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Abstract: Extracting highly detailed and accurate road network information from crowd-sourced
vehicle trajectory data, which has the advantages of being low cost and able to update fast, is a
hot topic. With the rapid development of wireless transmission technology, spatial positioning
technology, and the improvement of software and hardware computing ability, more and more
researchers are focusing on the analysis of Global Positioning System (GPS) trajectories and the
extraction of road information. Road intersections are an important component of roads, as they play
a significant role in navigation and urban planning. Even though there have been many studies on
this subject, it remains challenging to determine road intersections, especially for crowd-sourced
vehicle trajectory data with lower accuracy, lower sampling frequency, and uneven distribution.
Therefore, we provided a new intersection-first approach for road network generation based on
low-frequency taxi trajectories. Firstly, road intersections from vector space and raster space were
extracted respectively via using different methods; then, we presented an integrated identification
strategy to fuse the intersection extraction results from different schemes to overcome the sparseness
of vehicle trajectory sampling and its uneven distribution; finally, we adjusted road information,
repaired fractured segments, and extracted the single/double direction information and the turning
relationships of the road network based on the intersection results, to guarantee precise geometry and
correct topology for the road networks. Compared with other methods, this method shows better
results, both in terms of their visual inspections and quantitative comparisons. This approach can
solve the problems mentioned above and ensure the integrity and accuracy of road intersections and
road networks. Therefore, the proposed method provides a promising solution for enriching and
updating navigable road networks and can be applied in intelligent transportation systems.
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1. Introduction

Digital road information is a pivotal part of basic geographic information and plays an important
role in urban planning, intelligent transportation, and location services [1]. In the past, the collection
of road information, mostly through traditional measurement methods, had a high cost of time and
manpower. With the development of remote sensing technology, many scholars have proposed road
extraction methods based on remote sensing images [2,3] and Light Detection and Ranging (LIDAR)
point cloud data [4]. However, due to the mixture of multiple spatial information, road extraction
is susceptible to interference. Additionally, the acquisition cost of remote sensing images and point
cloud data is high and has a lag problem. Although it is possible to collect and edit data via a Mobile
Mapping System, this method is also expensive, and road extraction information also often lags behind
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the latest changes in the actual road. With the development of the Internet and the popularity of GPS
technology, the methods of geographic information acquisition have undergone tremendous changes.
More and more locations can be reached via GPS or hand-held devices. Additionally, data are collected
and uploaded by the public. These phenomena stimulate the generation of crowd-sourced trajectory
data, which are acquired by soliciting contributions from a large group of volunteers. These data
are different from those obtained by traditional measurement and remote sensing methods and have
the advantages of being low cost, in real-time, and on a large scale, which is more suitable for the
acquisition and rapid update of large-scale rural [5] and urban [6] road networks. At the same time,
these data contain a large amount of driving record information, which makes a great contribution
to the extraction of road-related geometry and attribute information, such as sidewalk networks [7],
implicit entities [8], road boundary information [9], road slope and aspect information [10], and other
road semantic information [11–13]. Therefore, the big real-time traffic data from crowd-sourced data
not only make it a reality to extract a low-cost, fast-updating, highly detailed, and accurate road
network, but can also mine a lot of road semantic information. This is a significant research field for
road information extraction.

At present, existing studies dedicated to generating road maps from vehicle GPS traces are
common and have made great progress. Previous work mainly focused on the extraction of the
road skeletons, which can be divided into incremental methods [14–16], clustering methods [17–19],
and raster methods [20,21]. Incremental methods combine routes one-by-one to form a graph [22],
which starts from an empty road network, taking the first trajectory as the benchmark, and continuously
adjusts and improves the initial road network by gradually inserting the trajectory. Clustering methods
use some kind of clustering algorithm, such as K-means, to form a road network by considering the
position or direction characteristics of the tracking points. Raster methods first rasterize the GPS track
points to form a binary map and then use image-processing techniques to extract the road network.

However, incremental methods are calculation-intensive and cannot determine the correct
intersections. Clustering methods, on the other hand, have difficulty handling roads that are close in
space. These two kinds of methods can only process high frequency, high precision, and high-density
trajectories; they perform poorly for low frequency and high GPS error data. Even though the raster
method can fit low-frequency trajectories, the precise geometry and correct topology of road networks
cannot be guaranteed, and the morphology of a road is often distorted. As shown in Figure 1,
the intersection position often deviates its right location and road segments around intersections with
a few track points often distorted and broken.
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rules based on clustering methods. However, the above road intersection extraction methods are 

Figure 1. Intersections position deviation, and road segments around intersections are distorted and
broken: (a) Position deviation; (b) distorted road segments; (c) broken road segments.

To overcome the shortcomings of previous road data extraction methods based on the trajectory
data, some studies argue that correct intersections can generate a high-quality road network, and some
researchers have begun to do studies on the extraction of road intersections based on Longest
Common Subsequence (LCSS) [23], heading direction changing [24–27], G index analysis [28,29], shape
descriptors [30], etc. Additionally, some researchers [27–29] have attempted to extract turn rules based
on clustering methods. However, the above road intersection extraction methods are either complex or
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inefficient [30], need to train a large number of data and build an empirical model to be viable, or are
only applicable to high-frequency sampling data or high-density areas.

Therefore, there exist many challenges for road network extraction from crowd-sourced vehicle
GPS trajectories, as follows:

First, high-frequency tracks are hard to obtain. Low-frequency tracks are more common, and most
trajectory data are obtained by Commodity GPS devices in which the average sampling interval is
more than 40 s, which means that the next points are often recorded after the vehicle passes one or
more intersections. Thus, most methods mentioned above are inefficient for this kind of data.

Second, trajectory data are unevenly distributed, and road track points are intensive in traffic hub
regions, while sparse in branch roads.

Third, the urban road network is extremely complex, as its intersections have multiple levels and
types and may be too close to each other, meaning that the extraction of precise road segments around
intersections cannot be guaranteed. Moreover, the morphology of a road is often distorted and broken
for its low-frequency data properties.

In order to overcome the aforementioned challenges, a new intersection priority strategy to
extract the road network using real-world vehicle GPS trajectory data was presented in this paper.
We developed an integrated identification strategy focusing on the detection of road intersections and
then constructed road improvement methods based on intersection results. The contributions of this
paper are the following:

(1) In grid space, we extracted the intersections by identifying the number of eight neighborhoods,
per pixel, in the single-pixel “center-lines” and considered different resolutions, which can keep
as many intersections as possible in our extraction method and also make the extraction results
more accurate in the subsequent fusion processing.

(2) In vector space, the clustering method to rapidly search for and find density peaks (CFDP) [31]
was used to extract road intersections for the first time. Moreover, our method, which considers
the distribution density of trajectory data and the traffic flow characteristic of roads, is available
for both low-frequency and high-frequency trajectories, thereby solving the problem faced by
other methods, such as heading and speed only being available for high-frequency trajectories.

(3) An intersection fusion mechanism that integrates the advantages of cluster computing and image
recognition was developed to overcome sampling sparseness and uneven distribution of the
vehicle trajectory data. At the same time, this fusion mechanism can recognize true intersections
and undetermined intersections, thereby guaranteeing the integrity of the extraction results and
reducing the blindness of eliminating false intersections.

(4) Making full use of the direct dependency between intersections and center-lines of the road
can further adjust road information and repair fractured segments, thereby guaranteeing the
precision of road segments around intersections. We also constructed an Intersection–Link model
and used the road segment between intersections as the unit to identify single/double directional
information and the turning relationships of the road network, to guarantee the precise geometry
and correct topology of the road networks.

The remainder of this paper is organized as follows. Section 2 describes the method’s flow and the
strategy used to extract the intersections and build a road network. Section 3 outlines the procedure
of our integrated intersection extraction method. Section 4 outlines the procedure of our method for
building a road network. Section 5 presents a set of experimental analyses. Section 6 discusses the
conclusions and suggestions for further work.

2. Road Network Generation Framework

On the one hand, intersections are key parts of a road network, as their effective identification is
the basis of constructing a navigable road network. On the other hand, identifying road segments and
turning relationships based on intersection extraction results is a divide-and-conquer method, which is
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helpful to reduce the difficulty of urban road network construction. However, the sampling frequency
of crowd-sourced vehicle GPS trajectories is low, and its accuracy is not high. Furthermore, urban road
networks are dense, and intersections are very close, so it is very challenging to construct urban road
networks based on crowd-sourced vehicle GPS trajectories. This paper proposes an intersection-first
approach for road network generation that uses low-frequency real-world vehicle GPS trajectories to
correctly solve the above problems. According to our proposed road information extraction scheme,
there are four key parts for obtaining road network information from GPS trajectories, as shown in
Figure 2.
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Figure 2. Workflow for road information extracting.

(1) In the grid space, road intersections were extracted by identifying the number of pixels in
each pixel’s eight neighborhoods from different resolution single-pixel “center-lines” to extract
as many road intersections as possible. Before this, corresponding mathematical morphology
processing, such as rasterization, open operation, close operation, filling holes, smoothing surfaces,
and morphology thinning, needed to be done.

(2) In the vector space, we considered the distribution density of the trajectory and extracted the
road intersections via the clustering method of CFDP. In this critical part, in order to eliminate the
trajectory points with large deviations caused by drift, Kernel Density Estimation (KDE) was first
used to smooth the trajectory data.

(3) In the aspect of integrated intersection extraction, a corresponding fusion mechanism was
constructed. The true intersections and undetermined intersections were distinguished according
to the fusion of the clustering results of the CFDP algorithm and the mathematical morphological
extraction results from different resolution raster images. Finally, Principal Component Analysis
(PCA) was used to analyze the undetermined intersections and detect the pseudo intersections so
as to ensure the accuracy of eliminating the false intersections.

(4) In terms of road network generation, a road improvement method was proposed to guarantee
the precise geometry and correct topology of the road networks based on the above intersection
extraction results. At the same time, we also designed the Intersection–Link model to identify the
single/double direction information and turning relationships of the road network.

3. Integrated Intersection Extraction

Road intersections, which usually connect two or more road segments, are key parts of the
road network. In this study, we extracted the road intersections first and then processed the road
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information. To ensure the accuracy and integrity of the result’s location, two methods were used to
extract intersections. One method involves using mathematical morphology to calculate the trajectory
raster images of different resolutions, and the other involves clustering the GPS trajectories to obtain
the "road cluster point" via the clustering algorithm CFDP. The intersection results are obtained by
fusing these two methods, so the intersection extraction is as complete as possible while the position
maintains high accuracy.

3.1. Extracting Intersections under a Raster Space Using the Morphology Method

Mathematical morphology processing, which has been widely used in the road extraction of remote
sensing images, is a computational method for grid space. Remote sensing images contain a variety of
different spectral information, which have a great impact on road extraction, while images generated
by rasterization based on taxi GPS trajectories are not interfered with by other ground information,
thereby producing better results. In addition, using the mathematical morphology approach requires
less time to process the trajectory data. Based on our observations, the cells in which the number of
pixel points in eight neighborhoods is more than two in single-pixel “center-lines” have the greatest
opportunity to be road intersections. As shown in Figure 3, cell a is an example of a road intersection,
while cell b is an example of a non-intersection. In this study, we used the mathematical morphology
method to obtain the single-pixel “center-lines” and extracted the intersections by identifying the
number of pixels in each pixel’s eight neighborhoods.
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Figure 3. Intersection recognition example.

The key steps for extracting road intersections via the morphological method are as follows:
Step 1: Rasterizing the GPS trajectories. In order to minimize the effects of noise, we set a statistical

value c for each pixel based on the characteristics of a large number of track points, and specify that
when a track point falls into a pixel of the raster image, the value of c for that pixel will be increased by
1. If the c value of a pixel is ultimately greater than or equal to the given threshold, the pixel value is
set to 255; otherwise, the value is 0.

Step 2: Preprocessing the raster image. To accurately restore the shape of the original image,
the etched image is used as the marker image and the original image as the mask image for the
mathematical morphological reconstruction to eliminate outliers. At the same time, the reconstruction
involves an iterative dilation process, which can ensure that holes are filled without changing the
shape of the object. Operation preprocessing, such as open and close operations, can also be used to
achieve image enhancement and smoothing, respectively.

Step 3: Extracting the single-pixel “center-lines” of the road by morphology thinning (shown in
Figure 4).
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Figure 4. Raster image preprocessing and morphology thinning.

Step 4: Calculating the number of pixels in each pixel’s eight neighborhoods in the thinning result.
The pixels whose neighborhood numbers are more than two are considered as intersections.

After preprocessing of mathematical morphology, the intersections can be obtained more accurately.
However, when the trajectory points are rasterized, the resolution of the trajectory raster image will
affect the final extraction result. Using a higher resolution, the location of the road can be reflected more
accurately, as shown in Figure 5a. However, for areas where the track points are sparsely distributed,
such processing may generate more outliers that will be treated as noise and eliminated. If using a
lower resolution, as shown in Figure 5b, the proportion of trajectory pixels in the total number of pixels
will increase, which facilitates the enhancement of sparse areas. Therefore, according to the strategy
mentioned above, this paper uses high resolution and low resolution to extract road intersections,
respectively, so our method can extract as many intersections as possible and also keep the extraction
results more accurate in the subsequent fusion processing.
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Figure 5. Effect of image resolution on rasterization: (a) high resolution; (b) low resolution.

Urban road widths are diverse, ranging from 30 to 40 meters wide for main roads and 10 to 15 m
wide for secondary roads. In order to accurately reflect the location of all roads and reduce the impact
of noise, the raster resolution should not be too small. Therefore, two resolutions of 2.5 m and 5 m
were selected for morphological processing. The intersection and center-line extraction results from
different resolutions via rasterization using the Wuhan dataset are shown in Figure 6. The results show
that the number of 2.5 m intersection extraction results is 66, the number of 5 m extraction results is 77,
which is 11 more than the number of 2.5 m extraction results.
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Even though the method considers sparse areas and sets different kinds of resolutions to extract
intersections, it is still not suitable for less dense regions, as some center lines and intersections in
sparse areas have still not been completely extracted. Therefore, it is necessary to combine the peak
density clustering method and mathematical morphology method to extract the intersections to ensure
the completeness of the results.

3.2. Extracting Intersections Under a Vector Space Based on CFDP

Due to the complexity of the intersections, a large number of GPS sampling points are gathered
near the intersection so, although the GPS trajectories of some areas near intersections are sparse, the
density clustering algorithm can be used to extract intersections. The CFDP clustering algorithm is used
in this work because it captures the local maximum density positions of cells and is not easily disturbed
by uneven track density distribution. Moreover, the CFDP algorithm has a few threshold settings.
In contrast, DBSCAN merges proximal high-density cells into clusters; the mean shift algorithm is
often affected by locally dense areas, and the results fluctuate greatly.

The GPS trajectory points in the study area range from thousands to millions, and the presence of
discrete points (noise points) may result in the detection of false intersections. Since it is impossible to
process the entire study area directly using the CFDP algorithm, KDE is used for data smoothing.

3.2.1. Estimating Density

KDE is used to calculate the density of the point elements, which represents the sum of the kernel
functions that fall within the bump, as shown in Equation (1):

ˆf (x) =
3

mh2

m∑
i=1

K(
1
h
(x− xi)) (1)

where m is the number of neighbor cells, xi is the center point of the ith cell, h is the bandwidth,
and K(x) is the kernel function adopted in this work, as shown in Equation (2):

K(x) =

 3π−1(1−XTX)
2, XTX < 1

0, otherwise
(2)

In the density grid, large-value cells always exist within intersections, and small-value cells (also
called noisy cells) usually exist at the margins of intersections or along roadways, as shown in Figure 7a.
Based on the statistics of the density grid, we can acquire a statistical distribution map, as shown
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in Figure 7b. Setting the appropriate threshold K, we can extract the main road information, which
consists of high-density cells for intersection detection.
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3.2.2. Extracting Intersections

The CFDP algorithm is based on the assumption that the cluster center is surrounded by
neighboring points with lower local densities and has a relatively large distance from any point with
a higher density. Thus, for each point in the whole research region, two quantities are calculated:
the local density of the point and the distance from the point to the point with a higher local density,
both of which depend on the distance between the data points.

Based on estimating density processing, experimental data retains the main information about
the intersection, and some noise points are removed while the number of data is reduced. Moreover,

the extracted results have the density attribute
{
ρi

}N
i=1. Then, let set

{
qi

}N

i=1
denote a descending order

of set
{
ρi

}N
i=1. In other words, as ρq1 ≥ ρq2 ≥ . . . ≥ ρqN, then the point distance is defined as Equation

(3):

δqi =


min
qj

j < i

{
dqiqj

}
, i ≥ 2

max
j≥2

(
δqj

)
, i = 1

(3)

According to the decision diagram of the relationship between δqi and ρi, the cluster center, which
is a candidate for intersection points, can be selected. Because the distribution of the GPS sampling
points is inconsistent, if the distance and density threshold are considered at the same time, the sparse
area extraction results will be affected, and the integrity of the extraction results will be reduced.
Therefore, this paper takes into account the special qualities of intersections and only considers the
distance threshold.

With the processing of the kernel density analysis, the data cluster is smoothed, and the distance
within the cluster is suppressed. The larger the distance between the clusters, the more likely the
intersection is. Amplifying the range of the red rectangular in the decision graph shown in Figure 8b,
we can see that the distance of many points clusters under 20 meters. Thus, setting the distance
threshold D as 20 meters, the extraction results using the Wuhan dataset via the CFDP algorithm are
shown in Figure 8c. The extraction of the intersection is only related to distance, which solves the
difficult parameter adjustment problems.
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3.3. Fusion and Eliminating Pseudo Intersections

In order to reduce the blindness of eliminating pseudo intersections and ensure the integrity
and accuracy of the extracted intersections, this paper establishes a corresponding fusion mechanism
based on the extraction results of different methods to distinguish between true intersections, pseudo
intersections, and undetermined intersections. This study also uses PCA to eliminate pseudo
intersections. The road intersections fusion frame is shown in Figure 9.
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3.3.1. Fusion of the Intersection Extraction Results

Considering the density characteristics of the road intersections compensates for the morphology
extraction results, but also results in some pseudo intersections. Consequently, we proposed a
variety of fusion rules (listed in Table 1) based on our extraction results, including high-resolution
results, low-resolution results, and CFDP clustering results, to help recognize the undetermined
results and reduce the error rate of eliminating pseudo intersections. If only high-resolution results
or low-resolution results are present within the distance of a given fusion threshold R1, then the
intersections are false. If only the CFDP clustering results are present, then the intersections are
undetermined. In other situations, the fusion results are based on the high-resolution results (if they
exist). Otherwise, the fusion results are based on the low-resolution results.

Table 1. Fusion Rules. CFDP, clustering method via fast searching and the finding of density peaks.

High-resolution Results Low-resolution Results CFDP Clustering Results Judging Results
√ √ √

True
√ √

True
√ √

True
√ √

True
√

False
√

False
√

Undetermined

Based on the above rules, we set 80 meters as the fusion threshold value. The fusion results
distinguish 79 true intersections, 4 false intersections, and 57 undetermined intersections, which are
shown in Figure 10.
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Undetermined results all come from clustering results that greatly supplement the raster extraction
results, especially the intersections of the residential streets, living streets, and pedestrian streets that
have no (or few) taxi tracks. However, the congestion in some sections of the road and long taxi stays
result in a large number of loci, and some pseudo intersections have also been extracted. We also
extracted a method to eliminate the pseudo intersections, focusing on the undetermined results.

3.3.2. Elimination of False Intersections from Undetermined Results

Pseudo intersections (that is, non-real intersections) that are identified as intersections may be
caused by taxis stopping, cars turning at gas stations, viaducts, or other special road landmarks.
For this reason, we use the PCA method to analyze the linear significance of spatial distribution near
undetermined intersections, which are extracted based on the above fusion rules to further distinguish
pseudo-intersections from undetermined intersections. First, we created a circular buffer with radius
R2 at the undetermined intersection to collect the track points falling into the circular buffer. Then,
we construct a covariance matrix by taking x and y coordinates from the set of track points as variables
and calculate the eigenvalues λ1 and λ2 of the matrix. Finally, we use Equation (4) to judge the main
direction of traffic flow at the undetermined intersections and the intensity in each direction. It is
obvious that the larger the ∆, the stronger the linear feature, which means the less likely it is to become
a true intersection, as shown in Figure 11. In order to retain more true intersections, we can choose
the larger ∆ value as the threshold value to filter the intersection points. ∆ is calculated based on the
following formula:

∆ =
max(λ1,λ2) −min(λ1,λ2)

max(λ1,λ2)
(4)
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4. Road Network Generation

According to the above work, we extracted the single-pixel “center-lines” of the road by
morphology thinning. Our goal was to produce an initial road map consisting of nodes and edges.
Thus, we first vectorized the skeleton image and used the Douglas–Peucker algorithm [32] to produce
the edges that make up the shape of each road segment. Secondly, in order to determine the road
integrity and topological consistency, we used the extracted intersections to adjust the distorted road
segments around the intersection and connected the fracture segments to guarantee the road network’s
accuracy. Finally, we designed the Intersection–Link model and took the road segments between
the intersections as the units to identify the single/double directions and turning relationships of the
road network.

4.1. The Road Improvement

The road segments around the intersections are distorted and broken. In this section, we build
buffers for intersections. We set 80 m (the same as the fusing threshold R1) as the buffer radius and
designed the specific algorithm to adjust the roads’ endpoints falling into the buffer of the relative
intersections to correct the position and shape of the road segments around the intersections, as shown
in Figure 12a,b. At the same time, we also connected the fractured segments according to the broken
segment’s distance and direction deviation, or the distance and direction deviation between the broken
segment and the relative intersection, by using extracted intersection results, as shown in Figure 12c,d.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 12 of 27 

 

Figure 11. A real/false intersection schematic diagram. 

4. Road Network Generation 

According to the above work, we extracted the single-pixel “center-lines” of the road by 
morphology thinning. Our goal was to produce an initial road map consisting of nodes and edges. 
Thus, we first vectorized the skeleton image and used the Douglas–Peucker algorithm [32] to produce 
the edges that make up the shape of each road segment. Secondly, in order to determine the road 
integrity and topological consistency, we used the extracted intersections to adjust the distorted road 
segments around the intersection and connected the fracture segments to guarantee the road 
network’s accuracy. Finally, we designed the Intersection–Link model and took the road segments 
between the intersections as the units to identify the single/double directions and turning 
relationships of the road network.  

4.1. The Road Improvement 

The road segments around the intersections are distorted and broken. In this section, we build 
buffers for intersections. We set 80 m (the same as the fusing threshold R1) as the buffer radius and 
designed the specific algorithm to adjust the roads’ endpoints falling into the buffer of the relative 
intersections to correct the position and shape of the road segments around the intersections, as 
shown in Figure 12a,b. At the same time, we also connected the fractured segments according to the 
broken segment’s distance and direction deviation, or the distance and direction deviation between 
the broken segment and the relative intersection, by using extracted intersection results, as shown in 
Figure 12c,d. 

 

                 

       (a)                                         (b)  

    

           (c)                                         (d)  

Figure 12. Some examples for road segment improvement around intersections (gray is the pre-
correction road segments and red is the corrected road segments): (a) Position and shape correction; 
(b) position and shape correction; (c) connecting fractured segments; (d) connecting fractured 
segments. 

Except for the intersection extraction results of set I in this stage, this connecting strategy requires 
to detect the suspension points set S and the suspension lines set L and to calculate the following two 
parameters: dis(pm,pn) < 500 m or dis(pm,Pi) < 500 m and dir(lm, (pn-pm)) < 30o or dir(lm, (Pi-pm)) <30o, 

Figure 12. Some examples for road segment improvement around intersections (gray is the
pre-correction road segments and red is the corrected road segments): (a) Position and shape correction;
(b) position and shape correction; (c) connecting fractured segments; (d) connecting fractured segments.
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Except for the intersection extraction results of set I in this stage, this connecting strategy requires
to detect the suspension points set S and the suspension lines set L and to calculate the following two
parameters: dis(pm,pn) < 500 m or dis(pm,Pi) < 500 m and dir(lm, (pn-pm)) < 30o or dir(lm, (Pi-pm)) < 30o,
wherepm, pn ∈ S, m, n = 0, 1, 2, · · · , m , n,Pi ∈ I, i = 0, 1, 2, · · · ,lm ∈. The point that satisfies the above
conditions and has the minimum distance will be selected to connect the suspension point. These
parameters were determined based on the distance and direction between fractured segments as well
as after much experimental exploration to yield the best results.

4.2. Identifying Single/Double Directions and Turning Relationships

A road intersection is an intersection of two or more roads that divide the urban road network into
sections of moderate length without overlapping. Therefore, we designed the Intersection–Link model
and used the road segment between intersections as the unit to identify the single/double directions
and turning relationships of the road network.

4.2.1. Intersection–Link Model Construction

Building the Intersection–Link model is a process of track segmentation. A track is divided
into several sections according to the road intersections, and each pair of adjacent road intersections
corresponds to multiple track segments. Denoting any two adjacent road intersections in the node
set as Ik and Ij, traversing the original track data, and calculating all n track segments between them,
the Intersection–Link model can be obtained:

(Ik , Ij) ~ {t1,t2,t3, . . . ,tn}.

Here, tk(0<k≤n) represents the information of a track segment between Ik and Ij, which are two
adjacent road intersections, including track ID and the track point coordinate information.

The Intersection-Link model’s construction is used to assign the original track points to an adjacent
road intersection. For any track, it is necessary to determine which point passes through a road
intersection. If two points in the track pass through two road intersections successively, then the point
between them belongs to the section between these two intersections.

4.2.2. Removing the Pseudo-Intersection–Link Relationship

Due to the low sampling frequency of the track data, some tracks may cross several sections before
passing through a road Intersection, thereby forming a pseudo-Intersection–Link relationship. Then,
we adopted the following strategies to eliminate the pseudo-Intersection–Link relationship:

• We use the straight line connecting the two road intersections as the diameter to establish the
circular buffer zone. If there are too many other intersections in the buffer, the two intersections
are too far apart. If so, delete the Intersection–Link relationship of the two intersections.

• The Intersection–Link relationships are formed between two of the three road intersections (such as
a, b, and c), which are located in the same straight line. The lengths of ab, ac, and bc were calculated
accordingly to eliminate the Intersection–Link relationship of the longest pair of intersections,
as shown in Figure 13a.

• Most sections of urban roads are straight lines, while some sections have small radians. Based
on this observation, the maximum distance d from the intersection line (let the length be L)
in the normal track points is calculated. If d/L is greater than the threshold, then delete the
Intersection–Link relationship. This strategy can eliminate the situation seen in Figure 13b.
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Figure 13. A pseudo-Intersection–Link relationship (points a-f are road intersections): (a) A
pseudo-Intersection–Link relationship located in the same straight line; (b) A pseudo-Intersection–Link
relationship located in the sections which have some radians.

4.2.3. Determining the Characteristics of a Road Network

The Intersection–Link model shows the relationship between road segments and track segments,
which can be used to identify the single/double directions and turning relationships of the road network.
Suppose the start-and-end intersections of a road section are a and b, respectively. The Intersection–Link
relationship only exists between a to b or b to a, indicating that this road section is a single-lane road
section. The Intersection–Link relationship exists between a to b and b to a, indicating that the road
section is a two-way road section. Take road intersection 3 in Figure 14 as an example. Intersections
2 and 3 have an Intersection–Link relationship. Intersections 3 and 4 have an Intersection–Link
relationship at the same time, which is insufficient to indicate that there is a turning relationship
between the two sections. Thus, the track segment in two Intersection–Link relationships needs to
be checked. If the track segment between intersections 2 and 3 belongs to the same track as the track
segment between intersections 3 and 4, and the vehicle’s time from intersection 2 to 4 does not exceed
a certain threshold, then it can be determined that there is a turning relationship between section A
and section D at intersection 3. It is worth mentioning that the number of intersections that can be
used for turning at road intersections is often more than those that cannot be used for turning, so the
selection of storage turning restriction relationships can effectively improve the storage efficiency.
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Figure 14. An example of a road network model based on node-edge representation.

5. Experiments and Analysis

5.1. Study Area and Data Sets

Real-world vehicle trajectory data for seven days from May to June 2014 in the Wuhan city and
Chicago Campus Bus Datasets were used to test the feasibility and effectiveness of the proposed
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intersection extraction method and road construction method. Both of them include the following
main fields: vehicle ID; time; longitude; latitude; speed (m/s); and heading (degree), which is relative
to north.

Wuhan dataset covers a region of 4.2 km × 2.8 km, containing about 2000 taxi trajectories and
nearly 800,000 trajectory points. The average sampling interval of the dataset is more than 40 seconds.
The experimental area is an old central urban area near Hankou in Wuhan city, and the track points are
unevenly distributed on different volume roads with significant noise, as shown in Figure 15a. Part of
the dataset can be shown in Figure 15c. The Chicago dataset, which has been widely used in related
work [33] and is available on the website [34], is relatively clean and contains 118,364 GPS points and
889 trajectories within a region of 3.88 km × 2.4 km at the University of Illinois in Chicago, as shown in
Figure 15b.
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5.2. Experimental Results of the Proposed Method

Based on the approach described above, we developed a set of programs to generate intersections
and road networks from vehicle GPS trajectories using Python and C# via the ArcEngine platform.

The experimental parameters involved in this experiment include the size of the structural elements
S during morphological operations, kernel density threshold K, clustering distance threshold D, fusing
threshold R1, circular buffer radius R2, and the threshold ∆ of eliminating false intersection points.
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In order to extract more intersection points, the close operation uses larger structural elements, the open
operation uses smaller structural elements, and ∆ needs to be set to the larger value. The kernel density
threshold can be set according to the quantile classification method. For the Wuhan dataset, K was set
to 25% of the maximum kernel density. For the Chicago dataset, K was set to 100% of the maximum
kernel density. Since the distribution of the Chicago dataset is relatively even and the dataset has few
noises, the threshold of K is reasonable for the Chicago dataset, which also indicates the feasibility of
the quantile classification method. Clustering distance threshold D and fusing threshold R1 are related
to the spacing of road intersections at all levels, so they can be set according to the minimum spacing
planning for road intersections in relative research areas. However, in a situation in which the distance
δqi of many points clusters under a certain distance, as shown in Figure 8, the clustering distance
threshold needs to be set as the corresponding distance for more extraction results. The circular buffer
radius R2 was empirically set to 100. The parameter settings for the experiment are shown in Table 2.

Table 2. The parameters settings for experimental results.

Datasets

S

K D R1 R2 ∆
2.5 Resolution 5 Resolution

Close
Operation

Open
Operation

Open
Operation

Open
Operation

Wuhan 10 4 4 3 0.25 20 80 100 0.96
Chicago 4 3 3 3 1 75 80 100 0.9

5.2.1. Intersection Detecting Results

The extraction results of the road intersections in Chicago and Wuhan are presented in Figure 16a,b.
After PCA analysis and the elimination of false intersections from the undetermined results, a total
of 117 and 51 intersections were detected from the Wuhan dataset and Chicago dataset, respectively.
Overlaying the final extraction intersections, the remote sensing image and 2.5 m raster track data
revealed a good fit with the map, as shown in Figure 16. Compared with the morphology method
alone, the fusion method not only ensures the integrity of the results but also confirms the correction of
the extraction results. Greater than 90% of the detected results are true intersection points, indicating
that our methods can correctly distinguish a variety of road intersections from other roadways.

However, there are also some road intersections not being detected due to having insufficient GPS
data. As shown in Figure 16, there are non-existent, or few taxi tracks passing residential streets, living
streets, and pedestrian streets, so some of these types of road intersections cannot be extracted. Though
our method complements some kind of these intersections, it’s still a challenging task to recognize all
intersections only using taxi tracks. This issue could be solved by considering walking trajectory data.

Finally, due to the uneven distribution of primary and secondary roads in some areas, a few false
intersections could not be removed by the PCA method. Meanwhile, the PCA method, which is used
to determine false intersection points according to their linear characteristics, can not apply to the
turning area.
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5.2.2. Road Network Detection Results

Due to the serious absence of the road information for 2.5 m resolution thinning images,
we vectorize and simplify the 5 m resolution thinning image to get the vector road center-lines
by using the Douglas–Peucker algorithm. The results, according to road reprocessing, are shown in
Figure 17. Almost all the roads that taxi tracks pass through can be extracted. The roads that are
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residential streets, living streets, and pedestrian streets with no taxi tracks also could be extracted by
fusing the walking trajectory data. We must mention that some extracted road segments are seriously
distorted simply because the road segments are too close to each other or do not have enough trajectory
points to form the correct road shape. These are all difficult problems for current research.
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5.2.3. Single/Double Direction Information and Turning Relationship Detection Results

The Intersection–Link relationship can be used to extract the single/double direction information
and turning relationship of the road network. Taking intersection 69, extracted from the Wuhan dataset,
as an example (shown in Figure 18), the result of this relationship is shown in Tables 3 and 4.
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Table 3. The single/double direction decision.

Paths Whether One Can Pass Paths Whether One Can Pass The Single/Double
Direction Decision

65–69 Yes 69–65 No Single
62–69 No 69–62 Yes Single
72–69 No 69–72 Yes Single
75–69 Yes 69–75 NO Single

Table 4. The turning results of intersection 69.

Paths Paths Whether One Can Pass Whether One Can Pass in Reality

65–69 69–62 Yes Yes
65–69 69–72 Yes Yes
65–69 69–75 NO NO
62–69 69–65 NO NO
62–69 69–72 NO NO
62–69 69–75 NO NO
72–69 69–62 NO NO
72–69 69–65 NO NO
72–69 69–75 NO NO
75–69 69–62 Yes Yes
75–69 69–65 NO NO
75–69 69–72 Yes Yes

According to the Intersection–Link model, we can determine which road sections and road
intersections the track passed and then extract the single/double direction information, as well
as the turning relationship, of the road. Where the viaduct passes, it may form an area with a
pseudo-intersection, which can also be recognized by the Intersection–Link model.

5.3. Results Evaluation and Analysis

In this section, we compare our proposed method with the aforementioned method proposed by
Ahmed [15] and Davies [20]. For Ahmed, the values of ε to the cluster sub trajectories are 140 and 80 m
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for Wuhan and Chicago, respectively. The parameter of the proximity for Davies’ algorithms is 17 m.
Directly using the Wuhan dataset to extract the road network via the methods of Ahmed and Davies
cannot achieve appropriate results for low-frequency data. Therefore, in this experiment, the Delaunay
triangulation method [35] was used for the Wuhan dataset preprocessing, and then we extracted the
trajectory points within 60 s and deleted the trajectory whose number of track points fewer than two.

5.3.1. Visual Inspection

Figure 19 shows the detection results from Ahmed’s method and Davies’ method. Compared
with the extraction results from the proposed method shown in Figures 16 and 17, these two methods
did not extract more road intersections and skeleton information, and a lot of results deviated from
their correct positions. For the Chicago dataset, although Ahmed’s method extracted more skeleton
information, it produced a large number of offset and messy outputs. The visualization clearly shows
that the proposed method is better than the other two methods.

5.3.2. Quantitative Comparisons

We also use precision, recall, and the F-value to evaluate our method. Accuracy comparison for
detecting road intersections can be shown in Table 5. The proposed method achieved a significantly
higher precision value and F-value than the method of Ahmed and Davies, which demonstrates
superior performance for detecting road intersections. Three indicators were computed utilizing
Equation (5):

Precision =
correctly detected

correctly detected + incorrectly detected
(5a)

Recall =
correctly detected

correctly detected + not detected
(5b)

F− value =
2 ∗ precision ∗ recall
precision + recall

(5c)

Table 5. Accuracy comparison for detecting road intersections.

dataset Methods Precision Recall F-value

Chicago
Proposed 50/51 = 98.04% 50/71 = 70.42% 81.97%
Ahmed 40/52 = 76.92% 40/71 = 56.34% 65.04%
Davies 19/19 = 100% 19/71 = 26.76% 42.22%

Wuhan
Proposed 109/117 = 93.16% 109/123 = 88.62% 90.84%
Ahmed 37/50 = 74% 37/123 = 30.08% 42.77%
Davies 69/81 = 85.19% 69/123 = 56.10% 67.65%

According to the visual inspections and quantitative comparisons, we can see that the proposed
method extracted more intersections and has considerable consistency with the remote sensing image.
At the same time, the road extraction results also show more accurate and richer information, especially
for the Wuhan dataset, which contains low-frequency data. However, based on the results in Table 4,
there was also about a 2% and 7% chance of incorrectly identifying road intersections, and about
30% and 20% of the road intersections were not identified for the Chicago dataset and the Wuhan
dataset, respectively.
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Figure 19. The detection results using Davies’ method and Ahmed’s method: (a) Davies’ detection
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(d) Ahmed’s detection results in Chicago.

For further observation of the extraction results, we overlay the final extraction results, Open-street
Map (the blue line is the urban traffic roads, the yellow line is the urban living streets), 2.5 m raster
track data and remote sensing image, as shown in Figure 20. The incorrectly identified intersections are
mainly concentrated on elevated road entrances and exits, sharply curved points, points close to living
streets, and points of interest where cars are parked for a long period. We can consider random forest
and other technologies to further improve the accuracy of eliminating pseudo intersections. In fact,
these special false intersections are also important for navigation. We can consider distinguishing these
points in future work and provide a reminder service for the navigation user. Thus, further analyses
and improvements are still needed.
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Based on the results shown in Figure 16, the road intersections, which were not identified,
are mainly the intersections of the residential streets, living streets, and pedestrian streets that have
no (or few) taxi tracks. Although our method complements some of these intersections, it is still a
challenging task to recognize them all only using taxi tracks. This issue can be solved by considering
walking trajectory data.

There also remains a small amount of road skeleton information that was not extracted for the
Chicago dataset and Wuhan dataset, which can be fitted via Multivariate Adaptive Regression Splines
(MARS) according to the intersection results and the Intersection–Link model, as shown in Figure 21.
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In addition, time-cost is an important factor to be considered in algorithm application. Since the
overhead of the CFDP algorithm is O(n3), our method has a larger time cost compared with the
methods of Ahmed and Davies. It took about five and seven hours longer than them to extract road
information based on the Wuhan and Chicago datasets, respectively, even though we had considered
the kernel density estimation to smooth the data and reduce the amount of data calculation. Despite
this, compared with some incremental methods (such as Cao’s method [14]) and neural network
methods (such as Fathi’s method [30]), the overhead of our method is not so bad, because these
methods may take dozens of days. Parallel computing will be considered to solve this problem in
the future.

6. Conclusions

Crowd-sourced Vehicle Trajectories have the disadvantage of lower accuracy, lower sampling
frequency, more noise, and uneven distribution, which makes it more difficult to determine a road
network than in most existing approaches that use high precision and high-frequency GPS trajectories.
Thus, because these problems cannot be solved by a single method, we focused instead on the
identification of urban road network intersections, proposing an integrated strategy that considers
both dense and sparse areas, in order to extract intersections using density peak clustering and
mathematical morphological processing in vector space and raster space, respectively. Compared with
the traditional detection algorithms for road intersections, our methods have higher detection accuracy
and integrity, as well as good application value and practical significance for quickly building road
networks and acquiring more fine digital information. At the same time, based on the extracted road
intersection information, this paper improves the morphology road network extraction results and
makes them more closely resemble the real road. The proposed Intersection–Link model can also detect
the single/double direction information of road sections and extract the turning rules of intersections.

In summary, the proposed method represents a considerable advancement in generating a
navigable digital road network. However, improvements are still required to make the method
better, such as considering the random forest algorithm and other technologies to further improve the
accuracy of eliminating pseudo intersections and optimizing the extraction algorithm and calculation
process to achieve real-time application. Moreover, our method only focused on the location of urban
road intersections and urban road skeleton information, without considering more road semantic
information (such as road congestion information, road grades, driving time, road slope, and aspect
information) and detailed road geometry information (such as the shape of complex interchanges, road
lanes, sidewalk network). In the future, we will consider elevation data, Point of Interest (POI) data,
and remote sensing data together with all kinds of crowd-sourced GPS traces to mine more significant
road information, which will involve not only the urban road network but also the rural road network.
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