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Abstract: The Canadian Hydrographic Service (CHS) publishes nautical charts covering all Canadian
waters. Through projects with the Canadian Space Agency, CHS has been investigating remote
sensing techniques to support hydrographic applications. One challenge CHS has encountered
relates to quantifying its confidence in remote sensing products. This is particularly challenging
with Satellite-Derived Bathymetry (SDB) where minimal in situ data may be present for validation.
This paper proposes a level of confidence approach where a minimum number of SDB techniques
are required to agree within a defined level to allow SDB estimates to be retained. The approach
was applied to a Canadian Arctic site, incorporating four techniques: empirical, classification and
photogrammetric (automatic and manual). Based on International Hydrographic Organization (IHO)
guidelines, each individual approach provided results meeting the CATegory of Zones Of Confidence
(CATZOC) level C requirement. By applying the level of confidence approach, where technique
combinations agreed within 1 m (e.g., all agree, three agree, two agree) large portions of the extracted
bathymetry could now meet the CATZOC A2/B requirement. Areas where at least three approaches
agreed have an accuracy of 1.2 m and represent 81% of the total surface. The proposed technique
not only increases overall accuracy but also removes some of the uncertainty associated with SDB,
particularly for locations where in situ validation data is not available. This approach could provide
an option for hydrographic offices to increase their confidence in SDB, potentially allowing for
increased SDB use within hydrographic products.

Keywords: Canadian Hydrographic Service; Satellite-Derived Bathymetry; empirical; classification;
photogrammetry; level of confidence

1. Introduction

The Canadian Hydrographic Service (CHS) is responsible for providing hydrographic products
and services to ensure safe, sustainable and navigable use of Canada’s waterways. As Canada
contains the longest coastline in the world, CHS, with support from the Canadian Space Agency
through a Government Related Initiatives Program (GRIP) project, has been exploring remote sensing
technologies to help improve its nautical products. CHS’s GRIP focuses on specific applications of Earth
Observation (EO) data: shoreline extraction, change detection and Satellite-Derived Bathymetry (SDB).

To date, SDB research has focused on the development of novel empirical [1–3] and physics-based
approaches [4,5], as well as the application of these techniques [6–8]. CHS investigations of empirical [9]
and photogrammetric [10] SDB techniques have illustrated the potential of these approaches for
deriving accurate bathymetry estimates in Canadian waters. While representing excellent progress
for estimating water depth from satellite imagery, significant challenges remain with providing
hydrographic offices (HOs) with sufficient confidence in SDB estimates to allow the information to be
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incorporated into official nautical products. Internationally, all sources of water depth information
must meet accuracy specifications for specific depth ranges, defined by International Hydrographic
Organization (IHO) CATegory of Zones Of Confidence (CATZOC) levels (refer to Section 4.3 for a
detailed overview of CATZOC levels) [11]. As CHS demonstrated in [9] and [10], SDB obtained
through various techniques can regularly achieve CATZOC level C. While this represents a reasonable
accuracy for satellite-derived information, there is a desire by HOs to improve their confidence in SDB
results. As well, CATZOC determinations can only be obtained when in situ bathymetric information
is available, limiting HO confidence in SDB results when only limited or no in situ depth information
is available.

This paper proposes a new technique for quantifying confidence in SDB estimates: a level of
confidence assessment. This method operates by determining the level of agreement between multiple
SDB techniques applied to a single site. Initially, agreement is assessed between all of the applied
techniques (four for this study: empirical, classification and photogrammetric (automatic and manual)).
Subsequent agreement is then evaluated for different combinations of techniques (e.g., three agree,
two agree), allowing SDB coverage to be gradually increased while maintaining the highest possible
degree of confidence in the results. Final SDB estimates are obtained via averages of the SDB results
for the techniques incorporated into each combination.

The results of this work demonstrate the benefit of completing a level of confidence assessment
and suggest a new approach for HOs to evaluate SDB results:

• Applying the level of confidence approach increased overall SDB accuracy, allowing estimates to
consistently reach CATZOC level A2/B accuracy when compared with in situ bathymetry.

• Understanding agreement between various SDB techniques allows for increased confidence
in SDB application, particularly for areas where in situ bathymetry is limited or unavailable
(e.g., if four SDB techniques generate similar results, overall confidence in the accuracy of each
result increases).

• The flexible nature of the approach allows for any form of SDB technique to be incorporated
and assessed, allowing for greater leveraging of the strengths of empirical, physics and
photogrammetry approaches in a combined fashion.

• The confidence levels created as part of the process can also be used as a quality control (QC) tool
for areas where fewer techniques agree (e.g., evaluating why multiple techniques do not agree for
a particular area).

CHS believes that through the completion of level of confidence assessments, international HOs
can increase their overall confidence in SDB, potentially allowing for increased use of SDB within
international hydrographic products.

2. Materials and Methods

2.1. Study Site

CHS’s primary use of SDB will be in the Canadian Arctic where the greatest concentration of
gaps is present in CHS’s hydrographic surveys. The site for this study is situated in the waters near
Cambridge Bay (69◦07’N, 105◦02’W), a hamlet located on Victoria Island, Nunavut (Figure 1). Water
in Cambridge Bay is generally clear with a depth visibility of around 15 m. The bottom is mostly
composed of sand and rock but the benthic environment is more heterogeneous with numerous patches
of vegetation, making the site somewhat complex for SDB.
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Figure 1. Location of the Cambridge Bay study site on Victoria Island, Nunavut. 

2.2. Satellite Imagery 

A WorldView-2 stereo pair acquired on September 20, 2015 over Cambridge Bay was used for 
this study (Figure 2). The forward image was used for the empirical and classification SDB 
approaches. Table 1 provides details of the viewing geometry for the image pair. 
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Figure 2. WorldView-2 stereo pair used for each Satellite Derived Bathymetry (SDB) technique. (a) 
Forward image, used for empirical and classification approaches. (b) Backward image, only used for 
photogrammetric techniques. Imagery © 2015, DigitalGlobe, Inc.  

Table 1. Image and stereo-pair geometry. 

Image Geometry 
Forward 

Image Backward Image Stereo Geometry Stereo Pair 

In-Track View 24° −8° Convergence 36.3° 
Cross Track View 14.7° 14.1° BIE 71.2° 

Sources: Esri, GEBCO, NOAA, National Geographic, DeLorme, HERE, Geonames.org, NGDC and other contributors. 

Figure 1. Location of the Cambridge Bay study site on Victoria Island, Nunavut.

2.2. Satellite Imagery

A WorldView-2 stereo pair acquired on 20 September 2015 over Cambridge Bay was used for this
study (Figure 2). The forward image was used for the empirical and classification SDB approaches.
Table 1 provides details of the viewing geometry for the image pair.
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Figure 2. WorldView-2 stereo pair used for each Satellite Derived Bathymetry (SDB) technique.
(a) Forward image, used for empirical and classification approaches. (b) Backward image, only
used for photogrammetric techniques. Imagery © 2015, DigitalGlobe, Inc.

Table 1. Image and stereo-pair geometry.

Image Geometry Forward Image Backward Image Stereo Geometry Stereo Pair

In-Track View 24◦ −8◦ Convergence 36.3◦

Cross Track View 14.7◦ 14.1◦ BIE 71.2◦

Off Nadir View 28◦ 16.2◦ Asymmetrical 9.5◦
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2.3. Hydrographic Surveys

For this research, in situ hydrographic information was required for two aspects of the study:
training the models used for the empirical and classification approaches and for assessing the accuracy
of all techniques. The in situ dataset is composed of five CHS hydrographic surveys: three multibeam
sonar surveys acquired in 2014, 2015 and 2017, as well as two Light Detection and Ranging (LiDAR)
surveys acquired in 1985 and 1992 using the Larsen 500 system (Table 2). The age of the LiDAR
datasets is less than ideal and results in some uncertainties relative to the multibeam datasets (refer
to a detailed discussion in [10]). Nevertheless, the LiDAR surveys provide an important source of
validation information for shallow depths, particularly from 0–2 m. The geographic coverage of the
LiDAR measurements is also more widespread than the multibeam surveys (Figure 3), making it
critical for understanding spatial patterns of uncertainty within the SDB estimates.

Table 2. Distribution of hydrographic survey points for water depth ranges up to 20 m.

Water
Depth (m)

2017
Multibeam

2015
Multibeam

2014
Multibeam

1992
LiDAR

1985
LiDAR Total

0 to 2 0 0 938 259 733 1930
2 to 4 0 440 10,163 245 927 11,775
4 to 6 1671 17,753 46,308 200 1060 66,992
6 to 8 15,052 57,957 82,574 134 1052 156,769
8 to 10 23,380 120,681 104,928 124 1105 250,218

10 to 12 67,570 199,580 166,659 48 724 434,581
12 to 14 150,157 270,770 211,433 54 891 633,305
14 to 16 137,498 189,464 202,001 33 816 529,812
16 to 18 140,050 228,040 243,404 42 813 612,349
18 to 20 63,927 180,578 216,174 54 825 461,558

Total 599,305 1,265,263 1,284,582 1193 8946 3,159,289
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Figure 3. Spatial distribution of survey data up to 20 m in depth within Cambridge Bay. Note the wide
coverage of the LiDAR survey relative to the multibeam datasets. Imagery © 2015, DigitalGlobe, Inc.

2.4. SDB Methods

SDB estimates were derived independently from the WorldView-2 imagery through four
techniques as described below. The results from these techniques were then used to develop final SDB
estimates through the level of confidence approach.
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2.4.1. Empirical

Empirical SDB methods develop a relationship between water depth (most commonly through in
situ depth measurements) and optical band values to allow depth to be estimated across an image.
For this study, the multi-band approach developed by Lyzenga [2] was selected for use as it has
consistently achieved good accuracy within previous CHS investigations [9,12]. This method first
identifies water-leaving radiance (Lw) values for optically deep waters (L∞). The assumption is that any
pixels containing values above L∞ have contributions from the reflectance of the underwater surface,
which is exponentially attenuated by the water column. Therefore, constants can be empirically
determined to link the log-corrected difference between Lw and L∞ of multiple bands to the depth,
as shown in Equation (1) [2]:

z = a0 +
N

∑
i=1

ai ln[Lwi − L∞i] (1)

where z is depth, i indicates band specific parameters and a represents the empirically determined
constants. Due to its characteristics, this method is strongly dependent on the input water depths used
for training, as well as the characteristics of the imagery (e.g., degree of visibility to the bottom, sun
glint presence, and atmospheric characteristics). The survey data used to supply training water depths
represented the best available for the site, while the input WorldView imagery contained good bottom
visibility, limited atmospheric influence and minimal sun glint.

The multi-band model assumes that the grey values of each band contain a linear relationship
with water depth. To determine which bands were best to incorporate into the model for each study
site, scatter plots of band values relative to survey depths were generated, allowing the degree of
linearity of the relationship to be evaluated. For this study, WorldView-2’s blue, green, red and yellow
multispectral bands were used.

2.4.2. Classification

A random forest decision tree classification [13] technique was also applied. As a first step,
training areas were delineated within the WorldView-2 image based on similar spectral characteristics.
These polygons were then associated with specific depth classes (0.5 m intervals) using available
hydrographic survey depths. The random forest classification was applied using these training
areas with the WorldView-2 multispectral bands (red, green, blue and yellow) using the R statistical
language [14]. Similar to the empirical approach, the classification technique is sensitive to the
water depths used for model development, as well as the characteristics of the imagery. However,
the technique does not require each band to have a specific relationship with depth.

2.4.3. Automatic Photogrammetry

Automatic photogrammetric extraction combines the techniques of image matching with
photogrammetric triangulation principles. The correlation coefficient method for stereo matching
was developed in the 1970s [15]. Since then, many improvements have been made to update image
matching performance [16–18]. Hirschmuller [19] introduced the concept of a Semi-Global Matching
(SGM) algorithm that is based on pixel by pixel matching between images forming a stereo pair. This
algorithm is particularly useful when using high-resolution stereo pairs as identical features can be
more easily identified between pairs within high-resolution data. This study used an SGM approach
available in PCI Geomatica 2017 to automatically derive a digital surface model for the WorldView-2
image. A light refraction correction, as described in [10], was implemented to account for the influence
of refraction and the air-water interface.

Unlike the empirical and classification approaches, the automatic photogrammetric approach does
not rely on in situ water depths for SDB estimation, preventing potential biases resulting from training
data. However, the method is highly sensitive to site and imagery characteristics as contrasting features are
required to support image matching. Through CHS’s initial evaluation of automatic photogrammetry for
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bathymetry estimation [10], it was noted that this technique experienced challenges when attempting
to match stereo pairs over homogeneous seabed areas. As well, areas containing strong temporal
variability (e.g., areas containing waves) cannot be easily matched through this approach.

2.4.4. Manual Photogrammetry

Photogrammetry extracts three-dimensional information based upon two different scenes
acquired in close succession with varying viewing geometry. These images are used to create a
three-dimensional view, similar to the effect accomplished by human eyes. Photogrammetrists make
use of binocular vision and depth perception to extract the XYZ coordinates of features in the stereo
pair. Positions are computed through triangulation by considering the sensor’s viewing geometry
at the time of acquisition. Here, a conventional photogrammetric analysis was used to manually
extract depth from the stereo images using SOCET SET software. The photogrammetrist used a small
number of the in situ survey data at different locations within the image to correct for the influence of
light refraction and tidal effects on the estimated water depths when extracting the XYZ coordinates.
Compared to the other approaches, the manual photogrammetry technique eliminates biases from
sources of training information and limitations for automatic pair matching. However, this technique
is strongly influenced by the individual completing stereo matching, leading to difficulties with result
replication. The capability of manual photogrammetry for estimating water depth has previously been
shown in [10,20].

2.4.5. Empirical and Classification Approach Training

For the empirical and classification approaches, a random sample of the available survey data
was selected in order to develop the empirical model and train the random forest classification. For
the empirical approach, survey data was restricted to areas of the bottom which were clearly visible
within the imagery. Survey data over dark areas (e.g., underwater vegetation and deep water) were
excluded. For the classification approach, survey depths from 0–20 m were retained for model training,
as visibility through the water column was limited at greater depths. For both approaches, 10% of the
survey data, which met these restrictions, was selected for training.

2.5. Level of Confidence Approach

The proposed level of confidence method operates through understanding the level of agreement
between each of the applied SDB techniques. It aims to develop a final SDB estimate where the highest
number of techniques agrees within a set difference range for the largest geographical area. This is
achieved through the following steps:

1. The maximum allowable difference between the SDB estimates is determined. For this work, a difference
of 1 m was selected as CHS aims to achieve SDB estimates within 1 m of real-world bathymetry.

2. Absolute differences are calculated between each applied technique (e.g., empirical minus
classification, classification minus manual photogrammetry, etc.).

3. Pixels where all of the techniques agree within the defined difference level (i.e., 1 m) are identified.
These represent locations where we can have the greatest confidence in the results, as all of the
techniques are producing a similar answer.

4. A final SDB estimate is calculated via an average of the SDB results from all of the techniques for
the identified pixels. This approach reduces the potential for outliers, which may occur if only a
single technique was used to generate SDB for a given pixel.

5. Steps 2–3 are repeated iteratively to identify locations where fewer of the techniques agree within
the defined level. For this work, the authors identified locations where three of the techniques
agreed within 1 m, then where two of the approaches agreed.

6. Step 4 is then repeated for each examined technique combination, with averaged results derived
only for pixels which were not present within the agreement between a higher number of
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combined techniques. For example, averaged SDB for locations where three techniques agree
would not be calculated if for the same locations, four techniques agree, as the averaged result
from the four techniques would be maintained.

2.5.1. Multi-Approach Combination

For step 5, noted above, there are multiple combinations of three and two techniques which can
be selected. To determine which combination of techniques to incorporate into the multi-approach
SDB model, as well as when to use them, the authors iteratively assessed the overall accuracy of
each combination against available survey data (refer to Section 2.5.2 below). Each combination was
assigned a rank based on these accuracies. This rank determined the order in which each combination
contributed to the final SDB estimate. Lower ranked combinations were only used for pixels which
did not meet the defined 1 m agreement level within higher ranked combinations. Combinations
incorporating a greater number of techniques were automatically assigned a greater rank, even if
they achieved a higher root mean square error (RMSE). Pixels which did not demonstrate agreement
within 1 m for any combination of techniques were excluded from the final SDB result, as were pixels
which did not contain results from all techniques. The ranking technique provides the first iteration
for automatically grouping the SDB of the different techniques into one model but as described in
Section 3.1, other factors can impact the results of the different approaches. In order to leverage
the strengths of each approach as much as possible, it is important to complete a visual QC of each
combination. The areas that match with three or more techniques are given a high level of confidence
and therefore do not require manual intervention. Areas which only correlate with two or fewer
approaches are given a lower level of confidence and should be reviewed visually to ensure that the
best results are used in the final products.

2.5.2. Accuracy Assessment

Accuracy assessment was used to determine the rank of the various technique combinations
(as described in Section 2.5.1). In situ CHS survey data described in Section 2.3 was used to calculate
RMSE statistics for differences between SDB estimated depths and the in situ survey depths. Overall
RMSEs were calculated for depths up to 10 m in order to understand the general accuracy of each
combination. Greater depths were omitted from this assessment as some approaches experienced
limitations when estimating deeper water.

Accuracy assessments were also completed for the final SDB estimate resulting from the level of
confidence approach and for the individual SDB techniques. This allowed for an understanding of the
degree of improvement in accuracy (if any) when implementing the level of confidence approach. For
these assessments, the linear error at 90% (LE90) level of confidence was calculated for each approach,
allowing for an understanding of the level at which 90% of SDB errors relative to survey data would
be expected to occur overall and for specific depth ranges (e.g., 0–2 m). Calculation of LE90 allowed
for a direct comparison with CATZOC requirements (see Section 4.3). Overall bias was also calculated
to allow for an assessment of the error trend for each approach.

3. Results

3.1. Individual Approaches

In terms of the total surface of bathymetry extracted after application of the four SDB methods,
the manual photogrammetric extraction was the approach that provided the most SDB coverage,
followed by classification, empirical and the automatic photogrammetric extraction approaches
(Figure 4). The manual photogrammetric technique extracted 100% of the area for depths from
0–20 m, which was followed by 81% from classification, 59% from the empirical method and 39% from
the automatic photogrammetric approach.
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Figure 4. SDB results from the (a) manual photogrammetry, (b) classification, (c) empirical and
(d) automatic photogrammetry techniques. Imagery © 2015, DigitalGlobe, Inc.

Table 3 presents accuracy assessment results for each of the individual SDB techniques relative to
the in situ bathymetric validation data. The individual SDB techniques generate good results in general,
with most achieving LE90 near 1 m for individual depth ranges. The empirical approach provided
the best overall result, with a LE90 of 0.95 m for depths from 0–10 m. Unfortunately, the limited
stability of the empirical approach for depths of 0–4 m (possibly due to a lower number of survey
points for these depths and/or an overreliance on LiDAR measurements) prevents application of the
CATZOC A2/B classification. The automatic photogrammetry approach provided the second best
overall accuracy followed by the manual photogrammetry approach. The automatic photogrammetry
approach achieved good results for depths from 0–4 m, while the manual photogrammetry technique
generated consistent results for all depth ranges, although at a worse level of confidence relative to
most of the other techniques. The random forest results provided the worst level of confidence from
0–10 m but generated good results for shallow depths (up to 4 m). Based on these results, it is important
to note that each of the approaches has strengths and weaknesses related to the depth ranges and the
physical properties of the study site. While each technique is capable of generating good results for
some depth ranges, there are clear inconsistencies in the stability of the results between techniques.
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Table 3. Accuracy assessment results for individual SDB techniques.

SDB Method
LE90 (m)

Depth Range

Bias (0–10 m) 0–10 0–2 2–4 4–6 6–8 8–10 10–14

Empirical −0.20 0.95 1.51 1.14 0.75 1.02 0.93 1.46
Manual Photogrammetry −0.58 1.58 1.51 1.68 1.35 1.38 1.19 1.76

Automatic Photogrammetry 0.75 1.54 0.46 0.65 1.45 1.55 1.88 2.10
Random Forest −0.38 1.67 0.48 0.54 1.08 1.73 2.28 2.76

Number of Points 38,773 765 2128 13,511 18,168 4201 359

Other physical factors can play a major role in SDB accuracy and should be considered
when selecting an approach. One of these factors is seabed type. For each of the investigated
techniques, characteristics of the seabed can have beneficial and detrimental impacts. Dark features,
commonly caused by underwater vegetation, are of particular concern for the empirical approach
as they confuse dark features with deep water (Figure 5). In contrast, the automatic and manual
photogrammetric techniques are not affected by dark underwater features. The photogrammetric
approaches actually benefit from such dark areas, as the edges generated by these features assist
with image matching [10,20]. The benthic environment also creates challenges for the random forest
classification but shows improved results over the empirical approach. This is mainly because the
decision tree classification approach defines a particular rule set based on training area definition.
The random forest decision tree model works better for capturing non-linearity in the data by dividing
overall data into smaller sub-spaces (decision trees) based on the defined training classes. This impacts
the overall result and is more apparent for distinction between dark features and deep water.
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While the photogrammetric approaches benefit from a variable bottom, homogeneous bottom
types (e.g., sand) can have a negative impact, particularly for the automatic method [10,20]. As the
automatic photogrammetric technique is based on image matching, heterogeneity within the image
facilitates pixel matching. Within homogeneous areas, the algorithm encounters difficulties with
matching pixels, preventing a correlation from being achieved.

3.2. Level of Confidence and Multi-Approach SDB Model

Table 4 presents the overall RMSEs for each combination of techniques assessed for this study,
along with the rank assigned to each combination. The percentage of the area covered by four, three
and two combinations is also listed. This determined the order in which each combination was applied
to generate the combined multi-approach SDB model.

Table 4. Overall root mean square error (RMSE) and rank of each technique combination for the level
of confidence approach. The percentage of the overlap area captured by four, three and two agreeing
techniques is also shown.

Number of Techniques
Agreeing within 1 m

Approaches within
Combination 1

Overall Combination
RMSE (m) (0–10 m) Rank % Coverage of

Overlap Area 2

4 AP, EM, MP, RF 0.61 1 31

3

AP, EM, RF 0.60 2

50
AP, MP, RF 0.64 3
AP, EM, MP 0.69 4
EM, MP, RF 0.80 5

2

AP, EM 0.63 6

19

AP, RF 0.70 7
AP, MP 0.71 8
EM, MP 0.82 9
EM, RF 0.83 10
MP, RF 0.90 11

1 AP = Automatic Photogrammetry; EM = Empirical; MP = Manual Photogrammetry; RF = Random Forest
Classification. 2 Coverage where multiple techniques overlap with an agreement >1 m is ~0.3%.

Figure 6 presents a geographical representation of the locations where four, three and two
techniques agreed. 81% of the values were given a high level of confidence (i.e., at least three
approaches agree) and therefore don’t need or require less QC. The values that agreed with at least
two approaches represented 19% of the total overlap area; for these areas, a lower level of confidence is
assigned and should be reviewed in the future by a remote sensing expert. The strengths and weakness
of each approach as described in Section 3.1 should be used to make appropriate decisions regarding
which combination of techniques to use. Figure 7 presents an example where the low level of confidence
mask can be used as a QC tool. In this example, as the benthic environment is creating issues for the
empirical and classification techniques, priority should be given to the photogrammetric approaches.

Table 5 presents accuracy assessment results for the final multi-approach SDB model. In order to
compare the results against IHO requirements, LE90 was calculated for each depth range. Compared
with results for the individual techniques (Table 3), the averaging of the approaches reduced the bias
to negligible levels, at less than 0.2 m for each quantity of combined combinations. By combining the
agreement where four and three techniques agree we retain accuracy for 0–10 m depths. Similar results
are also achieved for water deeper than 10 m; where four and three techniques agree, accuracies of
1.00 m and 1.24 m are achieved respectively. Figure 8 presents a visual overview of the multi-approach
SDB results.
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presence. Specific techniques can be targeted for areas where two or fewer approaches agree if they can
be expected to perform better for those locations (e.g., photogrammetric techniques for heterogeneous
bottom areas). Imagery © 2015, DigitalGlobe, Inc.

Table 5. Accuracy assessment results for the multi-approach technique.

Number of
Techniques Agreeing

within 1 m

LE90 (m)
Depth Range

Coverage % Bias 0–10 0–2 2–4 4–6 6–8 8–10 10–14

4 31 −0.10 1.01 1.21 0.85 0.85 0.98 1.27 1.00
3 50 −0.19 1.26 1.23 0.90 1.14 1.28 1.25 1.24
2 19 0.05 1.28 1.30 1.21 1.25 1.24 1.07 1.90
4 and 3 81 −0.16 1.21 1.26 0.87 1.08 1.24 1.28 1.20
All 100 −0.12 1.24 1.30 0.95 1.15 1.24 1.18 1.78
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4. Discussion

4.1. Level of Confidence Accuracy Improvements

From the accuracy assessment results presented in Table 5, using the level of confidence technique
to build the multi-approach SDB model resulted in notable improvement to LE90 values for most
depth ranges compared to results for the individual SDB techniques (Table 3). While some of the
individual techniques achieved better results for specific depth ranges, the multi-approach technique
resulted in less variability across all depth ranges. This suggests that by combining separate SDB
results through an agreement approach, the strengths of each technique are leveraged to generate an
overall improved result. By averaging depth estimates from multiple SDB techniques, outliers from
individual techniques are reduced, improving the overall quality of the SDB estimates. The proposed
multi-approach technique not only improved the results and confidence in the data but it also reduced
required QC effort, as the area that required more detailed QC was reduced to 19% of the site. In order
to simplify the QC and make the process more automatic, a seabed type classification could be
implemented in the ranking system. Rule sets could be established based on water depths, accuracy
and seabed classification.

4.2. Geographical Coverage

The geographical coverage of individual SDB results (Figure 4) is greater, in some cases
significantly so, than the coverage offered by the level of confidence approach (Figure 8). For some
locations, this is due to only a single technique producing a result. Thus, an argument can be made
that some results are unfairly excluded from the level of confidence technique due to the minimum
requirement for the presence of results for at least two techniques at every pixel. However, for other
areas, coverage is omitted from the level of confidence approach as none of the SDB techniques
produced results within 1 m of each other. In such instances, the appropriateness of applying any SDB
technique to these locations can be questioned. This is an important consideration for HOs where
confidence in the information is a significant concern. While use of the level of confidence approach
will result in reduced geographical coverage, HOs should be able to have greater confidence in the
locations which retain coverage after the approach is applied.
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4.3. International Standard Compatibility

The suitability of hydrographic surveys for charting applications is determined using the IHO
S-57 standard [11]. This standard defines CATZOC levels which contain depth accuracy specifications
for specific depth ranges. Table 6 presents a summary of the accuracy requirements for each CATZOC
level for depths up to 30 m. SDB estimates will need to be assigned a CATZOC level to allow for
incorporation into nautical products.

Table 6. Required depth accuracies for International Hydrographic Organization (IHO) CATegory of
Zones Of Confidence (CATZOC) levels [11].

CATZOC Level Required Position
Accuracy (± m) Depth Range (m) Required Depth

Accuracy (± m)

A1 5 + 5% of depth 0–10 0.6
10–30 0.8

A2 & B 20 (A2), 50 (B)
0–10 1.2
10–30 1.6

C 500
0–10 2.5
10–30 3.5

Comparison of the CATZOC definitions with SDB results derived for each technique (Table 3)
shows that all SDB estimates meet the CATZOC C level. For certain techniques and depth ranges,
CATZOC A2/B accuracies are achieved. However, inconsistencies in the results between techniques
across various depths highlight the instabilities present within individual approaches, limiting the
degree of confidence which can be placed in any single approach. While each approach has the
potential to achieve CATZOC A2/B level accuracy, there remains the potential for the presence of
outliers throughout the area of coverage, particularly where survey data for validation is not available.
This represents a significant hurdle for the incorporation of SDB within hydrographic products, as HOs
require a high degree of confidence in the data they are using.

The application of the level of confidence approach resulted in improvements to overall accuracy
as well as accuracies for specific depth ranges (Table 5). While the improvement relative to individual
SDB techniques is generally not substantial, result consistency and thus overall confidence is increased
as more than one approach is known to be producing a similar result for the same location. This
is particularly important for areas outside of in situ survey data coverage as it provides a partial
form of validation. While not as robust as comparisons with in situ information, knowing that at
least two or more SDB techniques agreed within a defined level is significantly better than having no
understanding of SDB appropriateness outside of survey data locations. This represents an important
consideration for HOs, especially as they work to assign CATZOC classifications to SDB estimates.
By applying this technique, the results demonstrate that 81% of the total common SDB surface could
now meet the CATZOC A2/B level requirements, the rest of the SDB surface could be classified as
CATZOC C.

4.4. Hydrographic Office Use

CHS envisions several potential uses of the level of confidence approach by HOs to increase the
incorporation of SDB within nautical products:

• Specific agreement levels between SDB techniques can be determined for individual applications
or geographic areas, allowing for flexibility depending on an HO’s needs.

• A minimum number of approaches which would need to agree could be defined to restrict SDB
use to only high confidence locations.
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• The approach may present an opportunity to more fully evaluate the application of physics-based
SDB techniques, as their agreement relative to empirical and photogrammetric approaches can
be assessed.

• HOs can develop tailored combination and/or ranking approaches to suit their individual needs.
For example, greater weight could be given to specific techniques in general or for defined
geographic areas if desired.

4.5. Future Research

While the proposed approach suggests an interesting method to increase overall confidence in
SDB results, its application would benefit from additional investigation:

• Repeatability—this study represents a single application of the approach at one site. Additional
implementations should be explored within other geographical regions to better understand the
approach’s benefits and shortcomings.

• Technique Weighting—this analysis treated all applied SDB approaches as equal when developing
combinations and generating the final combined SDB estimate. However, there may be
situations where certain techniques should be weighted more heavily than others (e.g., overall
accuracy, representativeness of certain depths, and estimation accuracy for various bottom types).
Understanding if and when certain approaches should contribute more to the level of confidence
approach would likely further improve confidence in the approach’s results. This may also
lead to options for retaining results for locations where only one technique generated SDB,
if deemed appropriate.

• Multiple Image Scenarios—while this paper used only a single image, for certain sites multiple
satellite images may be available. Examining how the approach could be modified to understand
how SDB results from multiple overlapping images could be combined to increase overall result
confidence would be beneficial. The approach presented in [21] may be an interesting starting
point for such an investigation.

5. Conclusions

For many years, SDB has offered the potential of providing an additional accurate, inexpensive
source of bathymetric information. While representing a potentially important data source for many
HOs, uptake of SDB information for use in official nautical products has been limited. Much of
the cause for this limited uptake is due to the level of confidence which HOs are comfortable
placing in data sources. Identified as a common theme during the first IHO supported International
Hydrographic Remote Sensing workshop (the workshop was hosted by CHS in collaboration with
Service Hydrographique et Océanographique de la Marine (SHOM) and the National Oceanic and
Atmospheric Administration (NOAA), 18 to 20 September 2018, Ottawa, Ontario, Canada.), HOs will
not utilize SDB information unless it can be validated.

Within this paper, CHS has proposed a level of confidence approach to allow for combinations of
SDB estimates obtained from multiple techniques where they agree within a defined level (e.g., 1 m).
Through a ranking scheme, various combinations of techniques are built up to generate a final SDB
estimate where agreement is highest amongst the most techniques for the largest possible area. Results
presented in this work illustrate that the level of confidence approach improved LE90 statistics overall
and for individual depth ranges in most cases. CHS’s overall confidence in the level of confidence
results was also increased, as for all locations containing SDB estimates, at least two applied techniques
demonstrated agreement within 1 m.

CHS believes the proposed technique will allow HOs to obtain greater confidence in SDB results,
allowing for wider implementation within nautical products. HOs will be able to define a required
agreement level and also determine an appropriate number of techniques which should agree to allow
SDB estimates to be produced for an area. The approach also allows for a better understanding of
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the appropriateness of SDB techniques within areas where no in situ survey data is present, allowing
for a form of validation for the entire geographic coverage of SDB estimates. While representing an
interesting first step, future research will be required to understand the repeatability of the approach,
the potential for adding weighting approaches and how the technique could be used to combine SDB
results obtained from multiple images.
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