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Abstract: With the increasingly urgent demand for map conflation and timely data updating, data
matching has become a crucial issue in big data and the GIS community. However, non-rigid
deviation, shape homogenization, and uncertain scale differences occur in crowdsourced and official
building data, causing challenges in conflating heterogeneous building datasets from different
sources and scales. This paper thus proposes an automated building data matching method
based on relaxation labelling and pattern combinations. The proposed method first detects all
possible matching objects and pattern combinations to create a matching table, and calculates
four geo-similarities for each candidate-matching pair to initialize a probabilistic matching matrix.
After that, the contextual information of neighboring candidate-matching pairs is explored to
heuristically amend the geo-similarity-based matching matrix for achieving a contextual matching
consistency. Three case studies are conducted to illustrate that the proposed method obtains high
matching accuracies and correctly identifies various 1:1, 1:M, and M:N matching. This indicates
the pattern-level relaxation labelling matching method can efficiently overcome the problems of
shape homogeneity and non-rigid deviation, and meanwhile has weak sensitivity to uncertain scale
differences, providing a functional solution for conflating crowdsourced and official building data.

Keywords: building matching; relaxation labelling; pattern combinations; multiple scales; map
conflation

1. Introduction

In the context of urbanization and big data, rapid development of geospatial data acquisition has
caused an explosive growth of geospatial datasets. In particular, with the popularity of volunteered
geographic information (VGI), geospatial data updating is undergoing a significant transformation
from top-down active updating to bottom-up crowd updating [1]. On the one hand, crowdsourced
geospatial data play an important role in generating 3D city models or highly precise road maps [2-4].
On the other hand, it is also essential to utilize the existing geospatial data to enrich the user-generated
building information [5]. In practical applications, different departments or volunteers collect various
geospatial datasets with different accuracies, different scales, or different thematic focuses. These
heterogeneous geospatial datasets cannot effectively interoperate with each other, leading to the
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problems of information isolation. It is a crucial issue in the GIS community to conflate multi-source
and heterogeneous geospatial datasets into an enriched or timely data product with higher geometric
precision and detailed attribute information [6,7]. Data matching aims to identify the associated point,
linear, or area objects between two or more geospatial datasets in the same or overlapping region,
which is widely regarded as the essential step of data conflation and map updating. The subject of the
article is building polygon matching.

Due to amateur participation and limited quality inspection, data inconsistencies (such as
uneven scale differences, large geometric discrepancies, and diverse semantic descriptions) possibly
occur between crowdsourced and authoritative geospatial data [8]. Researchers have found that
crowdsourced datasets are characterized by inconsistent levels of detail (LODs) and inexplicit
scales [9]. This inconsistency in LODs may result in the prevalence of 1:M and M:N correspondences
between various datasets. Moreover, user-generated content may be less geometrically accurate
and semantically unstructured, especially in rural or undeveloped areas [10]. This brings about
large challenges for matching crowdsourced and authoritative datasets. In particular, the matching
of multi-scale building polygons is associated with some complex difficulties. Firstly, the shape
and orientation homogenization of building objects and the non-rigid deviations between different
datasets make it difficult to distinguish 1:1 matching objects with similar shapes and layouts [11].
As shown in Figure 1a, most building polygon objects are represented as regularized rectangles with
non-rigid deviations, which can hardly be matched based on shape similarity comparison. Secondly,
the inconsistent LODs lead to low similarity of 1:M and M:N matching objects. As illustrated in
Figure 1b, there are many 1:0, 1:M, N:1, and M:N correspondences with low similarity. Hence, this
paper focus on the particular issue of matching multi-scale building polygons with an improved
relaxation labelling approach.
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Figure 1. Complex difficulties in matching multi-scale building polygons: (a) shape homogenization
and non-rigid deviations between building features; (b) 1:M and M:N matching caused by inconsistent
levels of detail (LODs).

The remainder of the paper is organized as follows. In Section 2, the state of art information
about data matching is reviewed. Section 3 presents an improved building matching method based
on relaxation labelling and pattern combinations. Section 4 elaborates the experimental results and
undertakes some evaluation analysis to demonstrate the efficiency and robustness of the proposed
method. Finally, the conclusions and future works are outlined at the end of the paper.

2. Literature Review

Data matching was developed to find identical objects or positions between multiple geospatial
datasets that reflect the same real-world entity [12-14]. Finding inconsistencies between up-to-date
images and existing geospatial datasets was a significant means of achieving change detection and
data updating [15,16]. This paper tackles the matching of vector building objects, and thus undertakes
a brief review into vector data matching.



ISPRS Int. ]. Geo-Inf. 2019, 8, 38 3of 14

According to object types, vector data matching can be classified into point, linear, and area object
matching. For point matching, multi-criteria-decision methods have been developed to match POIs
(Points of Interest) from different social network platforms [17,18]. For linear matching, most studies
have compared multiple similarities (e.g., geometry, semantic, topology) and applied node-based,
arc-based, polygon-based, or hybrid matching strategies [19-23]. Recent advances have introduced
relaxation labelling, logistic regression, and genetic algorithms to improve the performance of road
network matching [24-26]. Du et al. [27] designed ontology descriptions and fusion operators to
integrate authoritative and crowdsourced road data. Liu et al. [28] proposed a progressive buffering
method to update road maps with OSM (OpenStreetMap) data. Yang et al. [29,30] utilized spatial
clustering and shape fitting to mine pattern-related correspondences between heterogeneous POIs and
the road network. Ai et al. [31] constructed bend hierarchical trees to match contour data and river
networks for geometry inconsistency detection.

Although numerous studies have been devoted to matching various crowdsourced or
authoritative road datasets, little attention has been paid to area object matching (e.g., building
polygons) [32]. Building polygon matching mainly concentrates on identifying object-level
correspondences [33] and conjugate-point pairs between matched objects [34]. Ai et al. [35] and
Fan et al. [32] calculated Fourier descriptors and turning functions to measure the shape similarity
of building polygon objects. Wang et al. [36] proposed a back-propagation neural network approach
for adaptively determining the weights of multiple similarities. Du et al. [37] considered location and
lexical information to determine candidate-matching buildings, and then utilized spatial reasoning
to refine them. Samal et al. [38] and Kim et al. [39] incorporated the geographic context to amend
shape homogenization and non-rigid deviations. Zhang et al. [40] combined shape similarities and
contextual information to find neighboring-compatible matching pairs. The above studies only
computed the matching confidence of 1:1 matching objects, and ignored the total matching probability
of 1:M, N:1, and M:N matching objects. Huh et al. [41] applied the graph embedding technique and
agglomerative hierarchical clustering to explore multi-scale corresponding building objects. However,
due to shape homogenization, non-rigid deviations, and multi-scale complex correspondences, it
is still a challenging task to match multi-scale building polygon data. This paper thus proposes a
novel approach for matching multi-scale building polygons based on relaxation labelling and pattern
combinations. The proposed method mainly extends the relaxation labelling matching model [40,42]
in consideration of simultaneous matches with multiple objects (i.e., pattern combinations).

3. Methodology

Traditional relaxation labelling methods [24,40] ignore the total matching confidences of 1:M and
M:N correspondences, and may reduce the average probability that multiple objects simultaneously
match with an identical one. Hence, this paper explores potential pattern combinations to model 1:M
and M:N matching relations. Generally, the proposed approach consists of two main steps, outlined
as follows:

e  Detect candidate-matching building objects based on buffering analysis, aggregate neighboring
objects into pattern combinations, and calculate the geo-similarities between candidate-matching
objects and pattern combinations to initialize the matching matrix;

e  Compute the contextual compatibilities between neighboring matching pairs to iteratively update
the initial matching matrix, select the matching pairs based on the convergent matching matrix,
and refine them through a matching conflict detection.

Let two building datasets be R ={r;li=1,... ,mjand T = {tj lj=1,...,n}. We suppose that R
is the reference dataset and T is the target one. On the one hand, due to inconsistent LODs between
crowdsourced and authoritative building datasets, it is difficult to assert whether T has a higher
LOD than S, leading to the problem of matching direction [24]. On the other hand, since traditional
relaxation labelling methods ignore total matching confidences for multiple cardinalities, this paper
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aggregates candidate-matching objects into pattern combinations to represent simultaneous matches
with multiple objects. As illustrated in Figure 2, rp; ... rpy and tpy ... tpy are the aggregated pattern
combinations in R and T. This paper calculates not only the matching probabilities of individual objects
(ri, t;), but also calculates those of pattern combinations (r;, tp;) or (rp;, t;) to constitute a matching
matrix. After that, the compatible influences of neighboring objects and pattern combinations are taken
into account to heuristically update the initial matching matrix for a global matching consistency.
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Figure 2. The relaxation labelling matching model in consideration of individual objects and pattern
combinations: (a) graphical representation; (b) matrix representation.

3.1. Matching Probability Initialization in Consideration of Multi-Scale Pattern Combinations

According to the framework of relaxation labelling matching, the matching matrix was first
formed based on local geo-similarities (e.g., position, orientation, area, and shape). One contribution
of this paper is that we aggregated neighboring candidate-matching objects into pattern combinations
and calculated the probabilities of individual objects and pattern combinations to model 1:1, 1:M, and
M:N correspondences. To reduce the computational complexity, a buffering analysis was executed to
filter out the impossible matching features.

3.1.1. Detection of Candidate-Matching Objects and Pattern Combinations

A buffer operation can feasibly detect all possible matching objects between two geospatial
datasets in the same spatial reference [28]. Previous studies have used an empirical buffering threshold
for candidate-matching detection [21,24]. We constructed the Delaunay triangle network (DTg) for
the building centroids in R. The buffering threshold € was then set as the average edge length of
DTpr after deleting all global and local long edges according to the method of Deng et al. [43].
The candidate-matching set of each object r; was determined as those objects in T that fall in the
e-buffer region of r;, that is, CR; = {t; It; € T and ¢; in Buffer (r;, ¢)}. Similarly, the candidate-matching
set of objects ¢; in dataset T can be determined as CTj = {r; | r; € R and r; in Buffer (¢, ¢)}.

Due to inconsistent LODs, one building object may match with multiple objects in another
geo-spatial dataset. As illustrated in Figure 3a, object r; has four candidate-matching objects; that is,
CRy ={t1, ..., t4}. Theoretically, there are Cil+Cal + 2+ C 3 + Gyt =28 matching situations, as
shown in Figure 3b—f. However, the object-level probabilistic matching strategy may identify one
1:1 matching pair but ignore other matching objects with slightly lower probabilities. Hence, it is
necessary to aggregate neighboring candidate-matching objects as a whole pattern combination to
model multi-scale relaxation labelling correspondences.
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Figure 3. The possible matching combinations of one building object r;: (a) one building object r; and
its candidate-matching objects ¢; ... ty; (b) r; matching with none; (c) r; matching with one object; (d) r;
matching with two objects; (e) r; matching with three objects; (f) r; matching with four objects.

To measure the total similarity with more than one candidate-matching object, we should aggregate
them into one whole polygon, named a pattern combination. In detail, for one candidate-matching set,
we iteratively aggregated the two closest building objects and finally obtained one polygon object to
represent the pattern combination of that candidate-matching set. For example, as shown in Figure 4a,
we first aggregated closer ¢; and f; as M(t1, t2) and then aggregated closer M(t1, t2) and t3 as M(ty, t2, t3).
To aggregate two individual building objects, a convex hull approximation algorithm was developed,
which encompasses the following three steps:

e  Step 1: Initialize the convex hull of two building objects as the merged polygon;
e  Step 2: Iteratively add the convex points closest to the intermediate lines to refine the merged polygon;
e  Step 3: Insert the inner concave points within objects t; and £, to further refine the merged polygon.

As shown in Figure 4b, for two objects t; = <uj, ... ,ug>and t, = <vy, ..., vg>, the convex hull
was first initialized as the pattern combination MD(ty, ) = <uy, up, v1, V3, V4, Vs, V7, tig>, of which two
segments s1 = <up, v1> and s, = <vy, ug> were found as the intermediate lines that connect the vertexes
of t; and f,. Secondly, the convex points closest to the intermediate lines (e.g., 17, 14, vg and us5) were
iteratively added to refine the pattern combination as M@t t). Finally, the inner concave points
within objects t; and f; (e.g., u3, v3 and vg) were inserted to refine the pattern combination as M(ty, tp).

223 MO(t,t2) C223 MO(t,t2) C253 M(t,tz) closest convex
vertex
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Figure 4. Aggregating neighboring candidate-matching objects into pattern combinations:
(a) aggregating two or more objects based on centroid distances; (b) aggregating two objects based on
convex hull approximation.

Suppose that one object 7; has P candidate-matching objects (| CR; | = P), the candidate-matching
pattern combination set of ; is defined as CRP; = {CRP;? ... CRP;* ... CRP;"}, where CRP;” means the
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pattern combination subset that contains p polygon objects. Similarly, suppose that one object ¢; has
Q candidate-matching objects (I CT; | = Q), the candidate-matching pattern combination set of #; is
defined as CTPj = {CTsz, e, CTP]«‘i .. CTPjQ}, where CTP]” means the pattern combination subset
that contains g polygon objects. Hence, based on candidate-matching detection and neighboring pattern
combinations, the candidate-matching table was created as c_Table = {(r;, t;) | r; € R, t; € CR;UCRP; or 1;
€ CT;UCTP;, t; € T}, which is simplistically described as a candidate-matching table c¢_Table = (r;, t;),
i=1...(m+m’),j=1... (n+n').

3.1.2. Calculation of Geo-Similarities and Initial Matching Probabilities

For each candidate matching pair (r;, t;) in the candidate-matching table c_Table, four geometry
similarities, namely the position similarity sin,, orientation similarity sim,, area similarity sim,, and
shape similarity sim;, were calculated to initialize the candidate-matching matrix. The formulas are
listed as follows.

, 8itg =

simp(i,]') =1— ds(i,f) min{area((z)) Jarea(j)}

: max{area(i) area(])}

i (1)
1 / dr(i, . min{elg(i),el
siro (i, j) = 1 n(/é)/ sttty = —m

As shown in Figure 5a, ds(i, j) means the centroid distance between two objects r; and ¢,
dr(i, j) denotes their wall statistical weighting orientation (WSW) [44] difference, elg(*) indicates

the major-minor axis ratio of the minimum enclosing rectangle (MER), and area(*) measures the
polygon area. After that, the initial matching probability is calculated by:

sim(i, f)
Yt ecr,ucrp, Sim(i, k) @)

sim(i, j) = simp(i,j)*sime (i, j)*simq (i, j) *sims(i, j)

Pij =

where f; € CR;UCRP;, sim(i, j) is the total geo-similarity of (r;, t;), so does sim(i, k). simy, sim,, sim,, and
sim; are the position, orientation, area, and shape similarities calculated by Formula (1).

It is time-consuming to consider all possible candidate-matching pattern combinations. Hence,
the candidate-matching pairs with sim), < Tyos, simo < Tgiy, sittg < Tareq, and sims < Tshp were eliminated
from the c_Table and the initial candidate-matching matrix was constructed as m_Matrix = (pj;)pmxN,
M<m+m' ,N<n+n'

i1 MER

o kiR

elg(i) I elg(i/h)
elg(j) P ela(j/k)

(a) (b)

Figure 5. Calculation of absolute geometric similarity and the relative compatibility coefficient:
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(a) absolute geometric similarity between candidate-matching pairs; (b) relative compatibility
coefficient between neighboring candidate-matching pairs. MER: minimum enclosing rectangle.

3.2. Matching Probability Relaxation Based on Multi-Scale Contextual Information

The initial matching probability only considers the local geometric similarities and ignores the
impacts of neighboring matching relations. The relaxation labelling algorithm models the contextual
information of neighboring candidate-matching pairs as a compatibility coefficient to heuristically
update the local-similarity-based matching probability.
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3.2.1. Definition of the Neighboring Relation and Compatibility Coefficient

As no explicit neighboring relations are stored in the building datasets, some researchers have
utilized the fixed radius, triangulation network, and proximity graph to search the local neighboring
objects [38,40]. For the reference building object #; in R, we constructed the Delaunay triangulation
and defined the first-order connected objects and pattern combinations as its neighboring set N(r;);
for target building object ¢; in T, the objects and pattern combinations in buffer(t;, ¢) were determined
as the neighboring set N (tj). Specifically, for one pattern combination r,,” = {rs, ... , 13}, N(r,”) was
defined as an subtraction set, N(r;))U ... UN(rp)-{rs ... 7).

Based on the definition of neighboring relations, the contextual information of neighboring
candidate-matching pairs was quantified as a compatibility coefficient according to Formula (3) [40],
which combines both the relative and absolute position, orientation, shape, and area relations.

4
C(if; hk) = sim(i, j)- | | relu(ij; hk) (3)
u=1
where C(ij; k) denotes the compatibility coefficient between two neighboring candidate-matching
pairs (r;, t;) and (ry,, ), sim(i, j) is the absolute geo-similarity calculated by Formula (2), and rel,,(ij; hk)
(u=1... 4)represents four relative geometric relations between them, which are calculated as
Formulae (4)—(7), respectively.

rely (ij; hk) = 74is™ T aiy " Tratio
|ds(i, h) — ds(j, k)]

Tgis = 1— . |
ds(i,m),ds(j,

rmEN(IrIil)ifeN(t/){ s(i,m), ds(j,m)}

6(ih, jk) W
=TT
r 1 dS(l,h)
ratio — 1 — i

ds(i,
2, [Cm)

|dr(i,h) —dr(j, k)|

rely(ij; hk) =1 — /2 ?
1
I3(ij; hk) =
rels(ij; hk) 1+ (elg(i/h) — elg(j/k))? ’
rely(if; hk) = : v

1+ (area(i/h) — area(j/k))*

rely(ij; hk), rely(if; hk), rel3(ij; hk), and rely(ij; hk) represent the relative position, orientation, shape,
and area relations between two neighboring candidate-matching pairs (r;, ¢;) and (ry, k), respectively.
As depicted in Figure 5b, ds(i, h) and dr(i, h) mean the centroid distance and orientation difference
between two neighboring building objects r; and r;,, N(r;) indicate_s> the neighboring set of object 7;,

and 6(ih; jk) is the angle between two centroid vectors r?rh and t;t. elg(i/h) and area(i/h) are the
elongation index ratio and area ratio between two neighboring building objects r; and 7y, so do elg(j/k)
and area(j/k).

3.2.2. Relaxation of the Matching Matrix and Selection of Final Matching Pairs

The compatibility coefficient calculated above measures the relative geometric consistency
between two neighboring candidate-matching pairs. However, there are possibly more than one
neighboring candidate-matching pairs. The relaxation labelling process incorporates the impacts of all
neighboring candidate-matching pairs (also called the sub-support indexes) into a total support
index and updates the geometric-based matching matrix. In light of multi-scale 1:M and M:N
correspondences, the impacts of neighboring pattern combinations should be also integrated into
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the total support index. In detail, the total support index of one candidate-matching pair (r;, t;) was
computed as follows:

e  Calculate the sub-support indexes of all neighboring individual objects and pattern combinations
according to Formula (8), which are partitioned into two separate queues of Q;; and Q’;. Q;;
stores the sub-support indexes of neighboring individual objects and Q’;; stores the sub-support
indexes of neighboring pattern combinations. For the candidate-matching pair (r;, ¢;) in Figure 6a,
two sub-support index queues Q;; and Q;;" are listed in Figure 6b.

qijh = SkeCfIIgh%?Rph{C(i]'; hk)P(h,k)},ry € Nj or NP; ®)
e Traverse Q; in ascending order of the included object number of the neighboring pattern
combination, and judge whether its sub-support index is larger than the average support index
of its included objects. If yes, the sub-support index of that pattern combination will replace the
corresponding sub-support indexes of the included objects in Q;;. As elaborated in Figure 6b,
the sub-support index g;; » of 1" = {ra, 1} is larger than the average of g;; » and gj; 5, 50 g;,» will
substitute the values of g;;,, and gjj , in Qj;.
e  Whenall elements of Q;;" are traversed and judged by the above steps, the mean of the sub-support
indexes in Q;; is computed as the total support index g;; of (r;, ;).

ij Q'

=)

gy ij.a ::I—{ ijx' H y!
ry 1 4qib
v, Y qih
I o= {ra 1)
Fx =M (i’ a T b) tk '=M (tp) tq) 7, g ) Giig i - (qy’a+qij’b)/2
(a) (b)

Figure 6. Integrating the sub-support indexes of neighboring individual objects and pattern
combinations into a total support index: (a) neighboring individual objects and pattern combinations
of (r;, t;); (b) integrating all sub-support indexes into a total support index.

Once the total support indexes of all candidate-matching pairs were determined, the iteration
of the geo-similarity matching matrix was executed according to Formula (9) [24]. The relaxation
labelling process will continue until the probability differences between two iterations are less than a
predefined threshold é.

pH pi; + i
J 1+ Ynecs; Ty

Based on the convergent matching matrix, the matching pairs with the maximum matching
probability per row were first selected and inserted into a queue MQueue. Then, check each matching
pair A in MQueue. When there is another matching pair B in MQueue that contains one or more
common building objects, it may be two conflict matching pairs or an M:N matching pair divided
by several 1:M or M:1 matching pairs. To distinguish the above conditions, we calculated the overall
geometry similarity Sim (AUB) of merging A and B. If Sim (AUB) is larger than both Sim (A) and Sim (B),
A and B are merged into one M:N matching pair AUB; otherwise, the one with the higher matching
probability is reserved and the other with the lower probability is replaced by the pair with the next
highest probability. After that, MQueue was determined as the final matching pair set between two
building datasets R and T.

)
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4. Experiment and Analysis

One mock building dataset and two real building datasets in Xi’an City, China and Dallas in the
United States of America were used to verify the efficiency and reliability of the proposed method.
As listed in Table 1, the spatial scales of two Xi’an building datasets were known as 1:250,000 and
1:200,000, but uncertain scale differences were found in the simulated dataset and Dallas dataset from
web sources. In Table 1, Tyos, Tgir, Tarea, Tshp are four similarity thresholds for the candidate-matching
pairs filtering from Section 3.1.2, and J is the convergent threshold for the relaxation labelling process
outlined in Section 3.2.2.

Table 1. Experimental data statistics and parameter settings.

Test Data (Scale/Obj fct Number) (Scale/Objel;t Number) Tpos Tair - Tarea  Totp J
Mock data Small scale/25 Large scale/42 0.75 0.95 0.8 0.75 5%
Xi’an data 1: 250,000 (83) 1: 200,000(118) 070 095 065 072  5%0
Dallas data OpenStreetMap /83 Web data/80 0.87  0.93 0.9 0.87 5%o

Figure 7 illustrates the initial matching result of the mock building data based on local geometric
similarity and the matching results generated by the object-level relaxation labelling method and
the proposed pattern-level method. It can be seen from Figure 7a that several obvious errors occur
in the similarity-based matching results because of non-rigid deviations and shape homogenization.
Although the object-level relaxation labelling method is a great improvement in terms of finding a
contextual matching consistency, as shown in Figure 7b, there still are some 1:M and M:N matching
pairs ignored by the object-level matching strategy. Figure 7c indicates that various 1:M and M:N
matching pairs are correctly recognized by the proposed method based on relaxation labelling and
pattern combinations. The matching results of the Xi’an data and Dallas data are shown in Figure 8,
which demonstrates the proposed method can robustly identify the complex correspondence of
building objects with large and uncertain scale differences.

By comparing the matching results with manual matching, three accuracy indicators—precision
P, recall R, and F value—were calculated according to Formula (10). tp denotes true matching pairs
recognized by our method, fp denotes false matching pairs identified by our method, and frn means
true matching pairs omitted by our method. It can be seen from Table 2 that both the precision and
recall rates are higher than 90%, and obvious higher accuracies were obtained by our method than the
object-level relaxation labelling method.

tp R— tp

_2><P><R
Ctp+fnl

P+R

(10)

[ = & G@

[==2¢ >
(b)

Figure 7. Matching results comparison of the mock building data: (a) the initial matching pairs based
on local geometric similarity; (b) the identified matching pairs by the object-level relaxation labelling
method; (c) the identified matching pairs by the pattern-level relaxation labelling method.
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(b)

Figure 8. Matching results of the Xi’an and Dallas data: (a) the matching results for the Xi’an data with
obvious scale differences; (b) the matching results for the Dallas data with uncertain scale differences.

Table 2. Matching accuracy statistics of precision, recall, and F value.

Data Precision P Recall R F Value
bject-level method 100% 57% 1.35%
Mock data Object-level metho 00% 68.57% 81.35%
The proposed method 100% 100% 100%
Xi’an data 93.56% 91.47% 92.5%
Dallas data 98.12% 95.45% 96.93%

Figure 9 displays the probability change of candidate-matching pairs of objects #125 and #26
during the relaxation labelling process. As shown in Figure 9a, the relaxation labelling process correctly
distinguishes fake matching pairs (#125 — #141) and true matching pairs (#125 — #140) by integrating
contextual information of neighboring matching pairs to heuristically amend the local-similarity-based
matching matrix. This indicates the proposed method can efficiently overcome incorrect matching
caused by shape homogenization and non-rigid deviation. Meanwhile, as depicted in Figure 9b, the
pattern-level matching method correctly identifies a complex 1:M matching pair of (#26 — #64, 65,
70, 69) by considering pattern combinations in the relaxation labelling model. This demonstrates our
method can efficiently find various 1:M and M:N correspondences possibly missed by the object-level
matching method.
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Figure 9. Matching probability change during the relaxation labelling process: (a) probability change
of candidate-matching pairs of object #125; (b) probability change of candidate-matching pairs of

object #26.
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The matching probability distributions of object #81 and #17 in Figure 10a are elaborated in
Figure 10b,c, respectively. It can be seen that both 1:1 object correspondence (#81 — #30) and 1:M
pattern combination matching (#17 — #32, 33, 34, 35, 36, 37) are reliably identified in terms of a large
probability gap. That indicates our method is relatively less sensitive to spatial scale differences than
the object-level relaxation labelling method.
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Figure 10. Comparing the probabilities of matching with an individual object and simultaneously
matching with multiple objects: (a) object #81 and #17 in R and their candidate-matching objects in
T; (b) the matching probability comparison of all candidate-matching pairs of #81; (c) the matching
probability comparison of all candidate-matching pairs of #17.

Table 3 shows two matching examples of pattern combinations. For object r4, Table 3 lists the top
four candidate correspondences. It can be seen that the matching probability of (r4 — {ta, tp, tc, t1})
was computed as 0.218, apparently higher than that of other candidate-matching objects or pattern
combinations. For object r3 and r¢, the best matching pairs with the highest matching probabilities
were computed as My = (rg — {t,, tf}) and M = (rc — {te, tg}), respectively. Because M and M, contain a
common object t,, these two matching pairs were finally merged into an M:N matching pair M = ({r4, g}
— {te, 1, tg}) by comparing their geo-similarities. This further indicates the good performance of our
method in identifying complex 1:M and M:N matching relations between heterogeneous multi-scale
building data.

Table 3. Examples of candidate-matching pattern combinations.

Matching Combinations Data R Candidate Correspondences in DataT  Matching Probability

{ta) 0.011
Il A {ta, ) 0.0469
[P {to, ty, ) 0.138
{ta, ty, tc, ta} 0218

{te} 0.0585

{te} 0.1424

b {te, t7 0.308

{te, tr, tg} 0.051

{te) 0.070

re {tg 0.130

{te, tg} 0.290

{te, tf, tg} 0.055

5. Conclusions

Object matching is an essential step of map conflation and data updating. Multi-scale building
data matching is confronted with such problems as shape homogenization, non-rigid deviations, and
uncertain scale differences. This paper proposed an automated building matching method based
on relaxation labelling and pattern combinations. The proposed method extended the object-level
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relaxation labelling matching method and constructed a probabilistic matching model considering both
1:1 object matching and 1:M pattern combination matching. The experimental results show that the
relaxation labelling process takes contextual information into account, reliably increasing the matching
accuracy and insensitivity to non-rigid deviations and shape homogenization. Moreover, pattern
combinations are novelly integrated into the probabilistic matching model, efficiently improving the
performance to match crowdsourced building datasets with large and uncertain spatial scale differences.
Future work will focus on null matching modelling and optimized selection of candidate-matching
pairs to improve the robustness of our method.
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