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Abstract: Fast and accurate indoor location prediction plays an important part in indoor location 
services. This work proposes an indoor location prediction framework named Indoor-WhereNext. 
First, a novel algorithm, “indoor spatiotemporal density-based spatial clustering of applications 
with noise” (Indoor-STDBSCAN), is proposed to detect the stay points in an indoor trajectory and 
convert them into a location sequence. Then, a spatial-semantic similarity (SSS) method for 
measuring the similarity between location sequences is defined. SSS comprehensively considers the 
spatial and semantic similarities between location sequences. Finally, a clustering algorithm is used 
to obtain similarity user groups based on SSS. These groups are used to train different prediction 
models to achieve improved results. Extensive experiments were conducted using real indoor Wi-
Fi positioning datasets collected in a shopping mall. The results show that the Indoor-WhereNext 
model markedly outperforms the three existing baseline methods in terms of prediction accuracy 
and precision. 

Keywords: indoor location prediction; sequence similarity; similar user clustering; indoor 
movement trajectory 
 

1. Introduction 

In recent years, with the rapid development of e-commerce, traditional “brick-and-mortar” 
industries have been severely affected [1,2]. These industries urgently need to develop ways to help 
merchants establish relations with customers and provide them with a personalized offline shopping 
experience in order to improve its marketing ability [3]. With the continuous development of indoor 
positioning technology and the popularization of mobile terminal equipment, indoor mobile user 
trajectory data have shown explosive growth [4–6]. Indoor trajectory data are an important basis for 
indoor location-based services and provide new opportunities for the development of “brick-and-
mortar” industries [7–10]. 

Location prediction technology can infer the next location of a user according to the historical 
trajectory. It can thus provide flexible services for users, which has been a research concern in this 
field. Research shows that user behavior is predictable [11]. To date, location prediction technology 
has been widely used in trajectory reconstruction [12,13], location recommendation [14–16], 
intelligent transportation [17,18], and provision of security services [19]. Indoor location services, for 
example, can predict the next location of a user and push information about shops of interest to the 
user. This not only provides the user with a personalized shopping experience but also aids the 
merchant in earning profits [14–16]. 
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Location prediction methods can be classified according to forecasting needs into the following 
two categories [20]: (1) those that predict the location that the user will visit next [10,21–25] and (2) 
those that predict the location of the user in the next time interval [26]. The main difference is that the 
former transforms an individual trajectory into a location sequence, while the latter treats it as a time 
interval sequence with relevant positions. In this study, only the first type of location prediction was 
considered. Existing research mainly uses data mining algorithms, such as the association rule [27,28], 
hidden Markov model (HMM) [29], or recurrent neural network (RNN) [30,31], to mine patterns 
between location sequences and then serve location predictions. In contrast with the existing 
research, the approach in this work focuses mainly on location prediction for indoor spaces, serving 
the location services of the offline industry, such as large shopping centers. Unlike outdoor location 
prediction, an indoor trajectory typically has three-dimensional features, which makes it difficult for 
existing stay point recognition algorithms to convert an indoor trajectory into a location sequence. 
Second, the user trajectory implies the user preference [32]. When there is a large number of users, it 
is easy to find similarity groups. It is easier to mine location patterns within similarity group [29]. 

Therefore, this paper proposes an indoor location prediction framework, called Indoor-
WhereNext. The work makes a number of significant contributions, which are summarized as 
follows. 

(1) A novel spatial-semantic similarity (SSS) method is defined. It combines spatial and semantic 
information to calculate the similarity between location sequences and find similarity groups of 
indoor users. 

(2) Long short-term memory (LSTM) is used to model each group of users to improve the accuracy 
of indoor location prediction. 

(3) The performance of the Indoor-WhereNext is evaluated using real indoor trajectories. The 
results demonstrate the advantages of our approach compared with baselines. 

The rest of this work is organized as follows. In Section 2, the current literature focusing on 
models for location prediction from trajectories is reviewed. In Section 3, a new methodological 
framework for indoor location prediction is proposed. The performance of the method proposed in 
the current work is compared with that of methods proposed in previous research using real indoor 
Wi-Fi positioning data; these results are presented in Section 4. In Section 5, the work is summarized, 
and suggestions are made for possible future studies. 

2. Related Work 

Existing location prediction models that predict where users will visit can be roughly divided 
into two types: Individual-based and group-based prediction models. 

Individual-based prediction models consider the movement behavior of each individual to be 
independent and, thus, use only the movement history of the user to predict her or his next location. 
The core issue of individual-based models is that they are mainly used to mine the periodic behavior 
of individual users. For instance, Lee et al. [22] proposed a spatiotemporal-periodic (STP) pattern to 
capture the periodic behavior of the individual. It used an association rule algorithm to mine periodic 
patterns in STP. Vu et al. [33,34] presented a novel framework, Jyotish, to find the periodic movement 
of people based on Wi-Fi/Bluetooth positioning data. Bayesian classifiers and support vector 
machines were used to give the most likely next location. Do et al. [35] redefined the location 
prediction problem from a new perspective and proposed a probabilistic kernel method for learning 
the dependence between user location and multivariate context variables from sparse data. Wu et al. 
[36] proposed a spatial-temporal-semantic neural network algorithm (STS-LSTM) for location 
prediction. Zhang et al. [17] combined the respective superiorities of support vector regression and 
deep learning to present a novel data embedding and ensemble learning method. Yang et al. [37] 
defined a novel Markov chain via Markov transition matrix multiplication and proposed the DestPD 
model. However, there are certain deficiencies in the individual-based models. First, these models 
require long-term movement trajectories of individual users, and these are difficult to obtain in 
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practical applications. Second, individual-based models require an independent model to be built for 
each individual, which is also unrealistic in practical applications. 

Group-based prediction models consider movement behavior to “follow the crowd” to some 
degree and, thus, use movement history of other users to predict a user’s next location. These models 
are mainly used to mine similarity behaviors of groups of users. For example, Morzy [28] proposed 
an improved Apriori algorithm that uses association rules to predict the next location of a group of 
users. Ang et al. [38] utilized a Markov chain to convert location sequences into conversion 
probabilities for location prediction. Qiang et al. [30] proposed spatiotemporal RNN (ST-RNN) based 
on RNN [31] to model the location of groups of users. Ying et al. [23] proposed a geographic-
temporal-semantic-based location prediction framework to predict the next location of a group of 
users. Unlike single-object models, group-based models can reveal the movement of a group of users 
in some scenarios [39]. In addition, group-based models do not need long-term movement trajectories 
of individual users. However, there are several shortcomings in the aforementioned group-based 
models. They build a model for all users, ignoring the existence of similarity subgroups. Therefore, 
some models were obtaining movement trajectories of only those who are in some way related to the 
user. Zhang et al. [40] found that there was a strong correlation between the calling patterns and co-
cell patterns of users. Based on this finding, they proposed the NextCell model, which aims to 
enhance location prediction by harnessing the social interplay revealed in cellular call records. Wen 
et al. [41] proposed a fallback social-temporal-hierarchic Markov model (FSTHM), which introduced 
modified cross-sample entropy to quantify the similarities between the individual and his friends to 
enhance the predictive performance. Li et al. [42] used a linear regression model, which was 
constructed with a subset of users related to the predicted user, to predict the next location.  

In this study, a novel indoor location prediction framework, Indoor-WhereNext, was developed. 
In the proposed framework, previously collected historical location sequences are first grouped 
according to their characteristics (i.e., according to the similarity of historical location sequences). 
Afterward, different user groups are used to train different prediction models to achieve improved 
results. 

3. Methodology 

Definition 1 (trajectory): A trajectory 𝑡𝑟𝑎𝑗 = ሼ𝑝𝑡௜ሽ௜ୀଵ௡  is an ordered sequence of points 𝑝𝑡௜ =ሺ𝑖𝑑, 𝑡௜ ,𝑥௜ ,𝑦௜ ,𝑓௜ሻ, where 𝑖𝑑 is a unique user identifier; 𝑡௜ is the time at which 𝑝𝑡௜ was collected; and 𝑥௜ , 𝑦௜ , 𝑓௜ correspond to the longitude, latitude, and floor, respectively, of the user at time 𝑡௜. 
Definition 2 (stay point): In general, a stay point 𝑠𝑝௜ௗ = ሺ𝑥,𝑦, 𝑓,𝑎𝑟𝑟𝑇, 𝑙𝑒𝑣𝑇ሻ  stands for a 

geographic region where a user stayed over a certain time interval, where 𝑖𝑑  is a unique user 
identifier; 𝑥,𝑦,𝑓 correspond to the longitude, latitude, and floor, respectively, of the user’s stay; and ሺ𝑎𝑟𝑟𝑇, 𝑙𝑒𝑣𝑇ሻ  represent the user’s arrival and departure times, respectively, with respect to the 
geographic region. For example, the stay point of a user 𝑢 shown in Figure 1a is expressed as 𝑠𝑝௨ =ሺ∑ 𝑝𝑡௜ .𝑥/(𝑛 − 4)௡௜ୀହ ,∑ 𝑝𝑡௜ .𝑦/(𝑛 − 4)௡௜ୀହ , 3, 𝑝𝑡ହ. 𝑡,𝑝𝑡௡. 𝑡). 

Definition 3 (stay point sequence): A stay point sequence 𝑆௜ௗ = ൛𝑠𝑝௜௜ௗൟ௜ୀଵ௞  is an ordered set of 
stay points detected in a user trajectory for 𝑠𝑝௜௜ௗ. 𝑙𝑒𝑣𝑇 < 𝑠𝑝௜ାଵ௜ௗ .𝑎𝑟𝑟𝑇 , where 𝑖𝑑  is a unique user 
identifier, and 𝑘 represents the number of stay points in the user trajectory. For example, the stay 
point sequence of a user 𝑢 shown in Figure 1b is represented as 𝑆௨ = {𝑠𝑝ଵ௨, 𝑠𝑝ଶ௨, 𝑠𝑝ଷ௨, 𝑠𝑝ସ௨}. 

Definition 4 (location sequence): A location sequence 𝑙𝑜𝑐𝑆𝑒𝑞௜ௗ = ൛𝑠ℎ𝑜𝑝௜௜ௗൟ௜ୀଵ୩  is an ordered 
sequence of locations visited by a user, where 𝑠ℎ𝑜𝑝௜௜ௗ represents the shop visited at the stay point 𝑠𝑝௜௜ௗ. For example, the location sequence of user 𝑢 shown in Figure 1b is represented as 𝑙𝑜𝑐𝑆𝑒𝑞௨ ={𝐴,𝐵,𝐶,𝐷}. 
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Figure 1. Stay point and location sequence: (a) the movement of a user on the third floor and (b) the 
location sequence of a user in an indoor space. 

In this section, the Indoor-WhereNext framework for indoor location prediction is constructed. 
The overall architecture is shown in Figure 2. The framework is based on the bottom-up design 
principle and is divided into two modules: SSS-based location modeling and SSS-based location 
prediction. In the SSS-based location modeling phase, user trajectories are converted to location 
sequences via the Indoor-STDBSCAN algorithm. The user location sequences are clustered to obtain 
similarity user groups based on the SSS, and each group trains a model. An exemplar is also 
generated by each group to represent itself. In the SSS-based location prediction phase, the similarity 
matrix between the location sequence and each group is calculated by exemplars, and then different 
models are used to predict the next possible location according to the similarity matrix. 

 
Figure 2. Flow chart of Indoor-WhereNext framework. 

3.1. Location Sequence Detection Method 

3.1.1. Stay Point Detection 

When a user stays at a particular location, there is a greater probability that the user will view 
the location service information [43]. Therefore, stay point detection is a key step in location sequence 
conversion. When the user stays in a certain place for a certain length of time, the mobile terminal 
records more trajectory points in a limited area. This results in clustering of trajectory points. 
Therefore, a clustering algorithm is applied to detect the stay points. However, in contrast with an 
outdoor trajectory, an indoor trajectory typically has three-dimensional characteristics, which makes 
existing outdoor detection algorithms difficult to apply to the indoor trajectory. Therefore, a novel 
indoor trajectory stay point detection algorithm, Indoor-STDBSCAN, is proposed.  
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The Indoor-STDBSCAN algorithm is an improved version of the spatiotemporal density-based 
spatial clustering of applications with noise (ST-DBSCAN) algorithm [44,45], which aims to divide 
the individual user trajectory 𝑡𝑟𝑎𝑗 = {𝑝𝑡௜}௜ୀଵ௡  into 𝑘  disjoint order clusters {𝐶ଵ,𝐶ଶ, … ,𝐶௞} . Each 
cluster 𝐶௜  generates a stay point 𝑠𝑝௜௜ௗ , and 𝑘 clusters generate 𝑘 stay points, i.e., ൛𝑠𝑝௜௜ௗൟ௜ୀଵ௞ . The 
Indoor-STDBSCAN algorithm makes two improvements to the ST-DBSCAN algorithm: (1) adding 
floor constraints, so that the trajectory point 𝑝𝑡௝ in the spatiotemporal neighborhood is on the same 
floor as 𝑝𝑡௜, and (2) adding order constraints, so that the index of the last trajectory point of cluster 𝐶௜ serves as the search benchmark of cluster 𝐶௜ାଵ, ensuring that the stopping times of 𝑠𝑝௜ାଵ௜ௗ  and 𝑠𝑝௜௜ௗ  do not overlap along the timeline—that is, 𝑠𝑝௜௜ௗ . 𝑙𝑒𝑣𝑇 < 𝑠𝑝௜ାଵ௜ௗ .𝑎𝑟𝑟𝑇 . The overall process for 
Indoor-STDBSCAN is shown in Algorithm 1.  

Algorithm 1. Indoor trajectory stay point detection algorithm. 
Require: Individual trajectory: 𝑡𝑟𝑎𝑗 = {𝑝𝑡௜}௜ୀଵ௡  

Radius: 𝜖ଵ 
Time window: 𝜖ଶ 
Neighborhood density threshold: 𝑀𝑖𝑛𝑃𝑡𝑠 

Ensure: Individual stay point sequence: 𝑆௜ௗ = {𝑠𝑝௜௜ௗ} 
1: function Indoor-STDBSCAN(𝑡𝑟𝑎𝑗, 𝜖ଵ, 𝜖ଶ,𝑀𝑖𝑛𝑃𝑡𝑠) 
2:    𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 = 0;  𝑠𝑡𝑎𝑟𝑡 = 0 
3:    for next unprocessed 𝑝𝑡 ∈ 𝑡𝑟𝑎𝑗 do 
4:        if 𝑝𝑡. 𝑖𝑛𝑑𝑒𝑥 < 𝑠𝑡𝑎𝑟𝑡 then 
5:            continue 
6:        𝑁 = 𝑔𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑝𝑡, 𝜖ଵ, 𝜖ଶ) 
7:        if |𝑁| > 𝑀𝑖𝑛𝑃𝑡𝑠 then 
8:           𝑝𝑡.𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 = 𝑡𝑟𝑢𝑒; 𝑝𝑡. 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 
9:           𝑆𝑒𝑒𝑑𝑠 = [] 
10:           𝑎𝑑𝑑 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑝 ∈ 𝑁 𝑡𝑜 𝑆𝑒𝑒𝑑𝑠 
11:           for next 𝑞 ∈ 𝑆𝑒𝑒𝑑𝑠 do 
12:              𝑁′ = 𝑔𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑞, 𝜖ଵ, 𝜖ଶ) 
13:              𝑞. 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 = 𝑡𝑟𝑢𝑒; 𝑞. 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 
14:              if |𝑁′| > 𝑀𝑖𝑛𝑃𝑡𝑠 then 
15:                 𝑎𝑑𝑑 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑝 ∈ 𝑁′ 𝑡𝑜 𝑆𝑒𝑒𝑑𝑠 
16:       𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑟𝑎𝑗.𝑓𝑖𝑛𝑑(𝑝. 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 == 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑)[−1]. 𝑖𝑛𝑑𝑒𝑥 
17:       𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 + 1 
18:    for next 𝑖 ∈ [0,1, … , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 − 1] do 
19:       𝑝𝑡𝐴𝑟𝑟 =  𝑡𝑟𝑎𝑗. 𝑓𝑖𝑛𝑑(𝑝. 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 == 𝑖)  
20:       𝑠𝑝௜ௗ.𝑎𝑟𝑟𝑇 = 𝑝𝑡𝐴𝑟𝑟[0]. 𝑡; 𝑠𝑝௜ௗ. 𝑙𝑒𝑣𝑇 = 𝑝𝑡𝐴𝑟𝑟[𝑙𝑒𝑛(𝑝𝑡𝐴𝑟𝑟) − 1]. 𝑡 
21:       𝑠𝑝௜ௗ.𝑥, 𝑠𝑝௜ௗ .𝑦 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑀𝑒𝑎𝑛𝐶𝑜𝑜𝑟𝑑(𝑝𝑡𝐴𝑟𝑟); 𝑠𝑝௜ௗ .𝑓 = 𝑝𝑡𝐴𝑟𝑟[0].𝑓 
22:       𝑆௜ௗ .𝑎𝑑𝑑(𝑠𝑝௜ௗ) 
23:    return 𝑆௜ௗ 

3.1.2. Location Sequence Conversion 

The stay point obtained by the Indoor-STDBSCAN algorithm only contains the spatial 
information and does not contain semantic information, so it is necessary to assign semantics to the 
stay point. For this, a matching method is defined. There are two spatial relationships between a stay 
point and a shop: Inside and outside the shop. For example, the stay point sequence of a user 𝑢 
shown in Figure 3 contains two stay points 𝑆௨ = {𝑠𝑝ଵ௨, 𝑠𝑝ଶ௨}: stay point 𝑠𝑝ଵ௨ inside the shop and stay 
point 𝑠𝑝ଶ௨ outside the shop. For an inside stay point such as 𝑠𝑝ଵ௨, the intersection method is used to 
obtain the shop that user 𝑢 visited at stay point 𝑠𝑝ଵ௨—that is, user 𝑢 at stay point 𝑠𝑝ଵ௨ visited shop 𝐵. For an outside stay point such as 𝑠𝑝ଶ௨, the concentric circle tangent method is used to calculate 
the shop that user 𝑢 visited at stay point 𝑠𝑝ଶ௨. With 𝑠𝑝ଶ௨ as the center, the radius 𝑟௜ (𝑖 = 1,2,3, … ) 
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draws a circle, and the first shop to be tangent to the circle is shop 𝐶, so user u stayed at stay point 𝑠𝑝ଶ௨  and visited shop 𝐶 . When all of the stay points in 𝑆௨  are matched to a shop, the location 
sequence of user 𝑢 can be obtained, and the location sequence is represented as 𝑙𝑜𝑐𝑆𝑒𝑞௨ = {𝐵,𝐶}. 

 
Figure 3. Stay point semantic matching. 

3.2. Location Sequence Similarity Calculation Method 

The core of the Indoor-WhereNext framework is to cluster the location sequences better. Users 
whose location sequences fall within the same group have high similarity and vice versa. Hence, the 
location patterns of users with location sequences falling within the same group are easier to mine. 
The Indoor-WhereNext framework achieves improved prediction accuracy by modeling similar 
users. The user location sequence implies the spatial information and semantic information of the 
shop. The spatial information of the shop describes the spatial location of the shop inside the 
shopping mall, which restricts the user’s range of movement in the indoor space. The semantic 
information of the shop describes the semantic characteristics of the shop, which to some extent 
reflect the shopping habits of the user. Spatial information and semantic information are 
comprehensively considered to define a novel SSS method to measure the similarity between location 
sequences for cluster formation. The SSS method is divided into two parts: Spatial similarity and 
semantic similarity. 

Spatial similarity mainly calculates the similarity of spatial information implied in the location 
sequence and describes the similarity of the movement trajectories of the two sequences in geospatial 
space. When users stay in the same shop, they show a certain degree of spatial similarity. The more 
shops there are between the location sequences, the higher the spatial similarity. Therefore, the 
longest common subsequence (LCSS) [46] is used to calculate the spatial similarity between location 
sequences. The spatial similarity between user 𝑢 and user 𝑣 is calculated as defined in Formulas (1) 
and (2). 𝐿𝐶𝑆𝑆 ቀ{𝑠ℎ𝑜𝑝௜௨}௜ୀଵ௡ , ൛𝑠ℎ𝑜𝑝௝௩ൟ௝ୀଵ௠ ቁ = 

⎩⎪⎨
⎪⎧ 0 if 𝑛 = 0 or 𝑚 = 01 + 𝐿𝐶𝑆𝑆 ቀ{𝑠ℎ𝑜𝑝௜௨}௜ୀଵ௡ିଵ, ൛𝑠ℎ𝑜𝑝௝௩ൟ௝ୀଵ௠ିଵቁ if 𝑠ℎ𝑜𝑝௡௨ = 𝑠ℎ𝑜𝑝௠௩𝑚𝑎𝑥 ቆ𝐿𝐶𝑆𝑆 ቀ{𝑠ℎ𝑜𝑝௜௨}௜ୀଵ௡ , ൛𝑠ℎ𝑜𝑝௝௩ൟ௝ୀଵ௠ିଵቁ , 𝐿𝐶𝑆𝑆 ቀ{𝑠ℎ𝑜𝑝௜௨}௜ୀଵ௡ିଵ, ൛𝑠ℎ𝑜𝑝௝௩ൟ௝ୀଵ௠ ቁቇ otherwise

 
(1) 

𝑺𝑴௨௩௦௣௔ = 1 − 𝐿𝐶𝑆𝑆 ቀ{𝑠ℎ𝑜𝑝௜௨}௜ୀଵ௡ , ൛𝑠ℎ𝑜𝑝௝௩ൟ௝ୀଵ௠ ቁ𝑚𝑖𝑛(𝑛,𝑚)  (2) 

where {𝑠ℎ𝑜𝑝௜௨}௜ୀଵ௡  and ൛𝑠ℎ𝑜𝑝௝௩ൟ௝ୀଵ௠  represent the location sequences of users 𝑢 and 𝑣, respectively; 𝑛 and 𝑚 represent the numbers of shops visited by users; 𝑚𝑎𝑥(𝑥,𝑦) is a function for obtaining the 
maximum of the values 𝑥 and 𝑦; 𝑺𝑴௦௣௔ is the spatial similarity matrix; and 𝑺𝑴௨௩௦௣௔ represents the 
spatial similarity between users 𝑢 and 𝑣. 
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Semantic similarity mainly calculates the similarity of semantic information implicit in the 
location sequence and describes the degree of similarity between two users in interests and 
behaviors. In this paper, semantic information is not a categorical attribute of the shops, because we 
believe that their attribute information is artificially specified and subjective. The semantic 
information to which we refer is an implicit message that is expressed through user behavior. 
Generally, users hop more frequently between the same types of shop (purposeful consumption), 
which reflects the semantic similarity between those shops. In view of this, the location sequences of 
all users are constructed into a weighted network 𝐺(𝑉,𝐸,𝑊), where 𝑉 represents the shop set, 𝐸 
represents the transfer set between shops, and 𝑊 represents the transfer times between shops. With 
an increase in the number of location sequences, the weight between shops can reflect the similarity 
between them; that is, the higher the similarity, the higher the weight. Based on these characteristics, 
the node2vec [47] method is used to vectorize the shops. As shown in Figure 4, when the weight 
between shops is larger, the distance between the shops’ corresponding vectors is less. After 
vectorization by node2vec, each shop uniquely corresponds to a vector, and the semantic similarity 
between location sequences can be calculated by the corresponding vector sequences. In this work, 
the dynamic time warping (DTW) [48–50] algorithm is used to calculate the semantic similarity 
between location sequences. The semantic similarity between user 𝑢 and user 𝑣 is calculated as 
defined in Formulas (3) and (4). 𝐷𝑇𝑊 ቀ{𝑠ℎ𝑜𝑝௜௨}௜ୀଵ௡ , ൛𝑠ℎ𝑜𝑝௝௩ൟ௝ୀଵ௠ ቁ = 

⎩⎪⎪⎨
⎪⎪⎧ 0 if 𝑚 = 𝑛 = 0∞ if 𝑚 = 0 or 𝑛 = 0𝑑𝑖𝑠𝑡(𝑠ℎ𝑜𝑝௡௨, 𝑠ℎ𝑜𝑝௠௩ ) + 𝑚𝑖𝑛(𝐷𝑇𝑊 ቀ{𝑠ℎ𝑜𝑝௜௨}௜ୀଵ௡ିଵ, ൛𝑠ℎ𝑜𝑝௝௩ൟ௝ୀଵ௠ିଵቁ ,𝐷𝑇𝑊 ቀ{𝑠ℎ𝑜𝑝௜௨}௜ୀଵ௡ , ൛𝑠ℎ𝑜𝑝௝௩ൟ௝ୀଵ௠ିଵቁ ,𝐷𝑇𝑊 ቀ{𝑠ℎ𝑜𝑝௜௨}௜ୀଵ௡ିଵ, ൛𝑠ℎ𝑜𝑝௝௩ൟ௝ୀଵ௠ ቁ) otherwise

 
(3) 

𝑺𝑴௨௩௦௘௠ = 𝐷𝑇𝑊 ቀ{𝑠ℎ𝑜𝑝௜௨}௜ୀଵ௡ , ൛𝑠ℎ𝑜𝑝௝௩ൟ௝ୀଵ௠ ቁ (4) 

where {𝑠ℎ𝑜𝑝௜௨}௜ୀଵ௡  and ൛𝑠ℎ𝑜𝑝௝௩ൟ௝ୀଵ௠  represent the location sequences of users 𝑢 and 𝑣, respectively; 𝑛 and 𝑚 represent the numbers of shops visited by users; 𝑑𝑖𝑠𝑡 is used to calculate the Euclidean 
distance between the corresponding vectors of shops 𝑠ℎ𝑜𝑝௡௨ and 𝑠ℎ𝑜𝑝௠௩ ; 𝑚𝑖𝑛(𝑥,𝑦, 𝑧) is a function 
for obtaining the minimum of the values 𝑥, 𝑦, and 𝑧; 𝑺𝑴௦௘௠ is the semantic similarity matrix; and 𝑺𝑴௨௩௦௘௠ represents the semantic similarity between users 𝑢 and 𝑣. 

 
Figure 4. Process of turning shops into vectors: (a) weighted network formed by the transfer of shops, 
(b) adjacency matrix representation network, and (c) feature matrix encoded by node2vec. 

After the semantic and spatial similarities between sequences have been calculated, the final 
location sequence similarity is superimposed by two parts, as defined in Formula (5). 𝑺𝑺𝑴 = 𝛼 ∗ 𝑺𝑴௦௣௔ − 𝑚𝑖𝑛(𝑺𝑴௦௣௔)𝑚𝑎𝑥(𝑺𝑴௦௣௔)−𝑚𝑖𝑛(𝑺𝑴௦௣௔) + (1 − 𝛼) ∗ 𝑺𝑴௦௘௠ −𝑚𝑖𝑛(𝑺𝑴௦௘௠)𝑚𝑎𝑥(𝑺𝑴௦௘௠) −𝑚𝑖𝑛(𝑺𝑴௦௘௠) (5) 

where 𝑺𝑴௦௣௔, 𝑺𝑴௦௘௠, and 𝑺𝑺𝑴 represent the spatial similarity matrix, semantic similarity matrix, 
and spatial-semantic similarity matrix, respectively; 𝑚𝑖𝑛(𝑿)  and 𝑚𝑎𝑥(𝑿)  are functions for 
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obtaining the minimum and maximum values, respectively, in matrix 𝑿 ; and 𝛼  is a weight 
coefficient that represents the contribution of spatial similarity to the location sequence similarity. 
The default value of 𝛼 is 0.5—that is, the contributions of semantic similarity and spatial similarity 
to the location sequence similarity are equal. 

3.3. Indoor User Location Prediction Framework 

3.3.1. SSS-Based Location Modeling 

After the SSS method has been defined, to divide users into different groups, several 
requirements should be considered. First, the number of groups cannot be known in advance. Second, 
each group needs to have a representative user. The representative user mainly helps new users know 
which model they use. Based on the above two points, the affinity propagation (AP) [51] algorithm 
is used to cluster the location sequences of all users. After clustering, LSTM [52] is used to train the 
prediction model for users in each group. The training process of the Indoor-WhereNext framework 
is shown in Algorithm 2. 

Algorithm 2. Training process of Indoor-WhereNext framework. 
Require: Trajectories of All Users: 𝑡𝑟𝑎𝑗𝐴𝑟𝑟 = {𝑡𝑟𝑎𝑗௜} 
Hyperparameters of Indoor-STDBSCAN: 𝜖ଵ, 𝜖ଶ,𝑀𝑖𝑛𝑃𝑡𝑠 
Weight coefficient: 𝛼 
Ensure: Prediction models: {𝑚𝑜𝑑𝑒𝑙௜} 
Cluster centers: {𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟௜} 
1:   for next 𝑡𝑟𝑎𝑗 ∈ 𝑡𝑟𝑎𝑗𝐴𝑟𝑟 do 
2:      ൛𝑠𝑝௜௜ௗൟ = 𝐼𝑛𝑑𝑜𝑜𝑟-𝑆𝑇𝐷𝐵𝑆𝐶𝐴𝑁(𝑡𝑟𝑎𝑗, 𝜖ଵ, 𝜖ଶ,𝑀𝑖𝑛𝑃𝑡𝑠) 
3:      𝑙𝑜𝑐𝑆𝑒𝑞௜ௗ = 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(൛𝑠𝑝௜௜ௗൟ) 
4:      𝑙𝑜𝑐𝑆𝑒𝑞𝐴𝑟𝑟. 𝑎𝑑𝑑(𝑙𝑜𝑐𝑆𝑒𝑞௜ௗ) 
5:   𝑺𝑺𝑴 = 𝑆𝑆𝑆(𝑙𝑜𝑐𝑆𝑒𝑞𝐴𝑟𝑟,𝛼) 
6:   {𝑙𝑜𝑐𝑆𝑒𝑞𝑆𝑢𝑏𝐴𝑟𝑟௜}, {𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟௜} = 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑺𝑺𝑴) 
7:   for 𝑙𝑜𝑐𝑆𝑒𝑞𝑆𝑢𝑏𝐴𝑟𝑟 ∈ {𝑙𝑜𝑐𝑆𝑒𝑞𝑆𝑢𝑏𝐴𝑟𝑟௜} do 
8:      𝑚𝑜𝑑𝑒𝑙 = 𝐿𝑆𝑇𝑀(𝑙𝑜𝑐𝑆𝑒𝑞𝑆𝑢𝑏𝐴𝑟𝑟) 
9:      𝑚𝑜𝑑𝑒𝑙𝑠.𝑎𝑑𝑑(𝑚𝑜𝑑𝑒𝑙) 
10:  return 𝑚𝑜𝑑𝑒𝑙𝑠, {𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟௜} 

3.3.2. SSS-Based Location Prediction 

After modeling, there is a one-to-one correspondence between models and exemplars—that is, 𝑚𝑜𝑑𝑒𝑙௜ corresponds to 𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟௜. Given a new user trajectory, the goal is to determine where the 
user is likely to visit next. First, a group is found that is more likely to be associated with the particular 
sequence of visits being considered in the forecasting task, and then the corresponding LSTM model 
is used to predict the most likely location. The prediction process of the Indoor-WhereNext 
framework is shown in Algorithm 3. Here, {𝑒𝑥𝑎𝑚𝑝𝑙𝑎𝑟_𝑖} is used to determine to which group the 
new user belongs. In essence, exemplars are specific location sequences, so the similarity between the 
new location sequence and the exemplars is calculated. Then, the model with the highest similarity 
is chosen for location prediction. 
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Algorithm 3. Prediction process of Indoor-WhereNext framework. 
Require: New user trajectory: 𝑡𝑟𝑎𝑗 = {𝑝𝑡௜} 
Hyperparameters of Indoor-STDBSCAN: 𝜖ଵ, 𝜖ଶ,𝑀𝑖𝑛𝑃𝑡𝑠 
Weight coefficient: 𝛼 

Prediction models: {𝑚𝑜𝑑𝑒𝑙௜} 
Cluster centers: {𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟௜} 
Ensure: 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 
1:   ൛𝑠𝑝௜௜ௗൟ = 𝐼𝑛𝑑𝑜𝑜𝑟 − 𝑆𝑇𝐷𝐵𝑆𝐶𝐴𝑁(𝑡𝑟𝑎𝑗, 𝜖ଵ, 𝜖ଶ,𝑀𝑖𝑛𝑃𝑡𝑠) 
2:   𝑙𝑜𝑐𝑆𝑒𝑞௜ௗ = 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(൛𝑠𝑝௜௜ௗൟ) 
3:   𝑺𝑺𝑴 = 𝑆𝑆𝑆(𝑙𝑜𝑐𝑆𝑒𝑞௜ௗ , {𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟௜},𝛼) 
4:   𝑖𝑑𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑺𝑺𝑴) 
5:   𝑚𝑜𝑑𝑒𝑙 = 𝑚𝑜𝑑𝑒𝑙𝑠[𝑖𝑑𝑥] 
6:   𝑆𝑒𝑡 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑚𝑜𝑑𝑒𝑙(𝑙𝑜𝑐𝑆𝑒𝑞௜ௗ) 
7:   return 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 

4. Experimental Results and Analysis 

4.1. Data Preparation 

4.1.1. Data Sources 

The experimental data consist mainly of Wi-Fi positioning data and shop data for a shopping 
mall in Jinan City, China. The total area of the mall is about 350,000 m2. The indoor Wi-Fi positioning 
data cover the eight floors of the shopping mall from 23 December 2017 to 6 January 2018. The 
positioning accuracy was approximately 3 m, the total number of trajectories was more than 20 
million, and the total number of trajectory points was 129,070,836. As shown in Table 1, the data field 
included the unique identifier of the user, the record upload time, the user’s X,Y coordinates, and the 
unique identifier of the floor. As shown in Table 2, there are 489 shops in the mall. The average shop 
size is about 40 m2. The data for each shop included the shop’s unique ID, the shape of the shop (a 
polygon composed of the coordinate sequence), the shop name, and the floor ID. 

Table 1. Sample of user trajectory data. 

User ID Date and Time X (m) Y (m) Floor ID 
0000CE *** 2017-12-31 10:46:45 130,219 *** 43,904 *** 1 
0000CE *** 2017-12-31 10:46:57 130,219 *** 43,903 *** 1 
0000CE *** 2017-12-31 10:47:05 130,219 *** 43,904 *** 1 

…… …… …… …… …… 
0000CE *** 2017-12-31 19:20:33 130,219 *** 43,904 *** 4 
0000CE *** 2017-12-31 19:20:45 130,219 *** 43,904 *** 4 

Note: In order to protect the privacy of the user, the user's XY coordinates are represented by *** 

Table 2. Sample of shopping mall data. 

Shop ID Shape Name Floor ID 
1 Polygon *** 2 
2 Polygon *** 2 
3 Polygon *** 6 

…… …… …… …… 
488 Polygon *** 4 
489 Polygon *** 3 

Note: *** indicates the name of the specific shop 
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4.1.2. Data Preprocessing 

The indoor users’ original trajectory data were collected via Wi-Fi positioning. Due to the 
instability of the mobile terminal signal and an artificial shutdown of the Wi-Fi signal, abnormal, 
erroneous, and invalid data was easily generated. The statistical characteristics of the users’ original 
trajectories are shown in Figure 5. After data preprocessing, a total of 345, 824 user trajectories were 
obtained. 

(1) The sampling interval for trajectory points was mostly concentrated between 1 and 5 s, 
accounting for approximately 82.5%, but there still were abnormal data with large sampling 
intervals and sampling intervals of 0 s. For example, trajectory points with sampling intervals of 
0 s accounted for approximately 7.3%. 

(2) The number of trajectory points contained in a trajectory was between 1 and 7 in most sets, 
accounting for more than 97%. In other words, a large number of trajectories contained only a 
few trajectory points and could not be used to train the model. In our work, trajectories where 
the number of trajectory points was less than 50 were deleted. 

(3) The time span for trajectory points recorded in the shopping mall was 24 h—that is, there were 
records generated even during nonbusiness hours for the shopping mall, and the records 
generated in this process were invalid. 

 
Figure 5. Statistical characteristics of the original trajectories of indoor users: (a) distribution of 
sampling intervals in the two weeks of data, (b) distribution of the numbers of trajectory points in the 
two weeks of data, (c) change in the number of users over time during a day, and (d) changes in the 
number of users on each floor over time during a day. 

4.2. Evaluation Metrics 

In this work, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘  and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘  (top k locations)  were used as quantitative 
indicators of the evaluation model. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 is used to evaluate the top-k prediction locations, to 
determine if they represent real locations.  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑋  uses macro-averaging to evaluate the 
performance of models from the perspective of multiple classifications—that is, indoor location 
prediction problems. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘, and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 are defined in Equations (6) and (7). 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑘 ∈ {1,3,5,7, … } (6) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 = 1𝑁෍ 𝑇𝑃௜𝑇P௜ + 𝐹𝑃௜ே
௜ୀଵ 𝑘 ∈ {1,3,5,7, … } (7) 

where 𝑁  represents the total number of locations and the number of shops; 𝑇𝑃௜  represents the 
number of samples in which the model correctly predicts that a user will visit location 𝑠ℎ𝑜𝑝௜; 𝐹𝑁௜ 
represents the number of samples in which the model incorrectly predicts that a user will not visit 
location 𝑠ℎ𝑜𝑝௜. 
4.3. Variable Estimation 

The value of hyperparameters has a considerable impact on the predictive performance of the 
model. When the value of the hyperparameters is not suitable, the model exhibits poor prediction 
performance. In this section, we calibrate the hyperparameters in the framework and analyze the 
impact of the hyperparameters on the prediction performance. The main hyperparameters of the 
Indoor-WhereNext framework are the radius 𝜖ଵ , the time window 𝜖ଶ , the minimum number of 
points 𝑀𝑖𝑛𝑃𝑡𝑠 , and the weight coefficient 𝛼 . To determine the optimal hyperparameter of the 
framework, the control variable method was used to obtain the combination of parameter values with 
the best prediction accuracy. In the parameter estimation stage, first 𝜖ଵ , 𝜖ଶ , and 𝑀𝑖𝑛𝑃𝑡𝑠  in the 
Indoor-STDBSCAN algorithm were determined. Then, using these values, the weight coefficient 𝛼 
was adjusted to test the influence of semantic and spatial similarities on prediction accuracy. 

4.3.1. Calibrating the Parameters of Indoor-STDBSCAN 

In the Indoor-STDBSCAN algorithm, the main test time window 𝜖ଶ influences the prediction 
accuracy—that is, the test stay time influences the prediction result. In the parameter calibration 
process, the weight coefficient 𝛼 was fixed to 0.5, the space radius 𝜖ଵ was fixed to 5 m with reference 
to the average distance between indoor shops. The time window 𝜖ଶ was the best parameter found in [1 min, 3 min, 5 min, … ,13 min]. The minimum number 𝑀𝑖𝑛𝑃𝑡𝑠 was set to a fixed value according to 
the data average sampling interval, and the time window 𝜖ଶ —that is, 𝑀𝑖𝑛𝑃𝑡𝑠 =ఢమ௔௩௘௥௔௚௘ ௦௔௠௣௟௜௡௚ ௜௡௧௘௥௩௔୪. The effect of the time window 𝜖ଶ on the prediction accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 is 

shown in Figure 6. When 𝑘 ∈ {1,3,5,7,9}, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 increased initially and then became stable. 
When 𝜖ଶ ൒ 5 min, the prediction accuracy of the framework did not change much. However, as the 
time window increased, the number of location sequences tended to decrease—that is, the number 
of training data decreased. To ensure the prediction accuracy and the number of training data at the 
same time, the time window 𝜖ଶ  was set to 7 min. After the Indoor-STDBSCAN parameter was 
calibrated, we further filtered the trajectory with too few stay points. A total of 45,315 trajectories was 
finally used for the experiment. 

 
Figure 6. Impact of parameters 𝜖ଵ, 𝜖ଶ, and 𝑀𝑖𝑛𝑃𝑡𝑠 on prediction accuracy. 
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4.3.2. Calibrating the Weight Coefficient 

The weight coefficient 𝛼 mainly tests the influence of spatial similarity and semantic similarity 
on prediction accuracy. First, the hyperparameters in the Indoor-STDBSCAN algorithm are fixed. 
Then, 𝛼 finds the optimal parameter from [0,0.1,0.2, … ,1]. When 𝛼 is set to 0 or 1, it means that only 
one similarity is considered to affect the accuracy of the prediction. The influence of weight coefficient 𝛼 on prediction 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 is shown in Figure 7. When 𝑘 ∈ {1,3,5,7,9}, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 showed a 
trend of first increasing and then decreasing. When 0.3 ≤ 𝛼 ≤ 0.6, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 of the framework 
was relatively high. When 𝛼 = 0.4, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@5 reached 67.6%, an improvement of 17.6 and 24.1 
percentage points, respectively, over that with 𝛼 = 0 and 𝛼 = 1. This indicates that both semantic 
and spatial similarity contributed to the accuracy of the model. 

 
Figure 7. Impact of weight coefficient 𝛼 on prediction accuracy. 

4.4. Performance of Indoor-WhereNext 

After calibration of the framework parameters, the change in the prediction accuracy of the 
Indoor-WhereNext framework with the number of iterations was analyzed. The results are shown in 
Figure 8. 

(1) For the training dataset, the prediction accuracy showed a continuous upward trend with the 
increase in the number of iterations.  

(2) For the test dataset, the prediction accuracy increased initially, then remained constant and 
finally decreased as the number of iterations increased. The framework tended to overfit as the 
number of iterations increased, improving the prediction accuracy of the model in the training 
dataset while worsening the prediction accuracy in the test dataset. 

(3) Comparing 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 on the test dataset, when 𝑘 ∈ {1,3,5}, the prediction accuracy of the 
model was greatly improved; at 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@5, the prediction accuracy was 67.6%. Compared 
with 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@1 and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@3, the prediction accuracy increased by 32.5% and 22.1%, 
respectively. However, as 𝑘  continued to increase, the prediction accuracy of the model 
increased slowly. Compared with 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@5, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@7 and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@9 only increased 
by 0.9% and 1.5%, respectively, because the shop that the next user visits in the mall is often a 
collection of shops rather than a specific shop. In the predicted set of shops, the user destination 
has a certain randomness. 
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Figure 8. Indoor-WhereNext frame location prediction accuracy: (a) accuracy of location prediction 
on training dataset and (b) accuracy of location prediction on test dataset. 

4.5. Comparison with Baselines 

To ascertain the efficiency of the proposed Indoor-WhereNext framework, it was compared with 
three existing prediction models for datasets: HMM (original-HMM), the improved hidden Markov 
model (improved-HMM), and the LSTM model (original-LSTM). Of these, original-HMM and 
original-LSTM use the shop sequences to build a model to predict the next location. Improved-HMM 
replaces LSTM in the Indoor-WhereNext framework with HMM and builds models based on the SSS 
to predict the next location. The prediction accuracy of HMM is related to the number of states. In the 
comparison experiment, the number of states in HMM was varied among 10, 20, 30, and 40 states. 

Figure 9 shows the prediction accuracy of the four models. It can be seen that, because the 
original-HMM and the original-LSTM models consider location prediction as a time series modeling 
problem, they ignore the influence of the similarity between location sequences on the location 
prediction. Therefore, their predictive performance was worse than those of improved-HMM and the 
proposed Indoor-WhereNext framework. In particular, when the number of states in HMM was 10, 
the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@5 of the Indoor-WhereNext framework was 31.2% higher than that of original-HMM 
and 23.8% higher than that of original-LSTM. Improved-HMM accounts for the similarities between 
location sequences and builds a model for similar users. However, when the number of states in 
HMM was 40, the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@1, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@3, and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@5 values of the Indoor-WhereNext 
framework were still 3.2%, 2.5%, and 13.8% higher, respectively, than those of Improved-HMM. The 
reason is that the LSTM model in the Indoor-WhereNext framework is used to model the location 
sequences, which makes it easier to capture the movement patterns in a long location sequence. In 
general, the Indoor-WhereNext framework greatly improved indoor location prediction by 
enhancing the Accuracy@1 by between 3.2% and 15.1%, the Accuracy@3 by between 2.4% and 18.3%, 
and the Accuracy@5 by between 13.8% and 31.9%. 

Figure 10 compares the prediction precision of the four models. As in the case of accuracy, the 
precision of the framework can be improved by 7–27.3%, 17.8–20.9%, and 6.9–14.7% compared with 
the baseline experiments. In particular, when k = 5, the prediction precision of the model was 61.6%. 
However, compared to the accuracy of the framework, the precision of the Indoor-WhereNext 
framework is reduced by 6%. This reduction in accuracy can be attributed to the fact that the indicator 
precision regards location prediction as a multi-classification problem, and the test samples in each 
classification are unbalanced, resulting in a slight reduction in the precision. Overall, the Indoor-
WhereNext framework significantly outperforms the three existing baseline methods in terms of 
prediction precision. 
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Figure 9. Accuracy using the baseline of the dataset: (a) the number of states in the hidden Markov 
model (HMM) is 10, (b) the number of states in the HMM is 20, (c) the number of states in the HMM 
is 30, and (d) the number of states in the HMM is 40. 

 
Figure 10. Precision using the baseline of the dataset: (a) the number of states in the hidden Markov 
model (HMM) is 10, (b) the number of states in the HMM is 20, (c) the number of states in the HMM 
is 30, and (d) the number of states in the HMM is 40. 

5. Conclusions and Future Work 

The Indoor-WhereNext framework was proposed for indoor location prediction. First, 
considering the three-dimensional characteristics and the relative error of indoor trajectories, the 
Indoor-STDBSCAN algorithm was proposed in order to identify the stay points of the indoor user 



ISPRS Int. J. Geo-Inf. 2019, 8, 517 15 of 17 

 

and convert the user trajectory into a location sequence, thereby overcoming the problem that it is 
difficult to identify indoor stay points using the existing methods. Then, considering the spatial and 
semantic similarities of location sequences, the SSS method was defined to obtain the similarity 
matrix between location sequences. Finally, the AP algorithm was used to obtain similarity user 
groups based on the similarity matrix, and the groups were used to train different prediction models 
to improve the accuracy of location prediction. 

In the experimental section, a two-week period of real indoor trajectories was used to verify the 
efficiency of the proposed framework. First, the control variable method was used to obtain the 
combination of parameter values with the best prediction accuracy. When the optimal parameters 
were used, the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@5  reached 67.6%. Then, a comparison with three existing baseline 
methods was conducted. Compared with original-HMM, original-LSTM, and improved-HMM, the 
proposed framework delivered improved accuracy and precision, with Accuracy@5 increasing by 
31.2%, 23.8%, and 13.8%, and Precision@5 increasing by 27.3%, 20.9%, and 14.7%, respectively. This 
demonstrates the efficiency of the Indoor-WhereNext framework. 

The following aspects can potentially be investigated further in future work: (1) further 
validation of the proposed framework with more types of data such as hospital indoor trajectories 
and airport indoor trajectories, (2) comprehensive comparison with other location prediction models 
such as ST-RNN and Markov chain, (3) comparison of the models with more comprehensive 
evaluation indicators, and (4) integration of more factors into Indoor-WhereNext to achieve a more 
robust model that further improves the accuracy of indoor location prediction. 
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