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Abstract: With the rapid development of earth-observation technology, the amount of remote sensing
data has increased exponentially, and traditional relational databases cannot satisfy the requirements
of managing large-scale remote sensing data. To address this problem, this paper undertakes intensive
research of the NoSQL (Not Only SQL) data management model, especially the MongoDB database,
and proposes a new approach to managing large-scale remote sensing data. Firstly, based on the
sharding technology of MongoDB, a distributed cluster architecture was designed and established for
massive remote sensing data. Secondly, for the convenience in the unified management of remote
sensing data, an archiving model was constructed, and remote sensing data, including structured
metadata and unstructured image data, were stored in the above cluster separately, with the metadata
stored in the form of a document, and image data stored with the GridFS mechanism. Finally,
by designing different shard strategies and comparing MongoDB cluster with a typical relational
database, several groups of experiments were conducted to verify the storage performance and access
performance of the cluster. The experimental results show that the proposed method can overcome
the deficiencies of traditional methods, as well as scale out the database, which is more suitable for
managing massive remote sensing data and can provide technical support for the management of
massive remote sensing data.

Keywords: remote sensing data; MongoDB; data management; sharding technology;
GridFS mechanism

1. Introduction

As a spatial information carrier, remote sensing data play significant roles in many fields, such as
environmental monitoring, land resources survey, and disaster assessment, with its characteristics of
strong timeliness and large area coverage [1,2]. As earth-observation technologies (including remote
sensing and satellite communication) and information technologies develop, a big data era has begun
in the remote sensing field, where the amount of remote sensing data is massive and continues to
increase exponentially [3,4]. According to statistics, the daily data amount produced by different
satellite platforms is increasing at the terabyte level. Landsat8, for example, launched by the National
Aeronautics and Space Administration in 2013, generates four hundred global images every day;
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Sentinel, launched by the European Space Agency, produces thousands of data every day. Faced with
massive remote sensing data, how to store and manage such with high efficiency is an issue that must
be solved currently.

Remote sensing data consist of unstructured image data and structured descriptive information
attached to the image, which is also called metadata; these two files are commonly saved in the same
directory. Previous studies have taken advantage of different methods to store remote sensing data,
and the most commonly used method is combining the file system with a database, with the image data
stored in the storage device and the metadata stored in the table of database [5]. However, this mode
can neither achieve true storage nor reflect the nature of image data, and when the storage path is
changed, there are many items that need to be modified in the database, which can reduce the safety
and reliability of data to some extent. The second approach that has received much attention is storing
image data in a database directly, using the data type “BLOB” [6,7]. The above two methods are
implemented based on a relational database management system. While as the amount of remote
sensing data grows rapidly, the weaknesses of a relational database in the process of managing massive
spatial data are becoming more and more obvious, including slow reading and writing speed and
difficult horizontal expansion [8]. Especially the problem of low storage and access efficiency under
the background of massive data, which can no longer meet the requirements for data management in a
big data era. The last method that some applications adopt is the file system [9,10]. In this condition,
the image data are organized through the file mode in high-performance storage devices. However,
the process of data retrieval and data acquisition is inconvenient using this method, and in many
cases, users have to develop specialized programs to realize these functions. Thus, Not Only SQL
(NoSQL) databases, which are typically represented by MongoDB, whose unique data management
mode can solve the problems that existed in the relational database, are receiving more attention [11,12].
In addition, the file storage mechanism GridFS within MongoDB can achieve the distributed storage
of large binary files [13]. This paper proposes a method to manage remote sensing data based on
MongoDB, with the metadata stored in the form of document and the image data stored with GridFS.

Many studies use NoSQL databases to manage the spatial datasets. Li et al. proposed a
management strategy based on MongoDB for the frequent modification and complex spatial analysis
of large-scale GIS (Geographical Information System) data, and designed experiments to verify the
feasibility and effectiveness of their strategy [14]. Xiang et al. flattened a hierarchical R-tree structure
into a tabular MongoDB collection to manage planar spatial data, and the results showed that the planar
spatial data could be effectively managed by this method [15]. Wang and Hu proposed a cloudizing
storage method for unstructured LiDAR point cloud data with the distributed file system GridFS based
on MongoDB, and the results showed that the proposed method performed better than the local file
system [16]. Current studies mostly concentrate on the management of typical GIS data, such as point,
line and surface, and less on remote sensing data, while this paper focuses on constructing a distributed
storage strategy for massive remote sensing data to improve the management and service level.

The primary focus of this study is to promote the storage efficiency and access efficiency of
remote sensing data by establishing a distributed sharding cluster based on the MongoDB database.
In our approach, we propose a distributed storage and access method for remote sensing data
based on MongoDB. Firstly, we established a distributed cluster for remote sensing data using the
sharding technology of MongoDB. Secondly, we constructed an archiving model to realize the unified
management of remote sensing data referring to prevalent international standards and metadata
structures. Furthermore, for remote sensing data, metadata and image data are stored separately,
with the former stored as documents, and the latter stored with the GridFS mechanism, which is related
by the data filename. Finally, with Landsat8 metadata and various satellite data used as experimental
data sources, we conducted various experiments to verify the availability and effectiveness of the
proposed method. The results show that the method proposed for remote sensing data has higher
performance in data storage and access, and can effectively manage massive data. It can also provide
guidance for data management strategies and meet the demand for massive data management.
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2. Background

2.1. NoSQL and MongoDB

Although relational database management systems occupy an important position in the data
management field, the large-scale data introduces a new challenge for data storage and management [17].
Bottlenecks exist in the process of managing massive data with traditional relational databases due to
their ACID properties, and people have started to search for a more optimal solution. Consequently,
NoSQL technology has emerged as a possible solution [18,19]. For the management of massive data in
the distributed system, NoSQL databases usually focus more on the availability and partition tolerance
and realize the eventual consistency, wherein it achieves the applications in many special areas [20].
With its feasible data model, high read and write performance, and powerful expandability under big
data, NoSQL is more suitable for the storage and management of massive data.

In terms of its storage mode, NoSQL databases can be divided into four categories: key-value
database, document-oriented database, column-family database, and graph-oriented database [21].
Presently, as a kind of document-oriented database, MongoDB is attracting much interest due to its
free schema, support for complex queries, and powerful expandability. The fundamental data storage
unit of MongoDB database is a document, while the BSON (Binary JavaScript Object Notation) format
is used as the data storage structure, which is similar to the JSON (JavaScript Object Notation) format.
Data is stored in the form of key-value in MongoDB. The document corresponds to the row in the
table of the relational database, and many documents compose a collection that corresponds to the
table of the relational database. Unlike the table, database users do not need to define the mode of
the collection, while the structure of the table needs to be specified in advance in relational databases,
and different types of documents can be stored in the same collection. Moreover, for large binary files,
MongoDB provides a GridFS mechanism to store them.

2.2. Sharding Technology

Faced with the challenge of data processing in the big data era, the MongoDB database provides
sharding technology as the solution to scale out [22]. Sharding technology is a database cluster system
used to horizontally expand massive data, and the data is split and stored in different data nodes to
handle greater data loads. Applying sharding technology can reduce the pressure on single machine
performance caused by high data volume and high throughput applications, and improve random
access performance under a large data volume. When storing massive data, one server might not
be enough to store the data and provide acceptable read-write throughput. By establishing a cluster,
the data can be divided and stored on multiple machines, so the database system can store and process
more data to meet the processing needs of the large growth of data. Figure 1 presents the overall
sharding cluster architecture of MongoDB.

The MongoDB cluster architecture mainly includes three parts: the shard server, the router server,
and the config server. The actual data are stored in the shard server, which can be a replica set or a
server. The router server is the entry that clients request the database and is used to address and locate
the requests from these clients. All these requests need to be handled by mongos and forwarded to the
corresponding shard server. The config server is used to store the configuration information of the
router and the shard, which is set up at first and does not need significant space and resources.

When implementing sharding in the collection, one or more fields should be referred to as split
data, which is also called the shard key. After the shard key is specified, the data are split into small
data chunks, and different chunks are stored in corresponding sharding machines. There are three
kinds of shard keys: ascending key, random key, and combined key. The values of the ascending
key (such as object id and time) will grow steadily over time, and the latest insert documents will be
assigned to the max chunk. The values of the random key have no specific rules to follow, such as
name, MD5, and password, as they are absolutely random. As more data are inserted, all the data
can be distributed evenly in different chunks. When there is no suitable shard key in the database,
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a combined key can be considered. The selection of the shard key can affect the performance of the
system, such as its scalability, so it is very important to choose an appropriate shard key [23].
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2.3. GridFS Mechanism

MongoDB supports the storage of binary data through a lightweight file storage specification
named GridFS. GridFS is a distributed file storage mechanism used to store large binary files,
which splits the large file into many small file chunks, and each file chunk is stored as a document [24].
Under this mechanism, the large file is stored in two collections whose default names are fs.chunks
and fs.files, with binary data stored in the fs.chunks collection and the descriptive information stored
in the fs.files collection, which achieves the distributed storage of data.

When storing a binary file, if its size is greater than the pre-set chunksize value, the file will
be divided into several chunks. Each file corresponds to a document in the fs.files collection,
which corresponds to one or more documents in fs.chunks.

3. Storage and Access of Remote Sensing Data in MongoDB

3.1. The Distributed Cluster Architecture

MongoDB is an open-source NoSQL database management system with a feasible schema and
powerful scalability, which can provide excellent storage and access capability, especially in the large
data management field. Aiming at massive remote sensing data, including unstructured image data
and structured metadata, a distributed storage method is proposed in this paper based on MongoDB.
This research establishes the distributed storage and access architecture for remote sensing data,
which is composed of several physical machines, and there is no duplication of data among the cluster.

To ensure the high availability and consistency of the remote sensing data, this research takes
advantage of the strategy of “replica sets + sharding” to construct the cluster. That is to say, the shard
is also a replica set and consists of a group of mongod processes, while mongod is a process that is
mainly used to handle data requests and manage data storage in the MongoDB database. Moreover,
as a special member of the replica set, when the backup nodes cannot connect to the primary node,
the arbiter takes part in the election of the new primary node, which does not store data and occupies
fewer resources. Figure 2 shows the distributed cluster architecture for remote sensing data.



ISPRS Int. J. Geo-Inf. 2019, 8, 533 5 of 16

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 5 of 17 

 

 
Figure 2. The distributed cluster architecture for remote sensing data. 

3.2. Archiving Model for Metadata 

Remote sensing metadata plays an essential role in correlative studies of earth-observation, and 
managing the metadata effectively can contribute to the application and sharing of remote sensing 
data [25,26]. In our research, remote sensing metadata is the descriptive information of the remote 
sensing image, which is generated to store attribute information. However, the contents of different 
metadata files are different, which brings difficulties to the unified management of remote sensing 
metadata. In the Landsat8 metadata file, for example, the “SENSOR_ID” field is the sensor identifier 
of the satellite, and the “SPACECRAFT_ID” field is the satellite identifier of the image, while in the 
ZY-3 metadata file, the corresponding fields are SensorID and SatelliteID. Therefore, constructing a 
unified archiving model for the management of remote sensing data is urgent. 

Based on the investigation and survey of current metadata standards containing ISO 
(International Organization for Standardization) 19115 geographical information metadata standard 
and CSDGM (Content Standard for Digital Geospatial Metadata), as well as the metadata structures 
of multiple remote sensing data sources, the archiving model for remote sensing metadata is 
established, and its fields are determined: SatelliteID, SensorID, ReceiveDate, geographic 
coordinates, and so forth. These fields are shown in Table 1. 

Table 1. Archiving model for remote sensing metadata. 

No. Field Name Data Type Description 
1 ImageName varchar Image data name 
2 SatelliteID varchar Satellite id 
3 SensorID varchar Sensor id 
4 ReceiveDate varchar Receive date 
5 StartTime varchar Start time 
6 StopTime varchar Stop time 
7 ProductLevel varchar Product level 

Figure 2. The distributed cluster architecture for remote sensing data.

3.2. Archiving Model for Metadata

Remote sensing metadata plays an essential role in correlative studies of earth-observation,
and managing the metadata effectively can contribute to the application and sharing of remote sensing
data [25,26]. In our research, remote sensing metadata is the descriptive information of the remote
sensing image, which is generated to store attribute information. However, the contents of different
metadata files are different, which brings difficulties to the unified management of remote sensing
metadata. In the Landsat8 metadata file, for example, the “SENSOR_ID” field is the sensor identifier of
the satellite, and the “SPACECRAFT_ID” field is the satellite identifier of the image, while in the ZY-3
metadata file, the corresponding fields are SensorID and SatelliteID. Therefore, constructing a unified
archiving model for the management of remote sensing data is urgent.

Based on the investigation and survey of current metadata standards containing ISO (International
Organization for Standardization) 19115 geographical information metadata standard and CSDGM
(Content Standard for Digital Geospatial Metadata), as well as the metadata structures of multiple
remote sensing data sources, the archiving model for remote sensing metadata is established, and its
fields are determined: SatelliteID, SensorID, ReceiveDate, geographic coordinates, and so forth.
These fields are shown in Table 1.
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Table 1. Archiving model for remote sensing metadata.

No. Field Name Data Type Description

1 ImageName varchar Image data name
2 SatelliteID varchar Satellite id
3 SensorID varchar Sensor id
4 ReceiveDate varchar Receive date
5 StartTime varchar Start time
6 StopTime varchar Stop time
7 ProductLevel varchar Product level
8 ProductFormat varchar Product format
9 Resolution float Image resolution
10 CloudPercent float Cloud value
11 ImageQuality int Image quality
12 CenterLatitude float Center latitude
13 CenterLongitude float Center longitude
14 TopLeftLatitude float Latitude in upper left corner
15 TopLeftLongitude float Longitude in upper left corner
16 TopRightLatitude float latitude in upper right corner
17 TopRightLongitude float Longitude in upper right corner
18 BottomRightLatitude float latitude in lower right corner
19 BottomRightLongitude float Longitude in lower right corner
20 BottomLeftLatitude float latitude in lower left corner
21 BottomLeftLongitude float Longitude in lower left corner
22 FileStorePath varchar Store path of image file
23 DataDownloadURL varchar Download link of data
24 DataOwner varchar Owner of the data
25 DataProvider varchar Provider of the data

The remote sensing metadata is shown in the form of document in the MongoDB database.
When inserting data into MongoDB database, if the “_id” field does not exist in the document,
MongoDB will generate the field automatically. Taking one Landsat8 metadata file as example,
the standard storage in the MongoDB database is achieved through data processing. The storage mode
of the remote sensing metadata is as follows:

{
“_id”: ObjectId(“5cd393629e11f33380453591”),
“ImageName”: “LC80010762013365LGN01”,
“SatelliteID”: “LANDSAT_8”,
“SensorID”: “OLI_TIRS”,
“ReceiveDate”: “2013/12/31”,
“StartTime”: “2013:365:14:38:11.8686080”,
“StopTime”: “2013:365:14:38:43.6386040”,
“ProductLevel”: “L1”,
“ProductFormat”: “GEOTIFF”,
“Resolution”: 30,
“CloudPercent”: 4.5,
“Image Quality”: 9,
“CenterLatitude”: −23.11263,
“CenterLongitude”: −69.68594,
“TopLeftLatitude”: −22.06363,
“TopLeftLongitude”: −70.38825,
“TopRightLatitude”: −22.43484,
“TopRightLongitude”: −68.5718,
“BottomRightLatitude”: −23.78778,
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“BottomRightLongitude”: −70.81204,
“BottomLeftLatitude”: −24.16399,
“BottomLeftLongitude”: −68.97206,
“FileStorePath”: “E:\entity data\landsat8”,
“DataDownloadURL”:“https://earthexplorer.usgs.gov/browse-link/12864/

LC80010762013365LGN01”,
“DataOwner”: “USGS”,
“DataProvider”: “USGS”

}
In latter experiments, the “TopLeftLatitude” field is selected as shard key to compare the

performance of the cluster. When the shard key is specified, remote sensing metadata can be divided
and stored on different shards.

3.3. Storage and Access of Image Data Based on GridFS

When storing data in the form of document in the MongoDB database, the volume of each file
must be less than sixteen megabytes. However, with the rapid development of earth-observation
technologies, the data amount of remote sensing image has already reached hundreds of megabytes,
or even bigger, which exceeds the limitation and can never satisfy the storage demand for remote
sensing big data [27]. On account that the traditional document-objected method cannot be adopted
for the storage of image data, this paper takes advantage of the GridFS file storage mechanism to
manage large remote sensing image data.

Under this circumstance, the data are managed in two collections: rs.files and rs.chunks. The keys
in the rs.chunks collection include _id, n, data, and files_id. “_id” stands for the unique identifier of
the file chunk, “n” stands for the relative position in file of the chunk, “data” stands for the binary
data in the chunk, and “files_id” is the same as “_id” in the rs.files collection. The keys in the rs.files
collection include _id, length, chunksize, uploadDate, and MD5. “_id” stands for the unique identifier
of the document in the rs.files, “length” stands for the number of the bytes, “chunksize” stands for the
size of every chunk in bytes, “uploadDate” stands for the date and time that the file is uploaded to
GridFS, and “MD5” is the check value of the file, which is calculated by the server.

Taking one of the Sentinel1 image data as an example, the storage structure of the image data in
the rs.files collection is as follows.

{
“_id”: ObjectId (“5cacc5303af3542ea4a36ca9”),
“chunkSize”: 261120,
“uploadDate”: ISODate (“2019-04-09T16:15:55.577Z”),
“length”: 915158806,
“md5”: “97eb15fc211c2645268a5b16b21e10f6”,
“filename”: “S1A.zip”
}
The storage structure of image data of Sentinel1 in rs.chunks collection is as follows.
{
“_id”: ObjectId (“5cacc5303af3542ea4a36caa”),
“files_id”: ObjectId (“5cacc5303af3542ea4a36ca9”),
“n”: 0,
“data”: { “$binary”: “ . . . ”, “$type”: “00” }
}
Figure 3 shows the procedures for applying the GridFS mechanism of MongoDB database to store

image data.

https://earthexplorer.usgs.gov/browse-link/12864/LC80010762013365LGN01
https://earthexplorer.usgs.gov/browse-link/12864/LC80010762013365LGN01
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1. Retrieve the image data waiting to be stored according to the specified image name. If the
data with the same name exists, then finish the operation; if not, start to store the data with the
GridFS mechanism.

2. Store the data in two collections: rs.files and rs.chunks. The “rs.files” collection stores the
metadata of each image, while “rs.chunks” collection stores the binary data of each image.

3. The data in the “rs.files” collection usually does not need to be split because its data volume
is small, while “files_id” and “n” are selected as a combined shard key to divide the data into
different shard nodes.

4. When accessing the image data, the data is retrieved in the “rs.files” collection with the specified
query terms, and then the value of “_id” is obtained. Owing to the equal relationship between
“_id” in rs.files and “files_id” in rs.chunks, “files_id” is also determined accordingly. Then the
image data can be read sequentially through the value of “n”.
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With the GridFS file storage mechanism, the image data is split to small data chunks and stored in
the corresponding nodes. Figure 4 shows the storage mechanism of remote sensing image data.
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4. Experimental Design

The key to the MongoDB distributed cluster is choosing an appropriate shard key. Therefore,
to verify the practicability and availability of the proposed method for remote sensing data,
several groups of comparison experiments are designed, including remote sensing metadata storage
and access under different shard key strategies, image data storage, and access with the GridFS
mechanism of MongoDB and PostgreSQL.

4.1. Experimental Data

The experimental data include remote sensing metadata and image data. In this research, the
Metadata Extraction Tool, which was developed using Java programming language, is used to extract
the necessary fields and values of the metadata file in the Landsat8 data package and transform them
into corresponding fields in the archiving model. There are about 100 million global metadata records
from 2013 to 2017, which can be obtained from the USGS website “https://earthexplorer.usgs.gov/”.
We downloaded the image data from different data centers, and these data include Landsat data,
FY data, and Sentinel data. To simplify the expression, the time information and other information
after it in the data filename of each data product are replaced with the symbol ‘*’. Table 2 presents
detailed information of each data product.

Table 2. Detail information of each image data.

Data Filename Satellite Data Source Data Amount

LT05_L1GS_123046_* Landsat5 https:
//earthexplorer.usgs.gov/

131 MB
LC08_L1GT_123046_* Landsat8 926 MB

FY3A_MERSI_GBAL_L1_* FY3A http:
//satellite.nsmc.org.cn/
portalsite/default.aspx

285 MB
FY3B_MERSI_GBAL_L1_* FY3B 328 MB
FY3C_MERSI_GBAL_L1_* FY3C 444 MB

S1A_IW_GRDH_1SDV_* Sentinel1
https:

//scihub.copernicus.eu/
dhus/#/home

872 MB
S2A_MSIL1C_* Sentinel2 522 MB

S3A_OL_1_EFR____2016* Sentinel3 711 MB
S3A_OL_1_EFR____2017* Sentinel3 618 MB

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://satellite.nsmc.org.cn/portalsite/default.aspx
http://satellite.nsmc.org.cn/portalsite/default.aspx
http://satellite.nsmc.org.cn/portalsite/default.aspx
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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4.2. Experimental Environment

The experimental environment is built on a cluster of three physical computers, and the
configuration of each machine is the same: ubuntu-16.04.6 operating system, 16 GB RAM, a 500 GB
hard disk, and a 3.20 GHz core CPU. For our experiments, we used MongoDB 4.0.8 and PostgreSQL
11.3 for comparison, which are deployed on the nodes. The configuration of each shard node in the
MongoDB cluster is shown in Table 3.

Table 3. Configuration information table of each node in MongoDB cluster.

Node IP Address Port

Ubuntu01 10.3.102.199
Shard 1-1: 27001 Shard 2-1: 27002
Shard 3-1: 27003 Mongos 1: 20000

Config 1: 21000

Ubuntu02 10.3.102.204
Shard 1-2: 27001 Shard 2-2: 27002
Shard 3-2: 27003 Mongos 2: 20000

Config 2: 21000

Ubuntu03 10.3.102.205
Shard 1-3: 27001 Shard 2-3: 27002
Shard 3-3: 27003 Mongos 3: 20000

Config 3: 21000

The PostgreSQL database is deployed on each node with port number 5432 in the cluster based
on the master-slave structure. The node whose IP address is 10.3.102.199 is configured as the master,
while the other two nodes are configured as slave 1 and slave 2, and the slave is a replication of
the master.

4.3. Experimental Principle

For the metadata storage experiment, this paper computes the amount of inserted metadata per
second, i.e., the insert speed. While for the other experiments, this paper computes the execution time
difference of different commands by running programs. The calculation formulas are as follows.

Tavg =

n∑
i=1

(Tendn − Tstartn)

n
(1)

Sinsert =
Voldata

Tavg
(2)

Formula (1) is applied to calculate the average execution time, while Formula (2) is used to
calculate the average insert speed. In Formula (1), Tend represents the end time for executing commands,
Tstart represents the start time for executing commands, n represents the execution time for the same
experiment, and Tavg represents the average execution time. In order to reduce the experimental errors,
the same experiment was carried out five times, so n equals five in this experiment, and the value
of Tavg is calculated by averaging five figures. In Formula (2), Voldata represents the data volume,
and Sinsert represents the insert speed of data.

5. Results and Analysis

In this section, we carry out the experiments with reference to the experimental design in Section 4.
The content of this section contains three aspects. The first two are the experimental results of the
storage and access performance comparison of the remote sensing data, and the third is the analysis of
the results.
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5.1. Metadata

After the values of the fields in the metadata archiving model are obtained, they are first
stored in the MongoDB database to facilitate other experiments. In order to study the influence on
cluster performance under different shard key strategies, we choose different shard key strategies.
Considering that the query terms with remote sensing data mainly concentrated on a spatial range
including latitude and longitude information or an imaging time range in practical application,
the “TopLeftLatitude” field is chosen as a shard key because it carries spatial information. In the
meantime, the hashed values of “_id” are calculated, where the shard key named “_id_hashed” is
established. Finally, we use “_id_hashed” and “TopLeftLatitude” as shard keys, and both the storage
experiments and access experiments are conducted under these two circumstances.

5.1.1. Storage

The storage experiments are conducted by inserting different amounts of metadata into the
MongoDB database. The storage mode of the remote sensing metadata is described in detail in
Section 3.2. In order to make the experimental results more intuitive and reliable, we have chosen the
insert speed under different shard key strategies for comparison in this experiment. The experimental
result is shown in Figure 5.
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As can be seen from the above figure, storage performance is affected by the number of metadata
records. When choosing “_id_hashed” and “TopLeftLatitude” as shard keys, the two curves exhibit
a similar changing trend, where the insert speed levels off after going through a process of growth.
For the shard key named “_id_hashed”, the data are stored randomly and evenly, which guarantees
the load balancing among the shard nodes in the MongoDB cluster. While for “TopLeftLatitude”
whose values range from −90 to 90, the new inserted data can be routed to various chunks, and when
viewing the data distribution on the shard nodes at this time, we find that the image data is distributed
evenly among the nodes. However, strictly speaking, the data storage with “TopLeftLatitude” does
not achieve an absolute random and even distribution compared with the “_id_hashed” shard key,
which yields better storage performance with the latter.
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In addition, when the number of metadata records inserted are less than 5000, the insert speed
of the two sharding strategies keeps rising because the metadata are not partitioned at that moment,
and there are sufficient resources that can be utilized in the MongoDB cluster.

5.1.2. Access

The access experiments are conducted by retrieving the metadata in a certain range, with longitude
values ranging from seventy-five degrees to one-hundred-and-thirty degrees and latitude values
ranging from twenty degrees to fifty degrees, which is a rectangular area and covers many provinces
of China. The access performance of the remote sensing metadata under various volumes is tested by
executing commands in the program. The query command is:

“db.meta.find({$and:[ {“TopLeftLatitude”: {$lt: 50}}, {“TopLeftLongitude”:{$gt: 75}},
{“TopRightLatitude”: {$lt: 50}}, {“TopRightLongitude”: {$lt: 130}}, {“BottomRightLatitude”:{$gt:
20}}, {“BottomRightLongitude”: {$gt: 75}}, {“BottomLeftLatitude”:{$gt: 20}}, {“BottomLeftLongitude”:
{$lt: 130}} ] })”.

This paper chooses the execution time difference for comparison in this experiment.
The experimental result under three shard key strategies is shown in Figure 6.
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As Figure 6 shows, the changing trend of the two curves is different. When choosing “_id_hashed”
as the shard key, the access time tends to remain steady as the volume of metadata increases,
which means the access performance is slightly influenced by the metadata volume in this situation.

However, when the “TopLeftLatitude” field is chosen as the shard key, the access time increases
along with the volume of metadata, because the metadata is distributed in different shard nodes
according to the value of the “TopLeftLatitude” field, and the data is retrieved among these nodes.
In particular, when the metadata volume is 1,000,000, the access time that the “TopLeftLatitude” shard
key consumes is forty-eight times longer than that of “_id_hashed”, which indicates that as for the
“TopLeftLatitude” shard key, access performance is more affected by the metadata volume than with
the latter.
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5.2. Image Data

To verify the storage and access performance of the MongoDB database for large binary files
(namely, the remote sensing image data in this experiment), the relational database PostgreSQL is
selected for comparison. PostgreSQL is recognized as the most powerful open source object-relational
database management system; it supports abundant data types and provides rich interfaces. In this
experiment, “files_id” and “n” are selected as the combined shard key to reduce the load pressure of a
single shard in the MongoDB cluster, while PostgreSQL uses “_id” as the index, as there are only two
fields, and the other is applied to store the binary data.

5.2.1. Storage

With different amounts of remote sensing image data inserted into MongoDB and PostgreSQL,
the average storage time with the two databases can be computed through multiple experiments with
Formula (1), which is chosen for the comparison in this experiment. The experimental result is shown
in Figure 7.
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As can be observed from Figure 7, the time required to store the image data of both MongoDB and
PostgreSQL increases along with the increasing volume of the remote sensing image data, while the
storage performance of the MongoDB database is relatively more stable. In addition, when storing the
same image data file, PostgreSQL consumes more time than MongoDB. The time difference between
the two databases is obvious, especially when the inserted image data amount is large. For example,
when inserting the data “S3A_OL_1_EFR____2016*”, the time that PostgreSQL takes is one point six
times longer than that of MongoDB. To sum up, MongoDB performs better than PostgreSQL in storing
large remote sensing image data.

5.2.2. Access

After all the remote sensing image data are inserted into MongoDB and PostgreSQL, the access
experiments can be conducted. The average access time with two databases can be computed
through multiple experiments with Formula (1), which is chosen for comparison in this experiment.
The experimental results are displayed in Figure 8.
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Figure 8 shows that, as the remote sensing image data amount grows, there is a growing trend in
the time required to access data in both MongoDB and PostgreSQL, while the growth of the PostgreSQL
database is relatively faster. In addition, when accessing the same image data file, PostgreSQL consumes
more time than MongoDB. For instance, when accessing the data “LT05_L1GS_123046_*”, the time that
PostgreSQL takes is two point eight times longer than that of MongoDB. Thus, MongoDB performs
better than PostgreSQL in accessing large remote sensing image data.

Compared with the method proposed by Wang and Hu [16], which managed the LiDAR point
cloud data in the MongoDB database with two shard key strategies including “files_id” and “n”,
we used the image data in the same file size as the former to conduct the comparison experiments.
Here, we label the method proposed in this paper as “Method 1” and the other as “Method 2”.
The experimental results are presented in Figure 9.
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As can be observed from Figure 9, no matter which shard key is applied, Method 1 consumes
less time in accessing data than the other method. For instance, compared with Method 2, the data
access time with “files_id” decreases by 60.9%, 52.9%, 39.7%, 31%, 58.6%, and 69.4%, respectively,
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under different data sizes, which indicates that the performance of Method 1 outweighs that of
Method 2.

5.3. Analysis

Through the above experiments, the following conclusions can be drawn by analyzing the
experimental results:

• The MongoDB database uses the WiredTiger storage engine, which stores the data as disk files.
When there are sufficient memory resources to cope with the storage and access requests in the
cluster, higher performance can be obtained. Moreover, the network bandwidth will also influence
the storage and access performance of the MongoDB cluster.

• From the perspective of shard key strategy, the paper chooses two different shard keys to conduct
the experiments, though neither of them can guarantee optimal performance in both storage and
access. Therefore, when designing the shard key strategy, practicality should be considered.

6. Conclusions

Faced with the deficiencies of slow reading and writing speed, difficult horizontal expansion and
low query efficiency in the process of managing massive remote sensing data with traditional relational
database management systems, this paper proposes a distributed storage and access method for massive
remote sensing data using the MongoDB sharding cluster architecture, with structured metadata stored
in the form of document and unstructured image data stored with the GridFS mechanism. The result
shows that the proposed method can overcome the weak points of traditional methods, scale out the
database, and is more suitable to manage massive remote sensing data. For future work, we plan to
study the influence of the number of data nodes on the performance of the distributed system.

7. Patents

We have submitted an application for an invention patent resulting from the work reported in this
paper to the National Intellectual Property Administration, PRC, and now this patent is open to the
public. The patent name is “A distributed storage method for large-scale remote sensing data based on
MongoDB”, and the patent application number is 201910585556.4.
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