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Abstract: OpenStreetMap (OSM) is a free map that can be created, edited, and updated by volunteers
globally. The quality of OSM datasets is therefore of great concern. Extensive studies have focused
on assessing the completeness (a quality measure) of OSM datasets in various countries, but very
few have been paid attention to investigating the OSM building dataset in China. This study aims
to present an analysis of the evolution, completeness and spatial patterns of OSM building data
in China across the years 2012 to 2017. This is done using two quality indicators, OSM building
count and OSM building density, although a corresponding reference dataset for the whole country
is not freely available. Development of OSM building counts from 2012 to 2017 is analyzed in
terms of provincial- and prefecture-level divisions. Factors that may affect the development of OSM
building data in China are also analyzed. A 1 × 1 km2 regular grid is overlapped onto urban areas of
each prefecture-level division, and the OSM building density of each grid cell is calculated. Spatial
distributions of high-density grid cells for prefecture-level divisions are analyzed. Results show
that: (1) the OSM building count increases by almost 20 times from 2012 to 2017, and in most cases,
economic (gross domestic product) and OSM road length are two factors that may influence the
development of OSM building data in China; (2) most grid cells in urban areas do not have any
building data, but two typical patterns (dispersion and aggregation) of high-density grid cells are
found among prefecture-level divisions.
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1. Introduction

Volunteered geographic information (VGI) is geographical information that can be created, edited,
and updated voluntarily by individuals [1]. OpenStreetMap (OSM), as a typical VGI project, is an online
map with free content—everyone can edit and use it. Many applications have been proposed using
OSM data, such as routing and navigation [2,3], crisis mapping [4,5], three-dimensional modeling [6,7],
and land-use/cover mapping [8]. OSM data are free to use, have global coverage, and are also
up to date. However, most OSM data have been contributed by “non-professional” or “amateur
geographers” [9,10]. The quality of the data is therefore of great concern, and many studies have
paid attention to this [11–13]. According to the International Organization for Standardization
definition, spatial data quality includes six main measures: Completeness, logical consistency,
positional accuracy, temporal quality, semantic accuracy, and usability. Among these quality elements,
the completeness measure, which reflects whether a specific area has been covered well, has been paid
much more attention.
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Extensive research has been conducted on assessing the completeness of OSM datasets in various
countries by comparing with corresponding reference datasets which may be obtained from either
an authoritative or commercial dataset. For example, Haklay [10] assessed the completeness of the
OSM road dataset in England by comparison with a corresponding dataset produced by Ordnance
Survey, an authoritative mapping agency in the UK. Girres and Touya [14] compared the OSM dataset
in France with a reference dataset that produced by the French National Mapping Agency. Goetz
and Zipf [15] compared the building data of OSM and official datasets in Germany. They found that
the building completeness of OSM datasets in Germany was only 30%. Hecht et al. [16] used the
so-called “unit-based” and “object-based” approaches for assessing the building completeness of
OSM datasets in two states of Germany (Rhine-Westphalia and Saxony). The unit-based approach
denoted a comparison of building number or building area between the OSM and reference datasets;
the object-based approach denoted the overlapped building area between OSM and reference datasets
in proportion to the total building area of a reference dataset. Similar studies have also been carried
out in the Canada [17], England [18], Germany [19–22], Iran [23], Italy [24], Switzerland [25] and
United States [26–29], which all used either an authoritative or commercial dataset as the reference for
assessing the completeness of an OSM dataset.

Reference datasets are not always available in practical applications. This is because they can
be very expensive to purchase or have restrictions for usage. Some studies have therefore assessed
OSM completeness without a reference dataset. For instance, Goodchild and Li [30] proposed three
approaches (crowd-sourcing, social, and geographic) for quality assurance in VGI. Mocnik et al. [31]
identified a variety of groundings (e.g., perception-based and data-based) used for measuring quality.
Antoniou and Skopeliti [32] reviewed four types of quality indicators, i.e., data, demographic,
socio-economic, and contributors’ indicators. Barron et al. [33] developed a framework, including
25 indicators (e.g., “Development of OSM Features and Tags” and “Completeness of House Numbers
tagged to Buildings”) for OSM quality assessment, which can be solely based on analysis of historical
data of an OSM dataset. Gröchenig et al. [34] used historical data to analyze OSM completeness.
They found that while the OSM data in a region were almost complete, the increment of data in such a
region was less than 3%. Fan [35] used “development of building count over time” which was also
based on analyzing the historical data in OSM. Mobasheri et al. [36] analyzed the OSM sidewalk data
by counting the number of road segments with/without a tag. Recently, Zhou [37] proposed using
OSM building density as a proxy indicator to quantitatively estimate OSM building completeness.
Zhou and Tian [38] also proposed three geometric indicators (i.e., area, perimeter, and density) for
quantitatively estimating the completeness of street blocks in an OSM road dataset.

In addition to proposing quality indicators and approaches, some studies paid much more
attention to the development or evolution of OSM dataset(s) in one or multiple specific regions,
although the main purpose was still for the quality analysis. For instances, Neis et al. [39] analyzed the
evolution of OSM road datasets in Germany between the years 2007-2011 and found that the OSM
dataset even provided 27% more data than the commercial dataset in this region. Arsanjani et al. [40]
developed a contribution index to also investigate the dynamism of the OSM dataset in Germany.
Neis et al. [41] analyzed the development of OSM road datasets in 12 selected urban areas around the
world over different years and found that socio-economic factors (e.g., income and population density)
affected the completeness of an OSM dataset. Similar conclusions were also obtained by Zielstra and
Zipf [42]. Corcoran et al. [43] analyzed the growth of three OSM road datasets in Ireland and explained
the growth as two patterns, i.e. densification and exploration. Similar studies have also been carried out
in China [44,45], although they all focused on OSM road networks. In addition, infrastructure was also
described for understanding the OSM project [46].

The main objective of this study is to investigate the OSM building data in China for two main
reasons. First, building datasets in China produced by authoritative mapping agencies or commercial
companies are not freely available to the public. It is thus very desirable to employ some open datasets
as alternatives, especially for researchers and educators who may care more about the quantity and/or
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quality rather than the specific region of a dataset. The OSM dataset may be used as it is freely available.
Second, few studies have focused on analyzing the OSM building datasets in China. It is therefore
interesting to investigate a variety of research issues, such as:

• Q1: How has the OSM building data in China developed in recent years?
• Q2: Which province- or prefecture-level division(s) has/have relatively more OSM building data?
• Q3: What is/are the potential factor(s) that affect the spatial distribution of OSM building data

in China?
• Q4: Which grid cell(s) in urban areas has/have relatively higher OSM building density values?
• Q5: Is there any pattern for those high-density grid cells among different prefecture-level

divisions?

The above research issues will be addressed in this study, in order to analyze the evolution (Q1)
and completeness (Q2 and Q4), and also to understand the spatial patterns (Q3 and Q5) of the OSM
building data in China, which may benefit users who choose appropriate OSM building dataset(s).

The aim of this study is to employ two existing quality indicators, OSM building count and
OSM building density, for the analysis. More precisely, first of all, the numbers of OSM building
data from 2012 to 2017 were calculated in terms of provincial- and prefecture-level divisions in China.
Factors that may affect the development of the OSM building data in China were also analyzed. Then,
a 1 × 1 km2 regular grid was further overlapped onto the OSM building datasets in urban areas, and
those high-density grid cells (whose OSM building data were almost complete) were further extracted
and analyzed.

The remainder of this article is structured as follows: Section 2 presents the quality indicators,
methods, and steps for analyzing the evolution, completeness and spatial patterns of OSM building
data in China; Section 3 describes the various datasets involved in this study; Section 4 analyzes the
experimental results; and Section 5 concludes and discusses this study.

2. Methodology

2.1. Quality Indicators

2.1.1. OSM Building Count

OSM building count denotes the number of OSM buildings in a given region. Several
studies [34,35] have proposed that the “development of building count over time” can be used
for quality assessment of OSM building completeness. Theoretically, the OSM building count is
positively correlated with the completeness of OSM building data in a region, although the former
cannot specifically indicate a completeness value.

2.1.2. OSM Building Density

OSM building density denotes the total areas of OSM building data in a given region in proportion
to the land area of such a region. This indicator has recently been promoted by Zhou [37] as a potential
proxy for quantitative completeness estimation of OSM building data in urban areas. He found that
the OSM building density is positively correlated with the completeness of OSM building data in
urban areas. Therefore, the OSM building density indicator was also used. However, non-urban areas
were not considered because a low density of OSM building data in non-urban areas may still be
complete [37].

2.2. Methods and Steps

2.2.1. Analysis Based on OSM Building Count

The tenet of this method was to compare the OSM building counts across different years
for analyzing the evolution (Q1), and also to compare those among different provincial- and
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prefecture-level divisions for analyzing the Q2. More precisely, the development of OSM building
counts across different years (from 2012 to 2017) was calculated, in terms of provincial- and
prefecture-level divisions. These years were considered because there were very few OSM building
data (e.g., no more than 5,000) in each provincial- and prefecture-level division before 2012.

Factors that may influence the development (or the spatial distribution) of OSM building data in
China were also analyzed (Q3). These included the gross domestic product (GDP), population, urban
land area, and OSM road length. GDP and population were considered because previous studies [38,39]
found that population and socio-economic factors may have an impact on the completeness of OSM
data. Urban land area was considered because the building count is often positively correlated
with the size of an urban area. OSM road length was also considered because the OSM project was
initially developed for collecting road data all over the world, and thus we assumed that volunteers
may begin to contribute other geographical data (e.g. buildings and land uses), while road data are
relatively complete.

The analysis based on OSM building count included the following steps:

• Step 1: Intersect the OSM building dataset for each year with provincial- and prefecture-level
administrative datasets, respectively.

• Step 2: Calculate the OSM building count in each provincial- or prefecture-level division.
• Step 3: Compare the OSM building counts among different provincial- or prefecture-level divisions

across different years (2012–2017).
• Step 4: Calculate the correlations between the OSM building count and the four factors (GDP,

population, urban land area, and OSM road length) in terms of provincial- and prefecture-level
divisions for different years.

2.2.2. Analysis Based on OSM Building Density

The tenet of this method was to compare the OSM building density values based on a smaller
analysis unit (1 × 1 km2 grid) across different years for analyzing the evolution (Q1), and also to
compare among different grid cells for analyzing the completeness in urban areas (Q4). This method
was somehow implemented by following the steps proposed by Zhou [37], however, the correlation
between the density and completeness of OSM building data was first validated with several study
cases in China. The specific steps are listed as follows:

• Step 1: Create a 1 × 1 km2 grid across each urban area in China.
• Step 2: Calculate the OSM building density and completeness values for each grid cell (here, the

OSM building completeness denotes the ratio of the total area of OSM building data to that of
corresponding reference building data in each grid cell).

• Step 3: Plot the relationship between OSM building density and completeness for all the grid cells
in each urban area.

Rather than applying the above relationship to estimate the OSM building completeness for all the
grid cells, only those grid cells whose OSM building density was either smaller or larger than a certain
threshold were analyzed. Otherwise, the estimation error may increase dramatically, as discussed by
Zhou [37]. More precisely,

• Step 4: Calculate the percentage of grid cells whose OSM building density equals 0%, indicating
that the corresponding OSM building completeness is also 0%, or there are no buildings in such
grid cells. Calculate the percentage of grid cells whose OSM building density is larger than a
certain threshold (this threshold can be determined as the inverse of the slope of the relationship
obtained in Step 3), to find out which grid cells have relatively higher density values or tend to
be complete.

• Step 5: Compare the percentages of grid cells in urban areas with different OSM building density
ranges across different years.
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A clustering approach is proposed to analyze the spatial pattern of those grid cells (called high-density
grid cells) whose density values larger than a certain threshold (Q5). The aim of this approach is to
group neighboring high-density grid cells into a cluster (Figure 1). Neighboring high-density grid cells
were found by searching in either the four-direction clustering or the eight-direction clustering from
an original high-density grid cell. After clustering, the number of clusters and the maximum area of a
cluster was calculated for all the urban areas in each prefecture-level division. Finally, the above two
measures (cluster count and maximum cluster area) were compared among different prefecture-level
divisions, for which there was at least a single cluster.
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3. Data

Mainland China (excluding Hong Kong, Macao, Taiwan and the islands in the South China Sea)
was used for analysis. The datasets involved in this study were as follows:

(1) OSM datasets: Buildings and roads in the OSM datasets of China for 6 years (2012–2017) were
obtained from http://download.geofabrik.de/index.html. Each OSM dataset was obtained for
the last month (December) of each year.

(2) Administrative datasets: Provincial- and prefecture-level administrative datasets were
downloaded from http://www.gadm.org. A total of 34 provincial-level divisions and
334 prefecture-level divisions in China were used in the analysis.

(3) Land-use/cover datasets: Globe land-cover/use datasets at 30 m resolution were downloaded
(http://globallandcover.com) and “artificial surface” was viewed as the urban areas.

(4) Socio-economic data: Three types of socio-economic data (population, GDP, and urban land area
in terms of provincial- and prefecture-level divisions) across different years were acquired from
the National Bureau of Statistics in China (http://www.stats.gov.cn).

4. Results and Discussions

4.1. Analyses Based on OSM Building Count

Figure 2 shows the development of OSM building counts in China from 2012 to 2017. In 2012,
there were 38,928 OSM buildings, but this value increased to 755,376 by the end of 2017, almost
20 times that in 2012. This demonstrates that the OSM building data have significantly developed in
recent years.

http://download.geofabrik.de/index.html
http://www.gadm.org
http://globallandcover.com
http://www.stats.gov.cn
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Figures 3 and 4 show the number distributions of OSM building data for provincial- and
prefecture-level divisions in China from 2012 to 2017.

Figures 3 and 4 demonstrate the following:

(1) For most provincial-level divisions, the number of OSM building data was less than 5000 in 2012.
However, for 7 out of 34 provincial-level divisions, the number was 30,000 and higher by 2017.
These provinces (Shandong, Jiangsu, Zhejiang, Guangdong, Beijing, Shanghai, and Tianjin) were
all located on the eastern coast of China. The heterogeneous distribution of OSM building data in
China is evident. For example, by the end of 2017, the number of OSM building data was 175,215
in Jiangsu, and only 1463 in Guizhou.

(2) The number of OSM building data was less than 2500 in 2012 for 329 out of the 334 prefecture-level
divisions in China. However, the number for 21 prefecture-level divisions, mostly located on
the eastern coast of China, was greater than 10,000 in 2017. Although the number of OSM
building data in Beijing exceeded 40,000, those for 83% of prefecture-level divisions were still less
than 2500.

Table 1 lists the correlations among OSM building count and four potential factors (GDP,
population, urban land area, and OSM road length) for provincial- and prefecture-level divisions
in China.

Table 1. Correlations among OSM building counts and four potential factors for 2012 to 2016.

Administrative
Division Year GDP Population Urban Land

Area
OSM Road

Length

Provincial-level

2012 0.407 * 0.149 0.074 0.196
2013 0.425 * 0.157 0.171 0.248
2014 0.579 ** 0.256 0.315 0.449 *
2015 0.720 ** 0.420 * 0.454 * 0.519 **
2016 0.689 ** 0.387 * 0.380 * 0.529 **

Prefecture-level

2012 0.639 ** 0.338 ** 0.294 ** 0.671 **
2013 0.622 ** 0.285 ** 0.301 ** 0.643 **
2014 0.622 ** 0.279 ** 0.295 ** 0.603 **
2015 0.627 ** 0.258 ** 0.279 ** 0.585 **
2016 0.625 ** 0.247 ** 0.263 ** 0.602 **

Significance level: ** p < 0.01 and * p < 0.05. Statistical data for the year 2017 have not yet been published.
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Table 1 shows that in most cases, GDP and OSM road length have moderate correlations with the
number of OSM building data for either provincial- or prefecture-level divisions in China. Indeed,
most OSM building data were located in the relatively developed regions (e.g., eastern coast) of China,
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as shown in Figures 3 and 4. This is probably because there are not only much more buildings in total,
but also more high-income and internet users in relatively developed regions of China. Interestingly,
OSM road length was also positively correlated with the number of OSM building data. One possible
reason is that the longer the OSM road length in a region, the more complete the OSM road data in
such a region, where volunteers begin to contribute other geographical data (e.g., building data).

4.2. Analyses Based on OSM Building Density

Four metropolises in China (Beijing, Shanghai, Tianjin, and Suzhou) were used to investigate
the relationship between OSM building density and OSM building completeness. They were chosen
because the corresponding reference building data were available. Figure 5 plots the line correlations
for these four metropolises. It can be seen in the figure that the slope varies from 3.84 to 4.09, which is
almost consistent with that (3.4–4.0) found by Zhou [37]. It can be inferred from these line correlations
that OSM building data in a grid cell tend to be complete, while OSM building density of this grid cell
is higher than 25%. Therefore, 25% was used as a threshold to determine high-density grid cells, in spite
of the fact that some low-density grid cells may still be complete [37].ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW  10 of 17 
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Figure 6 plots OSM building densities for nine prefecture-level divisions from 2012 to 2017.
The x-axis denotes the year, and the y-axis denotes the number of grid cells within a certain building
density range in proportion to the total number of grid cells completely located within urban areas in
each prefecture-level division. These divisions were chosen because they were ranked top in terms of
OSM building count.
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Figure 6 shows that the number of grid cells whose OSM building density equaled 0% decreased
from 2012 to 2017. Conversely, the number of grid cells whose OSM building density was larger than
0% increased. This indicates an increase of OSM building data in China over the years. Nevertheless,
by the end of 2017, 40–70% of grid cells had an OSM building density equal to 0%, even for the nine
prefecture-level divisions with the largest numbers of OSM building data. Moreover, less than 10% of
grid cells had an OSM building density larger than 25%. This indicates that the OSM building data in
China are still far from complete.

Figure 7 plots the relationships between the cluster count and maximum cluster area, using
the clustering approach proposed in Section 3 for two different cases. Figure 7 shows that for
most prefecture-level divisions, the cluster count was no more than five, and the maximum cluster
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area was smaller than 5 km2. However, for some prefecture-level divisions (e.g., Beijing, Shanghai,
Tianjin, Dalian, and Suzhou), the cluster count was much larger than 5. Conversely, for others (e.g.,
Luoyang, Yueyang, Harbin, and Xi'an), the maximum cluster area was much larger than 5 km2.
This indicates that the spatial distribution pattern of high-density grid cells varied among different
prefecture-level divisions.
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not shown.

Figure 8 shows the density distributions of OSM building data for six typical metropolises
in China, for the year 2017. It can be seen in this figure that in Beijing, Shanghai, and Tianjin
(Figure 8a,c,e), most grid cells whose OSM building density was larger than 25% were dispersedly
located in shopping centers (e.g., 2-Wangfujing in Figure 8a and 6-Nanjing Road in Figure 8c), tourist
centers (e.g., 1-Forbidden City in Figure 8a and 11-Huaihe Garden in Figure 8e), or transportation
centers (e.g., 5-Hongqiao Airport). In Luoyang, Yueyang, and Harbin, on the contrary, most grid cells
whose OSM building density was larger than 25% were aggregated inside the core of urban areas (e.g.,
4-Yueyang Lou district in Figure 8b, 8-Laocheng district in Figure 8d, and 12-Daoli district in Figure 8f).
The reason for the different spatial distribution modes of high-density grid cells is probably due to the
single- or multi-centers of different metropolises.
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5. Conclusions

This study has analyzed the evolution, completeness and spatial patterns of the OSM building
data in China. This may benefit users who obtain free building datasets in China because authorized
building datasets in this country are not freely available. Two existing indicators (OSM building
count and OSM building density) were employed. The numbers of OSM building data (or OSM
building count) in different provincial- and prefecture-level divisions from 2012 to 2017 were analyzed
on the spatial scale and in the temporal dimension. Four potential factors (GDP, population, urban
land area, and OSM road length) that may affect the development of OSM building data were also
investigated. The percentages of different density ranges (0%, 0–25%, >25%) in urban areas were
calculated for several typical prefecture-level divisions, and a clustering approach was proposed
to analyze the spatial distribution of grid cells whose density values were relatively higher (called
high-density grid cells).

The results of this study have demonstrated that:

(1) The OSM building data in China increased by almost 20 times from 2012 to 2017, especially for
those regions located on the eastern coast of China. In most cases, the GDP and OSM road length
factors had a moderate correlation with OSM building count.

(2) Most grid cells in urban areas still have no buildings or their building density is equal to 0%, which
indicates that the OSM building dataset in China is far from being complete. From analyzing the
high-density grid cells, two typical spatial distribution modes (dispersion and aggregation) were
found in multiple prefecture-level divisions.

The above results may benefit users (especially researchers and educators) who choose appropriate
OSM building dataset(s) in China as study area(s). For instance, the provinces and prefecture-level
divisions located on the eastern coast (or relatively developed regions) of China may be preferred
because there are more OSM building data in these regions. Users may also refer to the spatial
distribution modes of different metropolises in Figures 7 and 8 to choose OSM building dataset(s) in
hot spot(s) (e.g., shopping, tourist and/or transportation centers), or those with relatively larger cluster
areas. More importantly, the proposed approach may be used for continually extracting high-density
grid cells, as OSM building data is still being updated. Moreover, volunteers around the world may
be motivated to contribute more OSM building data in various regions (e.g., those provinces or
prefecture-level divisions that have very few OSM building data, or those grid cells that do not have
any OSM building data) of China.

There are some limitations of this study, however. First, specific completeness values for those
provincial- and prefecture-level divisions in China were not given out, because the total building
numbers for various divisions were unknown. Besides, there was not any evidence that the OSM
building count can be used for quantitative completeness estimation of OSM building data, and
this is also the case for the OSM building area indicator. Second, rural areas were excluded using
the OSM building density for analysis, because this indicator is not suitable for analyzing in rural
areas [37]. Therefore, in future work, there is still a need to develop quality indicators for quantitative
completeness estimation of OSM building data, especially in rural areas. One possible alternative is
to consider not only geometric indicators (e.g., OSM building count, area and/or density), but also
socio-economic indicators (e.g., population and/or income). It would also be interesting to investigate
other quality measures (e.g., positional accuracy and semantic accuracy) or geographical features (e.g.,
railways, land uses, and points of interest) in China’s OSM dataset.
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