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Abstract: Accurate urban land-use mapping is a challenging task in the remote-sensing field. With 

the availability of diverse remote sensors, synthetic use and integration of multisource data provides 

an opportunity for improving urban land-use classification accuracy. Neural networks for Deep 

Learning have achieved very promising results in computer-vision tasks, such as image 

classification and object detection. However, the problem of designing an effective deep-learning 

model for the fusion of multisource remote-sensing data still remains. To tackle this issue, this paper 

proposes a modified two-branch convolutional neural network for the adaptive fusion of 

hyperspectral imagery (HSI) and Light Detection and Ranging (LiDAR) data. Specifically, the 

proposed model consists of a HSI branch and a LiDAR branch, sharing the same network structure 

to reduce the time cost of network design. A residual block is utilized in each branch to extract 

hierarchical, parallel, and multiscale features. An adaptive-feature fusion module is proposed to 

integrate HSI and LiDAR features in a more reasonable and natural way (based on "Squeeze-and-

Excitation Networks"). Experiments indicate that the proposed two-branch network shows good 

performance, with an overall accuracy of almost 92%. Compared with single-source data, the 

introduction of multisource data improves accuracy by at least 8%. The adaptive fusion model can 

also increase classification accuracy by more than 3% when compared with the feature-stacking 

method (simple concatenation). The results demonstrate that the proposed network can effectively 

extract and fuse features for a better urban land-use mapping accuracy. 

Keywords: convolutional neural networks; multisource data; feature fusion; urban land-use 

mapping 

 

1. Introduction 

Urban land-use mapping is of great significance for various urban applications, such as urban 

planning and designing, urban-environment monitoring, and urban-land surveys [1,2]. Traditional 

methods for urban land-use mapping are based on the visual interpretation of high-resolution optical 

remote-sensing imagery and field surveys, which can be quite time-consuming and laborious. 

Therefore, it is very important to investigate the automatic classification methods for fragmented and 

complex urban land-use types. 

With the development of remote-sensing technology, some researchers started to use 

multispectral optical imagery and machine-learning methods to automatically extract urban and-

cover and land-use information [3–6]. For instance, Lu et al. [3] combined textural and spectral images 
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with the traditional supervised classification method for urban land-cover classification based on 

multispectral QuickBird remote-sensing data. Powell et al. [4] utilized spectral-mixture analysis for 

subpixel urban land-cover mapping based on Landsat imagery. Pu et al. [5] adopted an object-based 

method and IKONOS imagery for urban land-cover classification. However, due to the complicated 

composition of urban landscapes and the low spectral resolution of multispectral remote-sensing 

data, it is very difficult to yield very high classification accuracy. Compared with multispectral 

remote sensing, hyperspectral remote sensing can obtain hundreds of narrow contiguous spectral 

bands, which is capable of separating objects with subtle spectral differences. Recent studies also 

show the great potential of hyperspectral remote sensing in the differentiation of complex urban land-

use types [6,7]. Demarchi et al. [6] used APEX 288-band hyperspectral data for urban land-cover 

mapping based on unsupervised dimensionality-reduction techniques and several machine-learning 

classifiers. Tong et al. [7] discussed which features of airborne hyperspectral data to use for urban 

land-cover classification and showed that the synthetic use of shape, texture and spectral information 

can improve the classification accuracy. 

Meanwhile, due to the availability of diverse remote sensors, researchers began to integrate 

multisource and multisensor data for better characterization of the land surface [8–13]. Since then, 

the combined use of HSI and Light Detection and Ranging (LiDAR) data has been an active topic [8–

13]. The addition of LiDAR data can provide detailed height and shape information of the scene, 

which can improve classification accuracy when compared with the use of hyperspectral data alone. 

For instance, roofs and roads that are both made of concrete are difficult to distinguish in 

hyperspectral images, but they can easily be separated using LiDAR-derived height information due 

to the significant difference in altitude. Based on the above points, researchers investigated the fusion 

methods of multisource hyperspectral and LiDAR data. Debes et al. [8] highlighted two methods for 

hyperspectral and LiDAR data fusion, including a combined unsupervised and supervised 

classification scheme, and a graph-based method for the fusion of spectral, spatial, and elevation 

information. Man et al. [9] discussed both the pixel- and feature-level fusion of hyperspectral and 

LiDAR data for urban land-use classification and showed that the combination of pixel- and object-

based classifiers can increase the classification precision. Moreover, the fusion of hyperspectral and 

LiDAR data has also been applied in many other fields, such as forest monitoring [10,11], volcano 

mapping [12], and crop-species classification [13].  

As for the approaches of multisource remote sensing data fusion, the widely used methods 

mainly include feature-level fusion and decision-level fusion. Specifically, in the procedure of 

feature-level fusion, remote sensing data from different sources are firstly processed to extract the 

relevant features and then fused through feature stacking or feature reconstructing. Man et al. [9] 

stacked LiDAR features, i.e., nDSM, Intensity and HSI features, i.e., spectral indices and textures to 

improve the performance of urban land-use classification. Gonzalez et al. [14] also stacked 

multisource features from color infrared imagery and LiDAR data for object-based mapping of forest 

habitats. Similar feature stacking approaches can be also found in the studies of Sankey et al. [11] and 

Sasaki et al. [15]. Different from above studies, Debes et al [8] utilized a fusion graph to project all the 

original multisource features into a low-dimensional subspace to increase the robustness of the fused 

features. Compared with feature-level fusion, multisource datasets are separately classified and then 

fused or integrated in the process of decision-level fusion to generate the final classification results. 

Sturari et al. [16] proposed a decision-level fusion method for the fusion of LiDAR and multispectral 

optical data, where the LiDAR classified objects were used as a posteriori in the object rule-based 

winner-takes-all fusion step. 

In addition, all the above studies are based on shallow architectures and hand-crafted feature 

descriptors, which cannot obtain the fine and abstract high-level features of a complex urban 

landscape. Deep learning, on the other hand, is capable of modeling high-level feature 

representations through a hierarchical learning framework [17]. Abstract and invariant features, 

together with the classifiers, can be simultaneously learned with a multilayer cascaded deep neural 

network, which outperforms hand-crafted shallow features in computer-vision tasks, such as image 

classification [18,19], object detection [20], and landmark detection [21,22]. Deep-learning methods 
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have also been a hot topic in remote sensing [23], and have been successfully applied to building and 

road extraction [24], wetland mapping [25], cloud detection [26], and land-cover classification [27].  

Recently, researchers have started to utilize deep learning for multisource remote-sensing data 

fusion [28–30]. A typical framework for multisource data fusion based on deep learning is to construct 

a two-branch network [28–30]. Features from different data sources are first separately extracted via 

each branch and then fused through feature stacking or feature concatenation. The fused features are 

passed to the classifier layer to generate the final classification results. For instance, Xu et al. [28] 

proposed a two-branch convolutional neural network (CNN) for multisource remote-sensing data 

classification, and the network can achieve better classification performance than existing methods. 

Huang et al. [29] used a two-branch CNN for extracting both spatial and spectral features of urban 

land objects for improved urban land-use mapping performance. Hughes et al. [30] adopted a 

pseudo-Siamese CNN, which also had a two-branch structure, to identify corresponding patches in 

SAR (Synthetic Aperture Radar) and optical images.  

Nevertheless, the above studies that use a two-branch network have two drawbacks that could 

be improved. Firstly, the data-fusion method of simply stacking or concatenating different features 

does not consider the importance or contribution of each feature to the final classification task, which 

could be improved by assigning a specific weight to each feature. Secondly, the backbone of the 

network is conventional, e.g., AlexNet [18], which can be replaced by other recent network structures. 

To tackle these problems, this paper modified the original two-branch neural network [28] to 

adaptively fuse hyperspectral and LiDAR data for urban land-use classification. The proposed model 

mainly consists of three parts, i.e., the hyperspectral-imagery (HSI) branch for spatial–spectral feature 

extraction, the LiDAR branch for height-relevant feature extraction, and a fusion module for the 

adaptive feature fusion of the two branches. Specifically, the HSI branch and LiDAR branch share the 

same network structure, which is based on the cascade of a new multiscale residual block in order to 

reduce the burden of network design. During the training procedure, each branch is first separately 

trained, and the whole network is then fine-tuned based on each trained branch.  

The rest of the paper is organized as follows. Section 2 introduces the study area and dataset. 

Section 3 presents the detailed architecture of the modified two-branch network. Section 4 shows the 

experimental results and discussion, and Section 5 provides the main concluding remarks. 

2. Study Area and Dataset 

The study area was the University of Houston campus and its neighboring urban areas, which 

are located in the southeast of Texas, United States. The hyperspectral and LiDAR data were from 

the 2013 IEEE (Institute of Electrical and Electronic Engineers) GRSS (Geoscience and Remote Sensing 

Society) Data Fusion Contest [8]. Specifically, the hyperspectral imagery was acquired on 23 June 

2012, which consisted of 144 spectral bands ranging from 380 to 1050 nm, with a spectral resolution 

of 4.8 nm. The spatial resolution was 2.5 m, while the height and width were 349 and 1905 m, 

respectively. 

The LiDAR data were acquired on 22 June 2012 and had already been co-registered with 

hyperspectral imagery. The spatial resolution of the LiDAR-derived DSM (Digital Surface Model) 

was also 2.5 m. Figure 1 shows a true-color composite representation of the hyperspectral imagery 

and the corresponding LiDAR-derived DSM. 

 

(a) Hyperspectral imagery. 
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(b) LiDAR-derived DSM. 

 

(c) Training samples. 

 

(d) Testing samples. 

Figure 1. Datasets, training, and testing samples used in this study. 

All the training and testing samples are from the Data Fusion Contest. The spatial distribution 

of training and testing samples are depicted in Figure 1c and d, respectively. There are 15 classes of 

interest in this study: grass-healthy, grass-stressed, grass-synthetic, tree, soil, water, residential, 

commercial, road, highway, railway, parking lot 1, parking lot 2, tennis court, and running track. It 

should be noted that parking lot 1 includes parking garages at both the ground level and elevated 

areas, while parking lot 2 corresponds to parked vehicles. 

The numbers of training and testing samples together with colors for each class are shown in 

Table 1. As can been seen, the number of training samples is quite limited, which makes it very 

difficult to achieve high classification accuracy. 

Table 1. Details of training and testing samples for classification. 

No. Class name Training set Testing set Color 

1 Healthy grass 198 1053 
 

2 Stressed grass 190 1064 
 

3 Synthetic grass 192 505 
 

4 Tree 188 1056 
 

5 Soil 186 1056 
 

6 Water 182 143 
 

7 Residential 196 1072 
 

8 Commercial 191 1053 
 

9 Road 193 1059 
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10 Highway 191 1036 
 

11 Railway 181 1054 
 

12 Parking lot 1 192 1041 
 

13 Parking lot 2 184 285 
 

14 Tennis court 181 247 
 

15 Running track 187 473 
 

Total 2832 12,197  

3. Methods 

3.1. Overall Workflow 

The architecture of the proposed modified two-branch neural network is depicted in Figure 2, 

which consists of the hyperspectral branch for the spatial–spectral feature extraction and the LiDAR 

branch for height-relevant feature extraction. The feature-fusion module was utilized to adaptively 

fuse the features from each branch, and the class label was determined after the fully connected (FC) 

layer and the softmax classifier. 

 

Figure 2. Architecture of the proposed two-branch convolutional neural network. 

3.2. Hyperspectral Branch 

The architecture of the proposed hyperspectral branch is depicted in Figure 3. The input of the 

HSI branch is a square patch centered at the pij pixel with a side length k. Since the hyperspectral 

data have 144 bands, some of which are highly corelated, we adopted Principle Component Analysis 

(PCA) and selected the first 10 components, which accounts for more than 99% of the total variances. 

Therefore, the input of the HSI branch was a patch with a size of k × k × 10. 
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Figure 3. Architecture of the proposed hyperspectral imagery (HSI) branch. 

The input and output size of each layer of the HSI branch is illustrated in Table 2. 

Table 2. Configuration of the proposed HSI branch. 

Layer name Input size Output size 

Input 11 × 11 × 10 - 

Conv1 11 × 11 × 10 11 × 11 × 64 

Conv2 11 × 11 × 64 11 × 11 × 128 

Maxpooling1 11 × 11 × 128 6 × 6 × 128 

Residual block-A1 6 × 6 × 128 6 × 6 × 128 

Residual block-A2 6 × 6 × 128 6 × 6 × 128 

Maxpooling2 6 × 6 × 128 3 × 3 × 128 

Conv3 3 × 3 × 128 3 × 3 × 256 

Residual block-B1 3 × 3 × 256 3 × 3 × 256 

Residual block-B2 3 × 3 × 256 3 × 3 × 256 

GAP 3 × 3 × 256 1 × 1 × 256 

FC 1 × 1 × 256 1 × 1 × 128 

Softmax 1 × 1 × 128 1 × 1 × 15 

 

As depicted in Figure 3 and Table 2, the proposed HSI branch mainly consists of three 

convolutional blocks and two maxpooling layers. The first convolutional block includes two 

convolutional layers, i.e., Conv1 and Conv2, which have 64 and 128 filters, respectively. The second 

and third convolutional blocks both consist of two residual blocks, i.e., Residual block-A and Residual 

block-B, whose structure and parameters are shown in Figure 4. Meanwhile, an additional 

convolutional layer, Conv3, was utilized to increase the dimension of the feature map from the 

second Residual block-A, which is 128, to match the dimension of the input of the first Residual block-

B, which is 256. 
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Figure 4. Architecture of Residual block-A and Residual block-B in the HSI branch. O: Output; C: 

Concatenate; ＋: Sum. 

As can be seen from Figure 4, the input dimensions of Residual block-A and B are 6 × 6 × 128 

and 3 × 3 × 256, respectively, while the output dimensions are the same as that of the input. The output 

dimensions of each convolutional layer are also depicted in Figure 4. As for the design of Residual 

block-A and -B, we referred to the hierarchical, parallel, and multiscale residual block proposed by 

Bulat [21], which can increase the receptive field size and improve gradient flow at the same time. 

The residual block shown in Figure 4 has already been successfully used in the field of face landmark 

detections and showed state-of-the-art performance [21]. The usage of two cascaded residual blocks 

were inspired by the Face Alignment Network (FAN) [22], which adopted cascaded Hour Glass 

networks for the extraction of more robust and representative features. Therefore, in this study, we 

also cascaded the two residual blocks to increase its capability for extracting robust and multiscale 

features from origin pixel values. Meanwhile, to reduce the risk of overfitting, we utilized L2 

regularization for the parameters of all the convolutional layers of the HSI branch. Batch 

Normalization (BN) [31] was also used after each convolutional layer for a stable training process and 

to avoid overfitting at the same time. 

In addition, the determination of optimum patch size k is very important. A series of 

experiments were done with different patch sizes, ranging from 9 to 29, according to the spatial 

resolution of the data and the size of the interested objects. The following figure illustrates the curve 

of patch size k versus overall accuracy. As depicted in Figure 5, the overall accuracy achieved the 

highest value of 91.87% when k = 11. When the patch size was larger than 11, the overall accuracy 

decreased with some fluctuations. This is mainly because a larger patch size could bring more noise 

than contextual information for the convolutional neural network. Another demerit of a larger patch 

size is that it could result in the undersegmentation of the remote-sensing data. 

 

Figure 5. Patch size k vs. overall accuracy. 

3.3. LiDAR Branch 

The input of the LiDAR branch is also a square patch centered at the pij pixel with a side length 

k = 11. Inspired by the bilinear network [32], which utilized two identical neural networks to learn 

features with different scales in the field of fine-grained classification, we made the LiDAR branch 

share the same network structure as the HSI branch. In fact, designing two separate networks could 

significantly increase the time cost. By unified-designing the HSI and LiDAR branches, it is now quite 

fast and convenient to formulate the final two-branch neural network. As the LiDAR branch already 

consisted of cascaded residual blocks, it could also extract the robust and multiscale features from 

the LiDAR-derived DSM data as expected. 

3.4. Squeeze-and-Excitation Module for Adaptive Feature Fusion 
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Feature-level fusion should be conducted after the extraction of spatial–spectral features and 

height-relevant features from the HSI branch and the LiDAR branch, respectively. Feature stacking 

or feature concatenation is often used as the feature-fusion method in previous studies. However, the 

method of simply stacking different features together does not consider the importance or 

contribution of each feature to the final classification task, which could be improved by assigning a 

specific weight to each feature. Inspired by Squeeze-and-Excitation Networks (SENet) [19], which 

ranked first in the image-classification task of the 2017 ImageNet Large-Scale Visual-Recognition 

Challenge (ILSVRC), we utilized the Squeeze-and-Excitation module to adaptively learn a specific 

weight for each feature, thus achieving a more robust and effective feature-fusion method than 

feature stacking. The architecture of the feature-fusion module is illustrated in Figure 6. 

 

Figure 6. Structure of the adaptive feature-fusion module. C: Concatenate; ×: pointwise production. 

The configuration of the feature-fusion module is depicted in Table 3, which shows the input 

and output size of each layer. 

Table 3. Configuration of the adaptive feature-fusion module. 

Layer name Input size Output size 

HSI branch output 3 × 3 × 256 - 

Lidar branch output 3 × 3 × 256 - 

GAP 3 × 3 × 256 1 × 1 × 256 

FC1 1 × 1 × 256 1 × 1 × 64 

FC2 1 × 1 × 64 1 × 1 × 256 

Sigmoid 1 × 1 × 256 1 × 1 × 256 

Flatten 3 × 3 × 256 1 × 1 × 2304 

Concat 1 × 1 × 2304, 1 × 1 × 2304 1 × 1 × 4608 

FC3 1 × 1 × 4608 1 × 1 × 128 

Softmax 1 × 1 × 128 1 × 1 × 15 

 

As shown in Figure 6 and Table 3, the input features of the fusion module are extracted from the 

HSI and the LiDAR branches, both of which have the same dimension of 3 × 3 × 256. The original 

features are separately passed through two parallel SE blocks, after which they are recalibrated or 

reweighted. As can be seen, the recalibrated features from both branches still have the same 

dimensions of 3 × 3 × 256. Afterward, they are flattened to the dimensions of 1 × 1 × 2304, respectively, 

and then concatenated to generate a feature vector with dimensions of 1 × 1 × 4608. Next, the 

concatenated vector is passed through a fully connected layer with 128 neurons and finally fed into 

the softmax layer to generate the predicted class labels. 

The structure of the SE block is described as follows. For any given features U, they are first 

passed through a global average pooling (GAP) layer to produce a channel descriptor, which embeds 
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the global distribution of channel-wise feature responses. This is followed by two FC layers and a 

sigmoid layer, in which the channel-specific weight can be learned through a self-gating mechanism 

based on channel dependence. The output features of the SE block were already recalibrated or 

reweighted, leading to adaptively emphasizing the informative features and suppressing the less 

useful ones. Compared with the traditional feature-stacking fusion method, the SE module in this 

paper can provide a more effective and rational way for feature-level fusion of multisource data. 

3.5. Data Augmentation and Network Training 

As is known, training a deep CNN model needs a large quantity of labeled data. However, for 

remote-sensing applications, it is laborious and time-consuming to obtain enough labeled data. To 

address this issue, data augmentation was utilized in this study. Original training patches were 

rotated 90°, 180° and 270°, flipped left and right, up, and down to increase the number of training 

samples. Furthermore, classes with fewer training samples were oversampled to tackle the problem 

of class imbalance. 

All the parameters of the proposed two-branch network need to be trained to generate the best 

model for urban land-use classification. In this study, a two-step training strategy was used to train 

the whole network. Firstly, the HSI and LiDAR branches were separately trained with a larger initial 

learning rate of 10−4. Secondly, the pretrained HSI and LiDAR branches were merged through the 

adaptive feature-fusion module, and the whole network was fine-tuned with a smaller initial learning 

rate of 10−5. The Adam optimizer [33] was used due to its capability of automatically adjusting the 

learning rate, which could result in a faster and more stable training procedure.  

Focal loss [20] was utilized as the loss function in this study instead of traditional cross-entropy 

loss. This is mainly because focal loss has the merits of downweighing the loss assigned to well-

classified examples, which prevents the vast number of easy examples from overwhelming the 

classifier during training [20]. 

In this study, 90% of the training set was randomly selected to optimize the parameters of the 

proposed two-branch neural network. The remaining 10% of the training samples were used as the 

validation set to justify the performance of the network during training process. As for the testing 

set, it was only used for calculating the final overall accuracy and the confusion matrix after the 

network was well-trained. 

The proposed two-branch network was trained with the TensorFlow library [34] on Ubuntu 

16.04 operation system with an Intel CORE i7-7800 @ 3.5 GHz CPU and an NVIDIA GTX TitanX GPU 

with 12 GB memory. 

3.6. Accuracy Assessment 

In order to assess the performance of the proposed two-branch network for urban land-use 

classification, both visual evaluation and a confusion matrix were adopted in this study. Visual 

inspection was used to check the visual effects, while the confusion matrix, derived from the testing 

samples, was used to quantitatively assess the classification accuracy of the proposed method. It 

should be noted that all the testing samples are from the 2013 IEEE GRSS Data Fusion Contest, which 

are the same as in Reference [28]. 

4. Results and Discussion 

4.1. Results of Urban Land-Use Classification 

In order to evaluate the performance of the proposed two-branch neural network for urban land-

use mapping, a series of classification maps are depicted in Figure 7 including the following cases:  

(a) HSI branch only, i.e., using only HSI data and the HSI branch for classification; 

(b) LiDAR branch only, i.e., using only LiDAR data and the LiDAR branch for classification; 

(c) the proposed two-branch CNN. 
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(a) HSI branch only. 

 

(b) LiDAR branch only. 

 

(c) Proposed two-branch convolutional neural network (CNN). 

Figure 7. Classification maps for (a) HSI branch only; (b) LiDAR branch only; (c) proposed two-branch 

CNN. 

It is evident that the synthetic use of HSI and LiDAR data leads to a classification map with a 

better visual effect and higher quality when compared with the results of only the HSI branch and 

only the LiDAR branch. 

Meanwhile, the HSI branch yields a better classification map with fewer errors than that of the 

LiDAR branch. However, due to the large spectral variance of different urban land-use types, 

hyperspectral data alone could also result in inaccurate classification results. For instance, the eastern 

area of the image is covered by some clouds, which leads to the spectral distortion of certain land-

use types, resulting in more classification errors. The LiDAR data alone also do not contain enough 

information to differentiate complicated urban objects, especially for different objects with the same 

or similar elevation. Nonetheless, the fusion of HSI and LiDAR data can avoid the above demerits 

and benefit from both the spectral characteristics of the HSI image and the geometric information of 

the LiDAR data, which could lead to a better classification map. 

4.2. Accuracy-Assessment Results 

In order to quantitatively evaluate the proposed approach in the study, the confusion matrix, 

together with the overall accuracy (OA) and Kappa coefficient, were calculated based on the testing 

samples. Results are shown in the Table 4. 

Table 4. Confusion matrix of the proposed method. 

 Testing data 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 UA 
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1 875 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 

2 0 894 0 0 0 0 0 0 0 0 0 0 0 0 0 100 

3 0 0 504 0 0 0 0 0 0 0 0 0 0 0 0 100 

4 15 0 0 1020 2 0 9 6 5 0 0 3 0 0 0 96.2 

5 0 0 0 0 1051 0 0 0 10 0 0 0 0 0 0 99.0 

6 0 0 0 0 1 143 0 0 0 0 0 0 0 0 0 99.3 

7 9 0 0 32 1 0 968 8 12 22 0 5 0 0 0 91.6 

8 0 11 0 0 0 0 14 989 0 97 0 5 0 0 0 88.6 

9 0 0 0 2 0 0 21 0 904 2 5 5 0 0 0 96.3 

10 80 6 0 2 0 0 0 0 66 838 1 0 8 0 0 83.7 

11 74 152 0 0 0 0 57 32 13 77 1020 0 12 0 0 71.0 

12 0 0 0 0 0 0 0 11 47 0 21 1014 0 0 0 92.8 

13 0 1 0 0 1 0 0 5 2 0 7 9 265 0 0 91.4 

14 0 0 0 0 0 0 0 1 0 0 0 0 0 247 0 99.6 

15 0 0 1 0 0 0 0 1 0 0 0 0 0 0 473 99.6 

PA 83.1 84.0 99.8 96.6 99.5 100 90.3 93.9 85.4 80.9 96.8 97.4 93.0 100 90.3  

OA 91.87 Kappa 0.9117 

1: Healthy grass; 2: Stressed grass; 3: Synthetic grass; 4: Tree; 5: Soil; 6: Water; 7: Residential; 8: 

Commercial; 9: Road; 10: Highway; 11: Railway; 12: Parking lot 1; 13: Parking lot 2; 14: Tennis court; 

15: Running track. 

The proposed two-branch network shows good performance, with an OA of 91.87% and a Kappa 

of 0.9117. However, the highway class had the lowest producer accuracy (PA) with 80.89%, while all 

the other classes had a higher PA of more than 83%. This could be due to the spectral mixture between 

highway and other impervious surface types, such as railway and commercial areas, since they all 

consist of concrete materials. It should also be noted that all highway training samples are outside 

the cloud-covered regions, while nearly half of the highway testing samples are from the cloud-

covered regions. This could cause the spectral inconsistency between training and testing samples of 

the highway class, which could result in relatively lower classification accuracy. 

In addition, the confusion matrix indicates that most classification errors occurred among the 

following land-use types: Highway, railway, road, and parking lot 1. This is mainly because all those 

land-use categories belong to impervious surfaces that share similar spectral properties. Highway, 

railway, and road also share similar shape features, which could increase the difficulty in separating 

between them using a patch-based CNN model, since the CNN takes spatial contextual information 

into consideration when classifying each pixel. Other errors occurred where several healthy-grass 

and stressed-grass pixels were misclassified as the railway. This is uncommon in remote-sensing 

image classification, since grass and railway share different spectral characteristics. However, when 

checking the classification map, it is in the eastern cloud-covered regions that several grass areas were 

misclassified as railway. This is mainly because the existence of heavy cloud distorted the spectral 

curves of the grass, which led to the uncommon classification errors. 

4.3. Ablation Analysis 

To further evaluate the performance of the proposed method, a series of ablation experiments 

were done including: (a) only the HSI branch, (b) only the LiDAR branch, and (c) feature-stacking 

(i.e., using stacked or concatenated features of HSI and LiDAR instead of adaptive fusion for 

classification). The results of class-level classification accuracy are illustrated in Table 5 including all 

the above three cases together with the proposed two-branch network. 
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Table 5. Class-level classification accuracy. 

No. Class name Only HSI branch Only LiDAR branch Feature-stacking Proposed 

1 Healthy grass 82.05 47.39 82.33 83.09 

2 Stressed grass 84.02 33.46 84.96 84.02 

3 Synthetic grass 96.04 91.49 99.80 99.80 

4 Tree 86.27 74.53 89.58 96.59 

5 Soil 94.51 33.81 99.62 99.53 

6 Water 79.02 58.74 98.60 100.00 

7 Residential 95.06 57.65 83.96 90.30 

8 Commercial 72.17 90.69 85.84 93.92 

9 Road 82.06 37.39 86.31 85.36 

10 Highway 65.35 42.08 69.88 80.89 

11 Railway 71.82 75.90 90.61 96.77 

12 Parking lot 1 92.03 25.46 93.56 97.41 

13 Parking lot 2 85.61 61.40 91.58 92.98 

14 Tennis court 97.17 74.49 100.00 100.00 

15 Running track 95.06 57.65 83.96 90.30 

OA (%) 83.83 53.42 88.25 91.87 

Kappa 0.8244 0.4967 0.8725 0.9117 

 

Table 5 indicates that the LiDAR branch alone achieved the lowest classification accuracy with 

an OA of 53.42% and a Kappa of 0.4967. This is mainly due to the fact that height information alone 

can hardly separate different land-use types in complicated urban regions. Meanwhile, the HSI 

branch alone achieved much higher accuracy than that of only the LiDAR branch, with an OA of 

83.83% and a Kappa of 0.8244. The reason why the HSI branch alone outperformed the LiDAR branch 

alone is that HSI images can provide much more abundant spectral and spatial information of land 

surfaces than LiDAR-derived DSMs, leading to a higher capability of differentiating complex urban 

land-use types. 

Table 5 also indicates that, when compared with single-source data alone, the integration of 

multisource HSI and LiDAR data leads to a significant improvement of classification accuracy for 

almost each urban land-use class. This is reasonable since the separability of urban objects could 

increase if we simultaneously integrate multiple spectral and elevation features. Compared with 

hyperspectral data alone, the integration of LiDAR data improved OA by 4.42% and 8.04% through 

feature-stacking and the proposed two-branch network, respectively. In terms of class-level accuracy, 

the main contribution of LiDAR data was in the following classes: Synthetic grass, tree, soil, water, 

commercial, railway, and parking lot 1 and 2. This is due to some of the classes (e.g., grass and tree) 

sharing very similar spectral characteristics but having different height values; therefore, the 

inclusion of LiDAR-derived DSMs could significantly improve the separability between these classes. 

It should be noted that the proposed two-branch network, which uses adaptive feature fusion, 

outperforms the traditional feature-stacking method by improving OA from 88.25% to 91.87%, with 

an increase of 3.62%. This is because, when simply stacking all features together, the values of each 

feature can be significantly unbalanced, and the information carried by each feature may not be 

equally represented. Therefore, we introduced the adaptive squeeze-and-excitation module to 

automatically assign a weight to each feature according to its importance, which could integrate 

multiple features in a more natural and reasonable way, resulting in the accuracy improvement of 

3.62%. 

Since the proposed approach used a pixel-centered patch as input to the networks, more 

comparative experiments should be done to compare the performance between the pixel-based and 

patch-based classification, and to investigate the effect of the PCA and non-PCA approaches. 

Therefore, a series of ablation experiments were performed, and the comparison results are shown in 

the following table. 
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Table 6. Comparison with pixel-based and non-Principle Component Analysis (PCA) methods. 

Method OA Kappa 

Pixel-based and non-PCA 81.49% 0.8001 

Pixel-based and PCA 86.05% 0.8486 

Patch-based and non-PCA 89.38% 0.8849 

Patch-based and PCA 91.87% 0.9117 

 

Specifically, since the input was changed to 1D pixel vectors, all the 2D convolutional layers of 

the original patch-based two-branch CNN were replaced by 1D convolutional layers in the pixel-

based CNN, while all parameters remained the same. As can be seen from Table 6, the patch-based 

models outperformed the pixel-based ones with an accuracy increase of 7.89% and 5.82% for the non-

PCA and PCA-based approaches, respectively. This is mainly because, when compared with the 

patch-based model, the pixel-based model only considers the spectral characteristics of the land 

object. However, the patch-based model can take both the spectral and spatial contextual information 

into account, leading to more discriminative and representative features which are essential for 

classification. When compared with non-PCA approaches, the usage of PCA has a positive effect on 

classification, leading to an accuracy increase of 4.56% and 2.49% for the pixel-based and patch-based-

models, respectively. This is due to the fact that PCA can effectively reduce the data redundancy of 

the original hyperspectral imagery, which can reduce the overfitting risk of the convolutional neural 

network and, thus, improve its generalization ability when predicting on new datasets. 

Additionally, the proposed approach can be considered as a reference framework for 

multisource data fusion in the remote-sensing field.  

4.4. Comparison with Other Methods 

To further justify the performance of the proposed approach, it should be compared with other 

widely used machine-learning methods, such as random forest (RF) [35], support vector machines 

(SVM) [36], and state-of-the-art methods.  

For RF, the Gini coefficient was used as the index for feature selection. For SVM, the Radial Basis 

Function (RBF) was used as the kernel function. As for the determination of the hyperparameters of 

RF and SVM, we utilized the grid-search method to find the optimal values. Specifically, the ranges 

of used parameters for RF are as follows. The number of trees ranged from 50 to 500 with a step of 

10, while the max depth had a range of 5 to 15 with a step of 2. For SVM, gamma ranged from 0.001 

to 0.1 with a step of 0.001, while punishment coefficient C had a range of 10 to 200 with a step of 10. 

After the procedure of grid search, RF achieved the best overall accuracy of 83.97% when the number 

of trees was 200 and the max depth was 13. Meanwhile, SVM achieved the best accuracy of 84.16% 

with a gamma of 0.01 and a C of 100. 

Meanwhile, we selected Xu’s model [28] as a strong baseline since it first utilized a two-branch 

CNN for HSI and LiDAR data fusion, and achieved an OA of 87.98%, also on the 2013 IEEE GRSS 

Data Fusion Contest testing dataset. All the above methods were trained and tested with the same 

training and testing samples as the proposed method to maintain fairness. The accuracy comparison 

results are listed in Table 7. 

Table 7. Accuracy comparison with other methods. 

Method OA Kappa 

Random Forest 83.97% 0.8264 

Support Vector Machine 84.16% 0.8282 

Xu et al. [28] 87.98% 0.8698 

Our two-branch CNN 91.87% 0.9117 

 

Table 7 indicates that our proposed modified two-branch CNN outperformed both RF and SVM 

with an OA improvement of 7.90% and 7.71%, respectively. This was expected since, when compared 
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with traditional machine-learning methods, the CNN could learn high-level spatial features of 

complicated and fragmented urban land-use types, which led to a more robust and accurate 

classification result. 

When compared with Xu’s state-of-the-art model, the proposed method in this study improved 

OA from 87.98% to 91.87%, with an increase of 3.89%. However, when using feature-stacking, the 

modified two-branch CNN in this study only achieved a slight accuracy increase of 0.27% compared 

to Xu’s model. This indicates that, when compared with the modification of the network structure, 

the introduction of the feature-fusion module contributed more to the increase of classification 

accuracy. This is because the feature-fusion module could learn the importance of each feature, which 

can emphasize more effective features while suppressing the less informative ones, leading to a more 

reasonable and robust fusion strategy for multisource remote-sensing data. The backbone of the 

modified two-branch CNN is less effective than the feature-fusion strategy and does not show 

superior performance to that of Xu’s model. 

As stated above, the fusion method of this study is more effective than the model structure itself, 

therefore, a more comprehensive comparison with existing methods is necessary. In fact, as stated in 

the Introduction, most of the feature-level fusion studies just simply stacked and concatenated the 

features from LiDAR and HSI data and then carried out the classification based on machine learning 

classifiers such as decision tree, support vector machine and random forest. Relevant studies include 

that of Man et al. [9], Gonzalez et al. [14], Sasaki et al. [16]. However, these approaches gave equal 

importance to all the features, which could bring in redundant information and extra noise. Different 

from those feature-stacking methods, the feature fusion approach in this study takes the importance 

of multisource features into account, which could effectively highlight those most informative 

features while reduce the noisy ones. Meanwhile, some existing methods designed a feature fusion 

model to reconstruct the multisource features to increase the classification performance. One concrete 

example is Debes’s study [8], in which a graph-based fusion model was used to re-project all the 

features into a low-dimensional subspace to increase the robustness of the fused features. Actually, 

the newly reconstructed features were more informative with less noises, however, this method was 

not that straight-forward when compared with our approach, where all the original features were 

directly re-weighted in our feature-fusion model. Nonetheless, the graph-based fusion method can 

be introduced in the deep learning model in future research. 

5. Conclusions 

This paper proposed a modified two-branch convolutional neural network for urban land-use 

mapping using multisource hyperspectral and LiDAR data. The proposed two-branch network 

consists of an HSI branch and a LiDAR branch, both of which share the same network structure in 

order to reduce the burden and time cost of network design. Within the HSI and LiDAR branches, a 

hierarchical, parallel, and multiscale residual block was utilized, which could simultaneously 

increase the receptive field size and improve gradient flow. An adaptive feature-fusion module based 

on a Squeeze-and-Excitation Net was proposed to fuse the HSI and LiDAR features, which could 

integrate multisource features in a natural and reasonable way. Experiment results showed that the 

proposed two-branch network had good performance, with an OA of almost 92% on the 2013 IEEE 

GRSS Data Fusion Contest dataset. When compared with hyperspectral data alone, the introduction 

of LiDAR data increased OA from almost 84% to 92%, which indicates that the integration of 

multisource data could improve classification accuracy in complicated urban landscapes. The 

proposed adaptive fusion method increased accuracy by more than 3% when compared with the 

traditional feature-stacking method, which justifies its usefulness in multisource data fusion. The 

two-branch CNN in this paper also outperformed traditional machine-learning methods, such as 

random forest and support vector machines. 

This paper demonstrates that the modified two-branch network can effectively integrate 

multisource features from hyperspectral and LiDAR data, showing good performance in urban land-

use mapping. Future work should be carried out on more datasets to further justify the performance 

of the proposed method. 
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