surface, specifying a 1 m cell resolution. Then the GridSurfaceCreate
algorithm was used to produce an output raster representing the probable ground surface, also with
1 m cell resolution. Point cloud metrics were produced for the extent of each plot by calling the
CloudMetrics algorithm. Prior to the computation of cloud metrics, ground surface values were
subtracted from point clouds to yield surface heights. In the process of computing cloud metrics, we
specified a plot radius of 11.4 m and chose to remove all points lower than 0 m and above 45.7 m.
Rectangles as opposed to circles were used for convenience and to represent the extent of each plot
in a manner that relates to grid cells. This process yielded a suite of cloud metrics (38) for each plot
location in tabular form.

In addition to cloud metrics, grid metrics were calculated using the GridMetrics algorithm.
To calculate grid metrics, ground surface values were subtracted from the original *.las files, points
with values less than 0 or greater than 45.7 m removed from the analysis, and output cell resolution
was specified as 23 m, to correspond to the plot dimension. This yielded the same suite of 38 grid
metrics, also in tabular form. Tabular grid metric outputs were converted to ERDAS Imagine *.img
raster surface files using our custom processing routines. Combined these images make up the base
LiDAR predictor variables.
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2.3.5. Computing Principal Components

A total of 12 NAIP, 4 TOPO, and 38 LiDAR metrics were associated with all plot locations using
the center coordinates of the plot. Within each data source, many metrics have substantially different
units of measure and describe similar aspects of the data. Because of these issues, we performed three
singular vector decomposition PCAs to normalize the values within each source of data (i.e., we used
the correlation matrix) and remove the correlation among variables [8,26]. To standardize the number
of predictor variables while maintaining the vast majority of information within those variables, we
selected the minimum number of principle components that account for at least 95% of the correlation
in the data.

Using the Eigen vectors of the selected components and the base predictor surfaces, we created
three multiband principal component score raster surfaces (i.e., one multi-band raster for each data
source). Finally, we resampled our principal component score surfaces to a common resolution of 10 m
to standardize the spatial resolution of our predictor variables and help visualize the heterogeneous
nature of the study area. These 3 multiband principle component score surfaces represent the spatial
configuration of the predictor variables used in candidate BAWD, QMD, BAH, and TPH models.

2.3.6. Algorithm Development and Evaluation

Multiple nested candidate Random Forest regression models [27,28] of plot BAWD, QMD, BAH,
and TPH given NAIP, TOPO, or LiDAR principal component scores were compared using RMSE and
AIC. The Random Forest methodology uses randomization and bagging to estimate multiple regression
trees for subsets of the data and predictor variables and uses the out of bag (OOB) observations to
estimate error. Specifically, models were built to predict tree size and density characteristics based
on (1) NAIP principal component scores only, (2) LiDAR principal component scores only, (3) NAIP
and TOPO principal component scores, (4) NAIP and LiDAR principal component scores, and lastly
the combination of (5) NAIP, TOPO, and LiDAR principal component scores. All candidate models
were generated with 100 decision trees, a random selection of 0.66 of the training data, and 4 randomly
selected independent variables for each tree. To evaluate the similarity in predicted mean values of
BAWD, QMD, BAH, and TPH using the different sources of data, linear regression was performed on
a pairwise basis using predictions from each candidate model. In addition, for each candidate model
Random Forest was performed ten times and OOB RMSEs were recorded to describe and account for
the variability in the Random Forest modeling technique.

Random Forest regression results were summarized across the ten iterations and the mean OOB
RMSE was reported for each candidate model. Mean OOB RMSEs were used in the calculation of the
AIC score, which was the basis for model selection. In this context, AIC favors models that achieve
similar results with less complexity, and thus, models with the lowest AIC score and fewest predictor
variables were deemed the most parsimonious. Top fitting models with differences of less than 2 AIC
units between models (∆AIC) indicated similar performance [15].

2.3.7. Spatial Summary Comparison

Random Forest models were used in conjunction with the appropriate principal component score
surfaces to create spatially explicit predictions of plot BAWD, QMD, BAH, and TPH. The resulting
raster surfaces were summarized to all forest stands across the study area. Polygon-based stands
were independently created for the project area as part of the existing vegetation database used by
the Bitterroot National Forest [28–30]. Polygonal mean values of BAWD, QMD, BAH, and TPH were
calculated from estimated mean surfaces and attributed to the corresponding stands using zonal
statistics [8].

To assess the stand-level differences in predicted forest metrics, between the various models
based on NAIP, TOPO, and LiDAR principal component scores, we randomly selected 100 forest
polygons from the vegetation database and compared their summarized mean values using paired
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T-tests. Polygons representing forest stands were identified by generating a categorical lifeform map
that includes forest, non-forest vegetation, water, sparse vegetation, and disturbed (e.g., fire, insect,
or disease affected vegetation) classes. Within the forest vegetation class, 100 polygons greater than
0.04 ha in size were randomly selected. An illustration of the lifeform classification and spatial
distribution of the randomly selected forest polygons is given in Figure 4.ISPRS Int. J. Geo-Inf. 2019, 8, 24 9 of 24 
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3. Results

Tree data were collected on 60 plots across the study area, and tabulated to produce plot values for
BAWD, QMD, BAH, and TPH. The distribution of BAWD, QMD and BAH plot values was generally
considered normal while TPH values were strongly right skewed (Figure 5). Principle components
used as predictor variables accounting for 96%, 97%, and 96% of the information within NAIP
(5 components), TOPO (3 components) and LiDAR (5 components) data sources, respectively
(Figure 6). Often Eigen vectors of a PCA are interpreted with respect to original values of the
data. In this case we simply wanted to remove the correlation among each source of remotely
sensed data and use the orthogonal scores of the components as predictor variables in subsequent
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analysis. Our PCAs effectively performed this objective. Scores calculated from the Eigen vectors of
the corresponding principal components were used with plot summaries of BAWD, QMD, BAH, and
TPH to build a suite of models describing the relationship between field and remotely sensed data
sources. Figure 7 illustrates the spatial distribution of the multiband raster datasets generated from the
principal component scores and used to produce the spatial predictions of the response variables.ISPRS Int. J. Geo-Inf. 2019, 8, 24 10 of 24 
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Figure 7. Illustration of TOPO, NAIP, and LiDAR principal component raster datasets. Note that only
the first three components are displayed by the red-green-blue-color composite. The proportion of
correlation explained (λ) by those components is display above each raster dataset.

Model fit and complexity were evaluated using RMSE and AIC (Table 2). Generally, models
derived from NAIP and LiDAR predictor variables alone performed as well as more complex models.
The best fitting, most parsimonious models for BAWD, QMD, and TPH contained NAIP principal
component scores. The best fitting, most parsimonious model for BAH contained LiDAR principal
component scores. When estimates of BAWD, QMD, BAH, and TPH derived from NAIP and LiDAR
based models were regressed against one another, they followed a positive one to one relationship
explaining approximately 90% of the variation between predicted estimates (Figure 8). When paired
with NAIP or LiDAR variables, TOPO variables provided little additional information.

Table 2. Out of bag model fit, comparison, and rank for basal area weighted diameter (BAWD),
quadratic mean diameter (QMD), basal area per hectare (BAH), and trees per hectare (TPH), where
n = the number of observations, k = the number of randomly selected variables, RMSE = root mean
squared error, MSE = mean squared error, AIC = Akaike Information Criterion, and ∆AIC = departure
from minimum AIC score. * denotes best fitting model with the fewest number of predictor variables.

Response Model Variables n k RMSE MSE AIC ∆ AIC

1 NAIP * 60 5 12.7 161 315 0
2 LiDAR 60 5 13.2 174 320 5

BAWD 3 NAIP TOPO 60 8 12.2 149 316 1
4 NAIP LiDAR 60 10 11.7 137 315 0
5 NAIP TOPO LiDAR 60 13 11.7 137 321 6

1 NAIP 60 5 10.2 103 288 3
2 LiDAR 60 5 11.7 137 305 20

QMD 3 NAIP TOPO * 60 8 9.4 88 285 0
4 NAIP LiDAR 60 10 9.9 98 295 10
5 NAIP TOPO LiDAR 60 13 9.7 93 298 13

1 NAIP 60 5 11.2 127 300 27
2 LiDAR * 60 5 9.0 81 273 0

BAH 3 NAIP TOPO 60 8 11.5 131 309 35
4 NAIP LiDAR 60 10 8.6 75 279 5
5 NAIP TOPO LiDAR 60 13 9.1 83 291 18

1 NAIP * 60 5 6936.2 48,111,452 1071 0
2 LiDAR 60 5 7015.3 49,214,653 1073 1

TPH 3 NAIP TOPO 60 8 6891.8 47,496,397 1077 5
4 NAIP LiDAR 60 10 6990.6 48,868,559 1082 11
5 NAIP TOPO LiDAR 60 13 6815.2 46,446,411 1085 14
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Random Forest regression model iterations yielded similar trends as shown in Table 2 but
illustrate the variability of using the Random Forest ensemble modeling techniques (Figure 9).
While improvements in predictive capability (smaller RMSE) can be achieved by using more complex
models (Table 2 and Figure 9), those improvements are relatively minor with regard to the additional
complexity (AIC scores in Table 2, Figure A1). Moreover, given the stochastic nature of ensemble
modeling (Figure 9), some perceived differences in model results may be due to chance alone and was
in large part the rationale for using AIC to identify the top fitting models for each characteristic.
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At the stand level, differences between summarized estimates of models derived from NAIP and
LiDAR are generally indistinguishable. In all comparisons except BAH, paired differences between
NAIP and LiDAR derived models were statistically insignificant (Table 3). For BAH, the average
paired difference was less than 2.2 m2 ha−1 which in many surveys is roughly equivalent to one tree.
Combined, these comparisons suggest that models based on NAIP and LiDAR have very similar
predictive capability, error structure, and spatial distribution. This is particularly evident at the spatial
scale associated with forest stands where individual pixel predictions are aggregated to produce a
mean value for each stand.

Table 3. NAIP vs LiDAR Paired t-test results for 100 summarized stand level estimates (n) of basal area
weighted diameter (BAWD), quadratic mean diameter (QMD), basal area per hectare (BAH), and trees
per hectare (TPH). Additional paired comparisons between models developed from combinations of
NAIP, LiDAR and Topo data sources can be found in Tables A2–A5.

Characteristic n Difference T-Stat p-Value

BAWD 100 −0.119 −0.234 0.8150
QMD 100 −0.173 −0.494 0.6219
BAH 100 −2.211 −3.42 0.0009
TPH 100 128 0.464 0.6434

4. Discussion

Forest resource managers need timely and accurate information about the size and density of trees
to make decisions about what, where, and how to apply treatments across landscapes. Metrics like
BAWD, QMD, BAH, and TPH are commonly used to describe structural elements of the forest. LiDAR
is a relatively new technology that is capable of providing highly precise measurements of height,
and has been shown as an effective tool for making spatial predictions of forest metrics by relating
observed heights to ground-based plot measurements of trees [3,4].

While LiDAR data can be useful, it is not available in all locations and must generally be acquired
for specific project areas [37]. Many other digital spatial datasets like topography and high resolution
imagery are available as continuous data across the continental United States, and can be obtained free
of charge. Like LiDAR data, recent research has also shown that fine resolution imagery such as NAIP
can be used to effectively predict forest metrics with relationships based on field data.

Alone, neither NAIP nor LiDAR data can model environmental phenomenon without high quality,
reliable reference information. In this study, 60 field plots following the CSE protocol were used to
describe a range of forest conditions. While this field protocol is commonly used for forest inventories,
it may not be optimal for relating ground measurements to fine resolution spatial data such as NAIP
imagery or LiDAR [38].

Without adequate ground representation of the characteristics to be estimated, good model fit
cannot be achieved. This was evident in the relatively large RMSE between measured and estimated
TPH in our study. To enhance our ability to estimate and map forest characteristics, a sufficient number
of plots should be collected to cover the range of conditions across the study area. Those plots should
also be designed to fully describe the entire area of the plot. Future research on appropriate plot layout
and configuration with regard to predictor variables is needed to better understand these relationships,
and improve the predictive ability of forest metric modeling.

For many natural resource management questions, collection of training data can be one of the
expensive and important aspects of a project. When data collection saving can be made by using
readily available, and free, remotely sensed data in lieu of purchasing new data, it may be beneficial
to use those savings on collecting robust training datasets. With more time and resources available
for training data collection, the spatial distribution of trainings sites may be enhanced, or more
thorough measurements may be taken at each site, depending on project specific needs. Whether more
information is collected at each site, or more sites are added to a set, better training data generally lead
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to better fitting models and ultimately, reduced uncertainly, enhanced predictive ability, and more
confident decision making.

Using the relationships derived from our field plots and remotely sensed data, we demonstrated
that there was a great deal of similarity between NAIP and LiDAR based model estimates at the spatial
scale of a plot and forest stand. In most of our comparisons models that used NAIP based predictors
out performed those that used LiDAR or TOPO. In some cases, using both NAIP and LiDAR based
predictors showed minor improvements in model fit. Often those improvements though were small
and from a model complexity stand point there was no justification for adding additional sources
of data, especially sources of data that have additional acquisition costs. Assuming that acquisition
cost of remotely sensed data is a key factor to quantifying forest characteristics for the sake of forest
management decision making, in our study the added cost of acquiring LiDAR data to estimate BAWD,
QMD, BAH, or TPH was not worth the marginal improvement in estimating those characteristics at
the spatial scale of the plot and stand.

Cost, quality, continuity, and time are all essential components to consider when quantifying
forest characteristics. Our analyses suggest that outputs from models based on NAIP or LIDAR at
the spatial scale of the plot and stand compare favorably. Thus, using imagery or elevation-based
data to generate estimates of the forest metrics described in this study is somewhat irrelevant. If one
source of data is available, there is not much to be gained by spending time or money to acquire an
additional source. However, full coverage image data tends to be more readily available than LiDAR,
which is currently only collected in isolated patches. Furthermore, when time is of the essence, it must
be understood that custom acquisition of remotely sensed data, whether imagery or LIDAR, can be
time consuming and may significantly delay a project.

For other forest characteristics related to topography and understory vegetation we presume that
airborne LiDAR based models would have a substantial advantage over passive based imagery in
accurately quantifying those characteristics. However, our study focused on quantifying common
overstory components of the forest used in forest management decision making. In this instance,
with the exception of BAH, LiDAR based models did not substantially improve estimates of BAWD,
QMD, or TPH. Moreover, when comparing modeled estimates of BAH, especially at the spatial scale
of the forest stand, it is highly questionable if the added cost of LiDAR acquisition is worth the minor
reduction in modeled error. This has leads us to suggest that when existing remotely sensed data
is available such as NAIP and additional resources are available for quantifying overstory forest
characteristics, more emphasis on field data collection and design may prove to be a better use of those
financial resources than purchasing additional remotely sensed data.

5. Conclusions

Both NAIP and LiDAR were used independently and in combination to predict the spatial
distribution of forest characteristics such as BAWD, QMD, BAH, TPH. While recent attention has
been focused on using LiDAR data to estimate these characteristics, we have shown that, when using
common modeling techniques, similar results can be obtained by using high resolution imagery
(NAIP). Therefore, either type of data could be used to perform these analyses and produce equivalent
results when estimates of size and density are of interest. This is particularly apparent when fine grain,
spatially explicit raster estimates are summarized to larger units such as forest stands.

Interestingly, NAIP and LiDAR measure different aspects of the environment, and when trees and
forest characteristics are considered they both provide disparate but useful information for describing
BAWD, QMD, BAH, and TPH. Our modeling results show that although different predictor layers
(NAIP versus LiDAR) are being used to estimate forest characteristics, each output yields relatively
similar interpretations of the forest. We show that regardless of whether NAIP or LiDAR is used,
they both have equivalent predictive ability, error structure, and spatial distribution. Given the
similarity in predicting forest metrics from these sources of data, using NAIP is a low-cost alternative
to using LiDAR.
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Table A1. Description and summary statics of field and remote sample observations.

ATTRIBUTE DESCRIPTION Mean SD Min Max

BAWD Basal area weighted diameter at breast height (cm) 27.99 14.61 0.00 58.62
QMD Quadratic mean diameter at breast height (cm) 23.81 11.17 1.27 53.34
BAH Basal area (m2 per ha) 18.28 12.09 0.00 45.22
TPH Trees per ha 3407.58 6726.09 0.00 41,439.54

Elev_minimum Minimum elevation recorded 0.01 0.00 0.01 0.04
Elev_maximum Maximum elevation recorded 44.19 15.99 11.41 77.10

Elev_mean Mean elevation recorded 9.89 5.44 0.38 20.14
Elev_mode Mode elevation recorded 1.49 4.41 0.01 17.79
Elev_stddev Standard deviation of elevation values recorded 8.53 3.80 0.80 15.74

Elev_variance Variance of elevation values recorded 87.25 64.14 0.65 247.70
Elev_CV Coefficient of variation of elevation values recorded 1.03 0.41 0.49 2.29
Elev_IQ Interquartile distance of elevation values recorded 12.34 7.14 0.23 28.52

Elev_skewness Histogram skewness of elevation values recorded 1.16 1.00 (0.13) 5.37
Elev_kurtosis Histogram kurtosis of elevation values recorded 5.50 7.26 1.84 45.88

Elev_AAD Average absolute deviation of elevation values
recorded 6.99 3.35 0.40 13.81

Elev_MAD_median Median of the absolute deviations from the overall
median of AAD 5.21 3.71 0.06 14.01

Elev_MAD_mode Median of the absolute deviations from the overall
mode of AAD 6.99 5.63 0.08 20.71

Elev_L1 L-moment 1 9.89 5.44 0.38 20.14
Elev_L2 L-moment 2 4.59 2.19 0.26 8.97
Elev_L3 L-moment 3 0.97 0.67 (0.18) 3.35
Elev_L4 L-moment 4 0.29 0.30 (0.62) 1.28

Elev_L_CV L-moment coefficient of variation 0.52 0.13 0.27 0.82
Elev_L_skewness L-moment skewness 0.26 0.18 (0.04) 0.72
Elev_L_kurtosis L-moment kurtosis 0.10 0.11 (0.08) 0.49

Elev_P01 Elevation values of the 1st percentile 0.06 0.07 0.01 0.35
Elev_P05 Elevation values of the 5th percentile 0.35 0.62 0.01 3.17
Elev_P10 Elevation values of the 10th percentile 0.78 1.29 0.02 6.20
Elev_P20 Elevation values of the 20th percentile 2.06 2.43 0.04 9.98
Elev_P25 Elevation values of the 25th percentile 2.87 3.05 0.04 11.36
Elev_P30 Elevation values of the 30th percentile 3.73 3.67 0.05 12.47
Elev_P40 Elevation values of the 40th percentile 5.62 4.90 0.07 15.85
Elev_P50 Elevation values of the 50th percentile 7.92 6.02 0.09 20.72
Elev_P60 Elevation values of the 60th percentile 10.51 7.22 0.12 25.26
Elev_P70 Elevation values of the 70th percentile 13.53 8.17 0.19 31.01
Elev_P75 Elevation values of the 75th percentile 15.22 8.65 0.28 33.75
Elev_P80 Elevation values of the 80th percentile 17.13 9.16 0.35 36.39
Elev_P90 Elevation values of the 90th percentile 22.05 10.41 0.77 41.91
Elev_P95 Elevation values of the 95th percentile 25.96 11.49 1.75 46.58
Elev_P99 Elevation values of the 99th percentile 33.00 13.38 3.98 56.37

Canopy_relief_ratio ((mean elevation − min elevation)/(max elevation −
min elevation)) 0.21 0.09 0.03 0.44

Elev_SQRT_mean_SQ Generalized means for the 2nd power (elevation
quadratic mean) 13.20 6.36 0.89 25.56

Elev_CURT_mean_CUBE Generalized means for the 3rd power (elevation
cubic mean) 15.60 6.99 1.53 29.05

NAIP_Band1 NAIP1 focal mean 23 × 23 51.54 22.74 22.33 107.58
NAIP_Band2 NAIP2 focal mean 23 × 23 71.51 20.58 37.15 121.52
NAIP_Band3 NAIP3 focal mean 23 × 23 61.19 13.47 42.29 93.70
NAIP_Band4 NAIP4 focal mean 23 × 23 75.31 32.52 12.96 140.43
NAIP_Band5 NAIP_SD1 focal standard deviation 23 × 23 18.93 7.85 6.07 45.33
NAIP_Band6 NAIP_SD2 focal standard deviation 23 × 23 19.78 6.27 5.33 39.10
NAIP_Band7 NAIP_SD3 focal standard deviation 23 × 23 7.54 4.24 1.49 25.89
NAIP_Band8 NAIP_SD4 focal standard deviation 23 × 23 30.18 9.99 6.39 52.53
NAIP_Band9 GLCM1 horizontal 23 × 23 93.18 60.60 10.15 308.79

NAIP_Band10 GLCM2 horizontal 23 × 23 96.82 43.48 9.71 199.63
NAIP_Band11 GLCM3 horizontal 23 × 23 8.61 9.83 0.33 63.97
NAIP_Band12 GLCM4 horizontal 23 × 23 180.40 111.01 6.35 483.20
TOPO_Band1 ELEVATION focal mean 23 × 23 2,020.00 253.78 1597.45 2422.87
TOPO_Band2 EASTING focal mean 23 × 23 (0.65) 0.32 (1.00) 0.00
TOPO_Band3 NORTHING focal mean 23 × 23 0.58 0.34 0.00 1.00
TOPO_Band4 SLOPE focal mean 23 × 23 24.66 8.68 3.44 43.75
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Table A2. BAWD paired stand comparisons between models developed from combinations of NAIP,
LiDAR, and Topo data sources.

Compare V1–V2 N Difference T-Stat p-Value

NAIP-LIDAR 100 −0.119 −0.234 0.8150
NAIP-NAIP_TOPO 100 0.645 2.057 0.0423
NAIP-NAIP_LIDAR 100 −0.643 −1.842 0.0684

NAIP-NAIP_TOPO_LIDAR 100 0.084 0.220 0.8260
LIDAR-NAIP_TOPO 100 0.767 1.504 0.1359
LIDAR-NAIP_LIDAR 100 −0.521 −2.520 0.0133

LIDAR-NAIP_TOPO_LIDAR 100 0.206 0.924 0.3580
NAIP_TOPO-NAIP_LIDAR 100 −1.288 −3.315 0.0013

Table A3. QMD paired comparisons between models developed from combinations of NAIP, LiDAR,
and Topo data sources.

Compare V1–V2 N Difference T-Stat p-Value

NAIP-LIDAR 100 −0.173 −0.494 0.6219
NAIP-NAIP_TOPO 100 0.155 0.5318 0.5960
NAIP-NAIP_LIDAR 100 −0.249 −0.934 0.3524

NAIP-NAIP_TOPO_LIDAR 100 0.292 0.9857 0.3267
LIDAR-NAIP_TOPO 100 0.330 0.8504 0.3972
LIDAR-NAIP_LIDAR 100 −0.074 −0.487 0.6267

LIDAR-NAIP_TOPO_LIDAR 100 0.467 3.1312 0.0023
NAIP_TOPO-NAIP_LIDAR 100 −0.404 −1.144 0.2551

Table A4. BAH paired comparisons between models developed from combinations of NAIP, LiDAR
and Topo data sources.

Compare V1–V2 N Difference T-Stat p-Value

NAIP-LIDAR 100 −2.211 −3.42 0.0009
NAIP-NAIP_TOPO 100 0.218 1.25 0.2125
NAIP-NAIP_LIDAR 100 −1.666 −3.90 0.0002

NAIP-NAIP_TOPO_LIDAR 100 −1.498 −3.48 0.0007
LIDAR-NAIP_TOPO 100 2.430 4.11 <0.0001
LIDAR-NAIP_LIDAR 100 0.546 2.24 0.0275

LIDAR-NAIP_TOPO_LIDAR 100 0.714 2.98 0.0036
NAIP_TOPO-NAIP_LIDAR 100 −1.884 −4.87 <0.0001

Table A5. TPH paired comparisons between models developed from combinations of NAIP, LiDAR
and Topo data sources.

Compare V1–V2 N Difference T-Stat p-Value

NAIP-LIDAR 100 128 0.464 0.6434
NAIP-NAIP_TOPO 100 525 3.305 0.0013
NAIP-NAIP_LIDAR 100 384 2.621 0.0102

NAIP-NAIP_TOPO_LIDAR 100 717 3.893 0.0002
LIDAR-NAIP_TOPO 100 397 2.370 0.0197
LIDAR-NAIP_LIDAR 100 256 1.787 0.0770

LIDAR-NAIP_TOPO_LIDAR 100 588 4.532 <0.0001
NAIP_TOPO-NAIP_LIDAR 100 −141 −1.427 0.1567
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