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Abstract: Road networks play a significant role in modern city management. It is necessary to
continually extract current road structure, as it changes rapidly with the development of the city. Due
to the success of semantic segmentation based on deep learning in the application of computer vision,
extracting road networks from VHR (Very High Resolution) imagery becomes a method of updating
geographic databases. The major shortcoming of deep learning methods for road networks extraction
is that they need a massive amount of high quality pixel-wise training datasets, which is hard to
obtain. Meanwhile, a large amount of different types of VGI (volunteer geographic information)
data including road centerline has been accumulated in the past few decades. However, most road
centerlines in VGI data lack precise width information and, therefore, cannot be directly applied to
conventional supervised deep learning models. In this paper, we propose a novel weakly supervised
method to extract road networks from VHR images using only the OSM (OpenStreetMap) road
centerline as training data instead of high quality pixel-wise road width label. Large amounts of
paired Google Earth images and OSM data are used to validate the approach. The results show that
the proposed method can extract road networks from the VHR images both accurately and effectively
without using pixel-wise road training data.

Keywords: VHR images; road extraction; weakly supervised learning; OpenStreetMap

1. Introduction

With the rapid development of remote sensing technology, images obtained from the remote
sensors (installed on drones or satellites) have made a considerable contribution to disaster/emergency
management, urban planning, and object detection [1–3]. The road networks are also an indispensable
part of our daily life in city planning, traffic management, GPS navigation, and road condition
monitoring [4–7]. In a fast-growing area, road networks evolve frequently. Therefore, it is necessary to
extract up-to-date road networks to effectively support spatial applications.

Recently, deep learning techniques are widely used in different kinds of applications, and many
road extraction methods based on deep learning are proposed. These methods can achieve better
performance than the traditional road extraction methods using artificial features [8]. However, most
deep learning based end-to-end road extraction approaches need a large amount of high quality
pixel-wise annotated datasets. Human annotation is usually labor-intensive and time-consuming,
which makes large-scale annotated datasets very expensive. At the same time, the rapid development
of the OSM (OpenStreetMap, a collaborative project to create a free editable map of the world) [9–12]
makes it easier to acquire road centerlines. Figure 1 shows high quality pixel-wise annotation and the
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scribble annotation for road extraction. The ground truth of the pixel-level annotation in Figure 1b
should label every pixel, which is difficult to generate. Figure 1c represents the scribble annotation,
which can be easily obtained from OSM. Because the full annotation dataset is expensive to obtain and
the scribble annotation is easy to generate, the study of road networks extraction using scribble labels
is of great importance.

Recently, weakly supervised learning was popular in image segmentation [13–16]. In these
methods, scribbles [17,18], bounding boxes [19,20], clicks [19], and image-level tags [18] are used as
supervision for image segmentation. In this work, the OSM centerline is used as a typical scribbles
supervision for road extraction.

In order to improve annotation efficiency and road extraction performance for automated
VHR (Very High Resolution, spatial resolution 0∼2 m/pixel) images interpretation, this paper
proposes a weakly supervised method to extract the road network supervised only by the scribble
annotation OSM centerline. In this method, graph cut theory and a deep learning technique named
Multi-Dilated-ResUNet (MD-ResUNet) are used to make efficient roads extraction.

The main contributions of this paper are as follows:

1. A novel deep learning approach based on revised ResUNet with hybrid loss is proposed for road
extraction, which can only be supervised by weakly labeled OSM centerline instead of carefully
notated pixel-wise road width information.

2. In order to improve the performance of the proposed model furtherly, a novel multi-dilation
network with learnable parameters is added to conventional ResUnet. The multi-dilation
network, which employs non-linear dilated convolution, can exchange information with various
corresponding layers of ResUnet and expand the receptive field of convolution operations in
ResUnet. The experiment results show that compared to conventional ResUnet, the multi-dilation
ResUnet can work better in weakly supervised learning.

3. To validate the proposed methods, we conducted experiments on two different datasets.
The experiment results show that the proposed road extraction approach achieves promising
performance close to fully supervised methods using a high quality pixel-wise training dataset.

The paper is organized as follows. In Section 2, the related work of road extraction and weakly
supervised learning is introduced. The proposed method for weakly supervised road extraction is
detailed in Section 3. Experiment and discussion are presented in Section 4. Finally, the conclusions
are drawn in Section 5.

(a) VHR image (b) pixel-wise annotation (c) scribble annotation

Figure 1. Sample of Very High Resolution (VHR) images used in the experiments. (a) The VHR
image, (b) the corresponding pixel-wise annotation, and (c) sparse scribble of the OpenStreetMap
(OSM) centerline.
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2. Related Work

2.1. Road Extraction

Previously, the approaches of road network extraction from high resolution images can be
classified into two main categories: unsupervised and supervised.

The unsupervised road extraction does not need training samples, but instead usually uses
clustering algorithms to extract the road networks. The clustering algorithms used in road extraction
include K-means, spectral clustering, mean shift [21,22], and graph theory [23,24]. Miao et al. proposed
a semi-automatic approach using the mean shift to detect roads [22]. Unsalan used probabilistic
theory to extract road centerline and graph theory to infer the road networks formation [23]. However,
compared with the supervised extraction methods, the accuracy of these unsupervised methods is
generally lower [8].

Different from the unsupervised road extraction, supervised road extraction methods need lots
of labeled images to train the model. The accuracy of supervised extraction methods rely on the
features used and the labeled samples. Supervised classification methods mainly include AAN
(Artificial Neural Network) [25,26], SVM (support Vector Machine) [27], MRF (Markov Random
Field) [28], and ML (Machine Learning) [29]. Many ANN models, such as BP neural network [25],
fuzzy neural network, spiking neural network, and hybrid neural network [26,30], have been used for
road extraction from remote sensing images.

Recently, as the deep convolution neural networks (DCNN) [31,32] have shown dominance in
many visual recognition and image segmentation tasks, several road extraction methods based on
deep learning are proposed. These deep learning methods have greatly improved the performance of
road extraction.

Dragos et al. [33] proposed a dual-generation GAN (DH-GAN) network for extracting
road topologies. DH-GAN and SBO (Smoothing-Based Optimization) combination methods have
significant improvements in topology and accuracy. Wei et al. [34] proposed a road structure
refined convolutional neural network (RSRCNN) approach to obtain structured output for road
extraction in aerial images. Xu et al. [35] used a global and local attention model based on U-Net
and DenseNet [36] (GL-Dense-U-Net). Wu et al. [37] proposed an FCN-based model to implement
pixel-wise classifications for remote sensing image in an end-to-end way, and an adaptive threshold
algorithm to adjust the threshold of Jaccard index in each class. Zhang et al. proposed a semantic
segmentation neural network which combined the strengths of residual learning and U-Net for road
area extraction [4]. Moreover, during CVPR2018 (International Conference of Computer Vision and
Pattern Recognition), a road extraction competition [38] has rapidly promoted the development of
road extraction, where many methods were proposed to extract the road networks effectively [39,40].
To extract accurate road networks, the organizing committee provided a large amount of annotation
datasets for the participants. Zhou et al. proposed a semantic segmentation neural network,
named D-LinkNet to win the champion [41]. The D-Linknet consists of encoder-decoder structure,
dilated convolution, and pre-trained encoder. Sun et al. proposed a road extraction method using
crowd-sourced GPS data to improve and support road extraction from aerial imagery [42].

These end-to-end deep learning algorithms have promoted the road extraction performance
considerably, but they have significant limitations because of the demand for a massive amounts of
high quality pixel-wise annotated training datasets, which is expensive to obtain.

2.2. Weakly Supervised Learning

Instead of using full annotated datasets as supervision, the weakly supervised learning
method [13–16] was widely used for image segmentation. Lin et al. [17] developed an alternating
training scheme. By iterating the unary terms using graph theory and FCN based methods, the FCN
was gradually fed with more reliable annotation and thus propagated more accurate labels. Instead of
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alternating between FCN and graphical methods, Tang et al. [43] proposed a method to train a single
FCN via a joint loss function with two terms. One is a partial cross-entropy loss for scribbles only
and the other is a relaxed normalized-cut regularized that implicitly propagated accurate labels to
unknown pixels during training.

These scribble supervised image segmentations need the scribbles for each category, including the
background. For the OSM data, it is difficult to label the scribbles of each category and background just
from the OSM centerline. Therefore, the existing scribbles supervised image segmentation methods
cannot be directly used to the road extraction problem.

3. Methodology for Weakly Supervised Road Extraction

In this paper, a weakly supervised method MD-ResUNet is proposed to extract roads from the
VHR images. Using OSM centerline as annotation, our method presents a weakly supervised road
extraction scheme combined with graph cut theory and deep learning technique.

The road extraction algorithm mainly consists of three parts. The first is to generate the initial
road annotation from the OSM centerline using prior knowledge of the road width. Then the
regularized semi-supervised loss for weakly road extraction used in this paper is presented; finally,
the MD-ResUNet is described in detail for road extraction.

3.1. Initial Road Annotation Inference

As the OSM data contains the incorrect and incomplete centerline (not always in the center) of the
roads, it is difficult to get correct annotation of the VHR images using only the OSM road centerline.
Thus it is impossible to use the fully supervised learning to directly extract the pixel-wise level road.

The images and OSM data were projected to the same geographic coordinates system. Firstly,
the VHR images were projected to the same coordinate map with the OSM data to keep the images
geographically consistent. Then the corresponding VHR images and OSM centerline annotation were
extracted from the same geographic coordinates.

The initial road annotations are inferred from the centerline using the prior knowledge of the
image resolution. The schematic diagram is shown in Figure 2. The roads and background are inferred
by the road centerline, respectively, and other pixels which cannot be determined by the distance to
the road centerline were labeled unknown.

Background

Unknown

Road

Inference

Figure 2. Initial road annotation inference.

3.2. Regularized Semi-Supervised Loss

To extract pixel-wise roads from VHR images, we use the deep learning methods which are
proved to be effective in these applications. The inferred annotation we used for supervision have two
categories of labels (known and unknown). The loss function is an important part to guarantee the
quality of extraction results in deep learning methods; we use two separate loss functions to reflect the
feature of roads.
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Normalized cut [44] is widely used in unsupervised image clustering problems to reflect the
similarity between pixels. In this paper, we use a high order regularized loss (normalized cut loss [43])
to reflect the similarity between these pixels, which can reflect the feature of the pixels labeled unknown
in the road extraction methods. The partial loss is used to reflect the feature of the pixels labeled road
or non-road. The integral loss function is described in Equation (1).

∑
P∈Ωl

−logS
yp
p︸ ︷︷ ︸

BCELoss

+ 1− 2|Pred ∩ GTknown|
(|Pred · GTknown|+ |GTknown|)︸ ︷︷ ︸

Dice−coe f f icient−loss︸ ︷︷ ︸
partial−loss

+ λ ∑
k

Sk
′
W(1− Sk)

d′Sk︸ ︷︷ ︸
normalized−cut−loss

. (1)

The loss function consists of two separate parts. The first part of Equation (1) is called partial loss
which can be separated into two parts BCEloss (Binary Cross Entropy) and Dice coefficient loss. In the
BCEloss function, sp represents the network’s output for p ∈ Ωl represents the set of pixels which is
labeled l(roadornon− road) inferred by the centerline. yp infers the ground truth of the labeled pixels p.
This loss function describes the cross entropy of the pixels labeled known (road and non-road). In the
Dice coefficient loss, Pred represents the prediction output of the network, and GTknown is annotation of
the labeled pixels inference by the centerline annotation present in Figure 2. Pred ∩ GTknown represents
the intersection of the Pred and GTknown, and | · | is the L1 norm. The Dice loss is just related to the
pixels labeled known. It is clear that the pixels labeled unknown does not affect the partial loss function.

The second part of the loss function comes from the normalized cut [43,45,46]. The normalized
cut is a typical spectral clustering method and embedding algorithms for image segmentation [47–49].
Its energy function was defined by the ratio of the cut and the volume, which is described below:

∑
k

cut(Ωk, Ω/Ωk)

assoc(Ωk, Ω)
= ∑

k

Sk
′
W(1− Sk)

d′Sk , (2)

where Sk ∈ [0, 1], k ∈ {0, 1} represents the network’s output, W is an affinity matrix which represents
the similarity of each pixel, and for the degree vector d, there is d = W1. In the normalized cut
clustering, the lower the energy of the normalized cut, the better the clustering performance. Taking
this information into consideration, we combine the partial loss with the normalized cut loss in
Equation (1). To take the spatial information into accounts, the affinity matrix is defined by the
Gaussian kernel Wi,j, which combines colors (RGB) and spatial (XY) information in a five dimensions
affinity matrix [50]. The Gaussian kernel not only takes the color information but also the spatial
information between pixels into consideration. The Wi,j is defined in Equation (3).

Wi,j = e
− (i−j)2

2σ2
rgb
− || f (i)− f (j)||2

2σ2
xy , (3)

where (i− j) represents the spatial similarity and | f (i)− f (j)| represents the feature similarity between
two separate pixels i and j, σrgb and σxy are constant in the color and spatial domain. Equation (3)
consists of two independent parts, spatial and color domain.

When the normalized cut loss is used in the deep learning methods, it is necessary to compute
the gradient because the gradient descent method is widely used to solve the deep learning problem.
Moreover, the gradient of the normalized cut can be described as [43]:

ENC = ∑
k

Sk
′
W(1− Sk)

d′Sk
c
= ∑

k
−Sk

′
W(Sk)

d′Sk , (4)
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and its gradient w.r.t Sk is:

∂ENC(S)
∂Sk =

Sk
′
W(Sk)d

(d′Sk)
2 − 2WSk

d′Sk . (5)

As the computation of the normalized cut loss is a time-consuming process, we use the
permutohedral lattice [51] to reduce the computational complexity so that it can achieve a linear
time complexity. Accordingly, each forward evaluation and back-propagation through the normalized
cut loss is efficient.

3.3. Road Extraction Using Multi-Dilated ResUNET

To achieve better performance for road extraction, in this part, we proposed a novel deep neural
network named MD-ResUNet, which is shown in Figure 3. The roads in most images stretch across
the entire image, and there are some natural properties, such as connectivity and complexity, in the
roads. Moreover, the pixel-wise roads extraction can be regard as an image segmentation problem.
U-net performs well in pixel-wise segmentations by representing multi level features of the images. In
this paper, the proposed MD-ResUNet is based on ResUNet [4]. The MD-ResUNet is symmetrical and
it consists of three main parts (Figure 3). The left is the encoder which is used to extract the multi-layer
feature map of the VHR images. The middle bridge consists of multi dilated convolution layers. The
right is the decoder which is used to restore the original resolution.
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Figure 3. Road extraction network Multi-Dilated-ResUNet (MD-ResUNet).

Considering the model size and the computing complexity, the encoder is based on the
ResNet34 [52,53] pretrained on ImageNet [54]. The ResNet34 was proved to be effective for image
recognition and feature extraction. Due to the connectivity, complexity, and long extend of roads, it is
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significant to increase the receptive field, as well as keep the details of the images. Pooling layers
could increase the receptive field but may reduce the resolution of the feature maps and drop spatial
details. As described in state-of-the-art deep learning methods in [41,55,56], a dilated convolution
layer is effective to expand the field features, while keeping the spatial details. So, in this paper,
the MD-ResUNet takes advantages of different layers the multi dilated convolution to expand the
receptive field in the feature map.

Dilated convolution can be constructed in parallel style (Figure 4). For different dilation rates, the
receptive is different. If the dilation rates of the dilated convolution layers are 1, 2, 4, 8, respectively,
the receptive field of each dilated convolution layer will be 3, 5, 9, 17. In the MD-ResUNet, the encoder
(RseNet34) has 5 downsampling layers, which can produce the 5 layers feature map represented
in Figure 3. If an 1024× 1024 image goes through the encoder part, the output feature map of each layer
will be sized at 512× 512, 256× 256, ..., 32× 32 . Unlike the D-linknet, MD-ResUNet uses a multi-dilated
convolution network which employs non-linear dilated convolution that can exchange information
with various corresponding layers of ResUNet and expand the receptive field of convolution operations
in ResUNet. Therefore, MD-ResUNet works better with the partial loss and normalized cut loss in
describing the local or global information of the images. Figure 4 shows the dilated layer in bridge. Still,
MD-ResUNet takes advantage of multi-resolution feature maps, and the bridge part of MD-ResUNet
can expand the perception of feature maps. The decoder of MD-ResUNet remains the same as the
original ResUNet. The decoder uses transposed convolution [57] layers to do upsampling, restoring
the feature map from 32× 32 to 1024× 1024.

Dilated

（n=1）

Dilated

（n=2）

Dilated

（n=8）

Skip

Dilated

（n=4）

Figure 4. The Dilate network. The Dilated network consists of skip layer and four dilated convolution
layer; all five layers are parallel.

3.4. Training Algorithm

In this part, we will introduce the training algorithm of the proposed MD-ResUNet. In Algorithm
1, the Lpartial−loss defined in the left part of Equation (1); the ENC is defined in Equation (4); the
corresponding ∇ωENC is presented in Equation (5). The algorithm is divided into two parts. As the
computation of the normalized cut loss is slow, we train the model firstly using just partial loss function
in the algorithm line 4 to line 6. Then we add the normalized cut loss with the weight of λ into the
training algorithm to improve the extraction performance in the line 7 to line 9.
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Algorithm 1: Training the MD-ResUNet
input :

The input VHR images Input;
The annotation inferenced by the OSM centerlines Sup;
The parameter of the normalized cur weight λ;
The parameter of the learning rate α;
The parameter of the max iteration times for partial supervised

learning partialiteration;
The parameter of the max iteration times for the whole learning wholeiteration ;

output :
The model parameters ω;

1 randomly initialize the model parameter ω;
2 iternum = 0
3 for iternum < wholeiteration:
4 i f iternum < partialiteration :
5 L(ω)← Lpartial−loss( fω(Input, Sup))
6 ω ← ω− α∇ω L(ω)

7 i f iternum >= partialiteration :
8 L(ω)← Lpartial−loss( fω(Input, Sup)
9 ω ← ω− (α∇ω L(ω) + λ∇ωENC)

10 iternum+ = 1

4. Experiment

4.1. Dataset Description

To verify the performance of the proposed MD-ResUNet, several experiments for road extraction
from the VHR images were carried out on two different datasets. The dataset 1 was collected from
Google Earth by Cheng et al. [58]. The pixel-wise ground truth was manually annotated from the
reference map. Moreover, the corresponding centerline annotation was collected by the pixel-wise
ground truth. The dataset consists of 224 images for training and 30 images for testing. The spatial
resolution in the remote sensing imagery is 1 m. The corresponding description of the dataset is shown
in Table 1.

The dataset 2 was collected to prove the effectiveness of the proposed road extraction methods in
real-world OSM data. It contains 315 aerial images of the Seat from Google Earth.The corresponding
centerline annotation was obtained from the OSM. The pixel-wise annotation was manually labeled.
The datasets cover urban, suburban, and rural regions; 285 images were used as train data, and
30 images were used for the test. The spatial resolution in the remote sensing imagery is 1.2 m. In
this dataset, most VHR images have a complex terrestial environment, such as rivers and buildings,
which could be perceived as roads. Moreover, the occlusions, shadows of buildings or the trees, make
it difficult to separate the roads from the backgrounds.

Table 1. Dataset description.

DataSet Resolution Area Train Test Image Origin Mask Centerline

dataset1 1 m America 224 30 Google Earth muannual muannual

dataset2 1.2 m Seat 285 30 Google Earth muannual OSM
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4.2. Data Processing

In this paper, we collected different supervision datasets for road extraction. The specific
annotation dataset is described in Table 2. We used the weakly supervised OSM vector data to
generate the initial annotation directly inferenced by the information of the OSM vector and the road
resolution of the aerial images. In this experiment, we set the road width between 7 m to 50 m, so we
annotate all the pixels as non-road pixels which are 50 m away from the centerline. The pixel within
the distance of 7 m to the centerline is regarded to be a specific road pixel. The expand mask represents
the mask directly inferred by the centerline with constant road width. The pixels within the distance to
the road centerline are regarded as road; the others are regarded as non-road. The full mask dataset
represents the manually labeled pixel-wise annotation.

Table 2. Different annotation description.

Annotation Dataset Description

expand directly inference by the centerline with certain road width

partial inferenced by the centerline with certain width

full mask pixel-wise annotation

Deep learning performance requires a large amount of training datasets. Since our number of
datasets was too small, we generated synthetic datasets by altering original ones through horizontal
flip, diagonal flip, image shifting, and scaling. After the augmentation of the origin images, the training
data will ∼4–8 times larger. This can also prevent the road extraction method from overfitting on the
training data.

4.3. Results Comparison

Our proposed MD-ResUNet with partial loss combined with the normalized cut is implemented
using the framework Pytorch [59]; the code was executed using 2 GTX1080Ti GPUs.

In this paper, we selected the state-of-the-art approach ResUNet [4] and D-Linknet [41] as our
baseline. The ResUNet was first proposed in the [4], and D-linknet was the winner of the CVPR2018
digital challenge of road extraction.

All experiments were evaluated based on precision, F1 score [60], and mIoU. To train the
network of the MD-ResUNet, we used Adam [20] as the optimizer. We initially set the learning
rate as 0.0002., decreasing it by 5 if there was not decrease in training loss after three times. The batch
size during the training phase was set to 2 according to the number of GPU we used. We set the
σ(rgb) = 15 and σxy = 100 for the computing of the normalized cut loss. The hyper-parameter λ was
set as 0.01 according to the experiment in the Section 4.4.

For the experiments, firstly, the experiment was conducted to evaluate the weakly supervised
methods using just the partial loss; then we added the normalized cut loss into the experiment to
verify the effectiveness of using the normalized cut.

4.3.1. Evaluation the Partial Loss Performance of the Road Extraction

In order to verify the effectiveness of road extraction using the partial loss, we compare the road
extraction method with the approach directly inferenced by the centerline with certain road width.
The certain width used in the road extraction is the mean width of roads in the training data.

The precision (P), F1 score, and mIoU results with different deep learning methods and different
annotation data is presented in Tables 3 and 4. It can be seen that when the supervised annotation
remains constant, the proposed MD-ResUNet achieves improved performance on the test images. For
different supervised annotation, the proposed partial supervision infered by the centerline performs
better than the expand supervision using a certain width infered by the centerline.
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Table 3. Different performance of road extraction using different annotation with different loss
functions in dataset 1.

Supervised Loss-Function Model F1 mIoU P

partial partial loss

ResUnet 0.87653086 0.75306173 0.89570851
D-LinkNet 0.87563359 0.75126717 0.92245609

MD-ResUNet 0.89013831 0.78027661 0.92865744

expand BCE+Dice loss

ResUnet 0.86819215 0.73638429 0.93281329
D-LinkNet 0.86561087 0.73122173 0.93385345

MD-ResUNet 0.87207447 0.74414894 0.94288713

Table 4. Different performance of road extraction using different annotation with different loss
functions in dataset 2.

Supervised Loss-Function Model F1 mIoU P

partial partial loss

ResUnet 0.84706692 0.69413384 0.80269701

D-LinkNet 0.84848621 0.69697242 0.82086524

MD-ResUNet 0.85499718 0.70999437 0.82653416

expand BCE+Dice loss

ResUnet 0.8246249 0.6492498 0.7020651

D-LinkNet 0.82397769 0.6479554 0.7026635

MD-ResUNet 0.83285842 0.6657168 0.7195871

The output of the test images are shown in Figures 5–7. The pixels labeled red represent the
FP (false negative); the pixels labeled blue represent the TN (true negative); the pixels labeled white
represents the TP (true positive); and the black represents FP (false positive). It is clear that the
proposed partial loss adapts to different widths of roads from the output of (e) and (f). When the test
road width is close to the road width of the certain training data, the road extraction results are similar
with using partial loss or certain width supervision shown in Figure 5e,f. When the testing road differs
from the supervision road width, the partial loss supervision achieves improved performance in the
road extraction as shown in Figure 6e,f. The results indicate that for both the methods supervised by
the centerline, it is difficult to extract effectively the pixel-wise road.

4.3.2. Evaluation Road Extraction Using Normalized Cut Loss Combined With Partial Losses

We examined the overall road extraction approach based on the weakly supervised centerline
annotation. To evaluate the performance of the proposed methods , first, we compare our approach
with ResUNet and D-Linknet. The F1 score, precision, and mIoU with the corresponding test image is
presented in Tables 5 and 6. To evaluate the effectiveness of the proposed weakly supervised method,
we compared the approach with the model trained with the full mask. The results are shown in Table 5.

From Tables 5 and 6, we see that when the supervised data and loss function remain constant, the
proposed MD-ResUNet achieves better performance both in F1 score and mIoU than the state-of-the-art
methods. This proves that the proposed MD-ResUNet works well in road extraction. When using
partial supervision and the normalized cut loss function, the MD-ResUNet can achieve improved
performance compared with the full supervised methods. This proves that the MD-ResUNet performs
better when used with the normalized cut loss.
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(a) sat image (b) ground-truth (c) full mask supervised

(d) proposed partial+ncut loss (e) partial supervision use partial loss (f) expand certain width supervision

TPFPFNTN

legend

Figure 5. A sample for results with different methods on dataset 1. (a) The satellite; (b) the pixel-wise
ground truth; (c) the extracting road using full supervised MD-ResUNet; (d) use of the partial loss
combined with normalized cut loss; (e) use of the partial loss function; and (f) supervised by the
expand data. TN = true negative; FN = false negative; FP = false positive; TP = true positive.

When compared with different supervision data, the method with full annotation achieves the
best performance. This is because the full annotation has the largest amount of accurate supervision
information. When compared with the different loss function, the centerline supervision with partial
loss and normalized cut achieve better performance than centerline supervision just using partial loss
function because the centerline supervision with just partial loss and normalized cut loss take both
the color information and the neighboring relationship into consideration. The centerline supervision
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with partial loss and normalized cut obtain closer performance results with the full mask supervision
methods. This is because the supervision data is weaker than the full supervision data.

Table 5. Road extraction performance using different supervised data and different loss function and
different deep learning method on dataset 1.

Supervised Loss-Function Model F1 mIoU P

partial

partial loss

ResUnet 0.87653086 0.75306173 0.89570851
D-LinkNet 0.87563359 0.75126717 0.92245609

MD-ResUNet 0.89013831 0.78027661 0.92865744

partial+Ncut

ResUnet 0.88004242 0.76008483 0.96818677
D-LinkNet 0.89228412 0.78456824 0.96587194

MD-ResUNet 0.91944608 0.83889217 0.96507713

expand BCE +Dice loss

ResUnet 0.86819215 0.73638429 0.93281329
D-LinkNet 0.86561087 0.73122173 0.93385345

MD-ResUNet 0.87207447 0.74414894 0.94288713

full mask BCE+Dice loss

ResUnet 0.91902045 0.8380409 0.97072665
D-LinkNet 0.92372486 0.84744971 0.96415442

MD-ResUNet 0.92982933 0.85965865 0.97936734

The results from Tables 5 and 6 show that the MD-ResUNet supervised by centerline with the
partial loss and normalized cut loss function achieve better or similar performance than the ResUNet
supervised with full annotation. For the proposed methods, the centerline supervised with partial
loss and normalized cut loss demonstrate better performance than the methods just with partial loss .
This proves that the adding of normalized cut loss to the partial loss can improve the performance of
road extraction.

Table 6. Road extraction performance using different supervised data and different loss function and
different deep learning method on dataset 2.

Supervised Loss-Function Model F1 mIoU P

partial
partial loss

ResUnet 0.84706692 0.6941338 0.8026970
D-LinkNet 0.84848621 0.6969724 0.8208652

MD-ResUNet 0.85499718 0.7099944 0.8265342

partial+Ncut

ResUnet 0.85568974 0.71096308 0.83879415
D-LinkNet 0.8514525 0.70309051 0.84594471

MD-ResUNet 0.88389762 0.7677952 0.8792988

expand BCE + Dice loss

ResUnet 0.8246249 0.6492498 0.6820651
D-LinkNet 0.82397769 0.6479554 0.7026635

MD-ResUNet 0.83285842 0.6657168 0.6995871

full mask BCE+ Dice loss

ResUnet 0.88128277 0.7625655 0.8658043
D-LinkNet 0.88294264 0.7658853 0.8762808

MD-ResUNet 0.89268734 0.7853747 0.9043937

In general, the results imply that the weakly supervised method using MD-ResUnet achieves a
better performance than the other full mask supervision method. The proposed MD-ResUNet with
partial loss and normalized cut loss is just 1% lower in F1 score than the full mask supervision method.
From the results, we can conclude that the weakly supervised method using just the centerline has
closer results with the full mask supervision methods.

Figure 6 shows the outputs with different loss function on the dataset 1, and Figure 7 shows
the results of dataset 2. It is easy to find that the proposed partial loss adapts to the different widths
of roads. When the test road width is similar to the training width, the road extraction results are
close to methods that use partial loss or certain width supervision. When the width of the testing
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road differs from the supervision road width, the road partial loss supervision will contribute to
better performance.

(a) sat image (b) ground-truth (c) full mask supervised

(d) proposed partial+ncut
loss

(e) partial supervision use
partial loss

(f) expand certain width
supervision

TPFPFNTN

legend

Figure 6. A sample for results with different methods on dataset 1. (a) The satellite; (b) the pixel-wise
ground truth; (c) the extracting road using full supervised MD-ResUNet; (d) use of the partial loss
combined with normalized cut loss; (e) use of the partial loss function; and (f) supervised by the
expand data.
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Figures 6d and 7d show the results of the road extraction using partial loss combined with
normalized cut loss function and centerline partial supervision, while Figures 6c and 7c show the
results supervised by the pixel-wise annotation. It can be seen that the centerline partial supervision
method gets closer results in general. However, there are still some differences in details. The
centerline partial supervision method will be less accuracy when the boundary of the road is not
obvious (Figure 6d). This is because the normalized cut loss would decrease when the non-road pixels
was indentified as roads pixels.

(a) sat image (b) ground-truth (c) full mask supervised

(d) proposed partial+ncut
loss

(e) partial supervision use
partial loss

(f) expand certain width
supervision

TPFPFNTN

legend

Figure 7. A sample for results with different methods on dataset 2. (a) represents the satellite; (b) is
the pixel-wise ground truth; (c) is the extracting road using full supervised MD-ResUNet; (d) uses the
partial loss combined with normalized cut loss; (e) uses the partial loss function; (f) is supervised by
the expand data.
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Figures 6e and 7e represent the results using only partial loss with centerline partial supervision.
Compared with the method only supervised with partial loss shown in Figure 6e, the method with
normalized cut shows greater details. It can extract the clutter of the road and obtains more accurate
road width (Figure 6d). It implies that the normalized cut loss plays a significant role in the weakly
supervised road extraction.

From the above analysis, we can conclude that:

1. The proposed MD-ResUNet achieves better performance than the state-of-the-art methods
ResUNet and D-Linknet in VHR images road extraction, especially for the partial
supervised dataset.

2. Compared with those methods supervised by full annotation, our proposed method supervised
by partial centerline annotation achieves close performance.

3. The normalized cut loss promotes the road extraction performance because it can extract more
details of the VHR images.

4.4. The Influence of the Parameter to the Weakly Supervised Road Extraction

To find the proper parameter λ in Equation (1) for the weakly supervised method, we evaluate
the influence of the parameter using different normalized cut loss combined with the partial loss.
In order to accelerate the convergence of the training process, we use the pre-trained model of
partial loss supervision. The different normalized cut weight and corresponding results are shown
in Tables 7 and 8 with different datasets. The trends extraction performance of different weight λ is
shown in Figure 8.

The results show that the road extraction get better performance when the weight λ was set to
0.01. When the λ increases or decreases, the performance will get worse. This is because the results of
the training process are a trade-off in partial loss and normalized cut loss. When the λ is too large, the
road extraction will be closer to the non-supervised image clustering using normalized cut. When the
λ is too small, the results are closer to the partial loss supervised road extraction method.

Table 7. The performance output for different parameters λ of normalized cut combined with the
partial loss function in dataset 1.

λ 0.001 0.005 0.01 0.05 0.1 0.5 1 5

mIoU 0.805 0.815 0.839 0.796 0.792 0.798 0.801 0.791

F1 0.902 0.908 0.919 0.898 0.896 0.899 0.901 0.896
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Normalized Cut Weight 

0.80

0.82

0.84
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(a) dataset1
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(b) dataset2

Figure 8. The F1 score (yellow) and mIoU (blue) for different normalized cut weight λ combined with
the partial loss function. (a) The experiment on the dataset 1; (b) the experiment on the dataset 2.
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Table 8. The performance output for different parameters λ of normalized cut combined with the
partial loss function in dataset 2.

λ 0 0.00001 0.0001 0.001 0.01 0.1 0.5

mIoU 0.699994 0.729759 0.72825 0.71389 0.732915 0.713298 0.713852

F1 0.849997 0.864879 0.864125 0.856945 0.866458 0.856649 0.856926

5. Conclusions

In this paper, a novel model called MD-ResUNet with partial loss and normalized cut loss was
proposed to extract road from VHR images. It achieves close performance compared with fully
supervised methods by only using linear OSM centerline data as supervision. Moreover, the proposed
methods could be used with any other linear data sources.

Our proposed methods can preserve more details in road extraction, such as road width and the
clutter of the road, using just the centerline supervision. This is attributed to the use of the normalized
cut loss, which can describe the high order information of the VHR images. The experiments show
the proposed MD-ResUNet can extract the road effectively when only supervised by the scribble
OSM centerline.

For future work, we will pay more attention to road topology extraction using weakly labeled
centerline supervision.
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