
 International Journal of

Geo-Information

Review

Parameters Derived from and/or Used with Digital
Elevation Models (DEMs) for Landslide Susceptibility
Mapping and Landslide Risk Assessment: A Review

Nayyer Saleem * , Md. Enamul Huq , Nana Yaw Danquah Twumasi, Akib Javed
and Asif Sajjad

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China; enamul_huq@whu.edu.cn (M.E.H.);
nanatwumasi@whu.edu.cn (N.Y.D.T.); akibjaved@whu.edu.cn (A.J.); asifsajjad@whu.edu.cn (A.S.)
* Correspondence: saleemnayyer@whu.edu.cn; Tel.: +86-131-6411-7422

Received: 15 September 2019; Accepted: 27 November 2019; Published: 29 November 2019 ����������
�������

Abstract: Digital elevation models (DEMs) are considered an imperative tool for many 3D visualization
applications; however, for applications related to topography, they are exploited mostly as a basic
source of information. In the study of landslide susceptibility mapping, parameters or landslide
conditioning factors are deduced from the information related to DEMs, especially elevation. In this
paper conditioning factors related with topography are analyzed and the impact of resolution
and accuracy of DEMs on these factors is discussed. Previously conducted research on landslide
susceptibility mapping using these factors or parameters through exploiting different methods or
models in the last two decades is reviewed, and modern trends in this field are presented in a
tabulated form. Two factors or parameters are proposed for inclusion in landslide inventory list as a
conditioning factor and a risk assessment parameter for future studies.

Keywords: digital elevation models (DEMs); landslide hazards; landslide susceptibility mapping;
landslide conditioning factors; landslide risk assessment

1. Introduction

Over the past three decades, developments in the field of computer vision, remote sensing and
algorithms, have made it possible to conduct digital terrain analysis accurately in several types of
analyses, assessments, and applications. Digital terrain analysis [1] is defined as, “collection, analysis,
evaluation and interpretation of geographic information on the natural and man-made features of the
terrain (elevation), combined with other relevant factors, to predict the effect of the terrain”. Digital
terrain analysis is usually performed to pursue the mathematical conceptualization of a terrain surface
in order to describe landscapes and to define relationships between the terrain surface and several
natural procedures and developments [2]. Terrain analysis plays an imperative role or provides the basis
for risk assessment of natural hazards such as, flooding, landslides, earthquakes, ground liquefaction,
tsunamis, typhoons, cloud bursting, and wild fires. In digital environments, terrain analysis is usually
executed on mathematically expressed surfaces, generally known as digital elevation models (DEMs).
In the following sub-sections, we will present a short review on DEMs, geo-information science and
landslide hazards.

1.1. Digital Elevation Models (DEMs)

DEMs are considered one of the basic data sources for three dimensional modeling of the Earth’s
topography [3] and also suitable to provide a snap shot of landscape along with the available features
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having the elevation values [4]. DEMs have been defined as digital representations generated with
elevation values at the equal grid intervals of the terrain [5–8]. The United States Geological Survey
(USGS) [7] has also defined these models as a digital cartographic representation method for the
elevation of the terrain at regularly spaced intervals x and y directions using z (elevation) values
referenced to a common vertical datum. Land surveyed topographic maps, photogrammetry, Global
Positioning System (GPS) observations, radar interferometry, Light Detection and Ranging (LiDAR),
Radio Detection and Ranging (RADAR), and Interferometric Synthetic Aperture Radar (InSAR) are
some of well-known resources for the extraction of digital elevation models [8–10]. A short preview of
DEMs datasets is presented in Table 1.

Table 1. Digital elevation model (DEM) datasets information about involved methods and developers.

DEMs/Datasets Methods/Products Developers Resolution References/Access
Information

Field Surveying
Datasets

GNSS
Observations

International collaborators,
National mapping and
research organizations,

Geo-spatial analysts, etc.

Depends upon adopted
method or applications

requirements
[8–11]

Field Levelling

Gravity Surveying

Remote Sensing
Datasets

Aerial and Satellite
Imagery

Laser Scanning
(LiDAR) Less than 1 m

RADAR

Topographic
Maps

Contour
Digitization

Depends on scale and
contour interval of maps [12–15]

Global Digital
Elevation Models

(GDEMs)

ASTER NASA, USA and METI,
Japan 30 m, 90 m [16]

SRTM USGS, NGA and German
and Italian Space Agencies 30 m, 90 m [17]

GTOPO30 USGS 30´́ [18]

Gravitational
Models

EGM 84/96/2008 NIMA, NASA and Ohio
State University

30′ × 30′ (84)
15′ × 15′ (96)

2.5′ × 2.5′ (2008)
[19,20]

WGM12 BGI, CGMW, IUGG,
UNESCO, IAG, IUGS 02′ × 02′ [21]

GNSS: Global Navigation Satellite System, ASTER: Advanced Spaceborne Thermal Emission and Reflection
Radiometer, SRTM: Shuttle Radar Topography Mission, GTOPO30: Global Digital Elevation Model with 30′′

resolution, NASA: National Aeronautics and Space Administration, METI: Ministry of Economy, Trade and Industry,
NGA: National Geospatial-Intelligence Agency, NIMA: National Imagery and Mapping Agency, BGI: Bureau
Gravimetric International, CGMW: Commission for Geological Map of the World, IUGG: International Union
of Geodesy and Geophysics, UNESCO: United Nations Educational, Scientific and Cultural Organization, IAG:
International Association of Geodesy, IUGS: International Union of Geological Sciences, EGM: Earth Gravity Model,
WGM: World Gravity Model.

Open source DEMs have replaced higher-resolution elevation models in a few applications,
however, they are not feasible in applications that demand high accuracy. The accuracy of a DEM
is always dependent on the quality of the field survey data collection methods [22], and these
include contour insertion/plotting, scanning quality, digitization accuracy, map scale, and interpolation
techniques. Parameters or characteristics claimed by researchers in the past to evaluate the accuracy of a
DEM, include slope, aspect, curvature, RMSE, normal vector deflection, vertical and positional accuracy,
and spatial resolution. Systematic errors appear during the data collection process, which ultimately
affects the quality of a DEM; these errors have an effect on reliability of an application/assessment
based on DEMs [9,23]. DEM-based applications/assessments are highly concerned with the accuracy
of model or the method by which these models are generated. However, the most accurate DEMs
are also the costliest. To achieve sub-meter accuracy of elevation models, LiDAR, aerial photography
and ground survey techniques are most suitable methods but at high unit cost [24]. To improve the
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accuracy of low-resolution DEMs (usually open source datasets), they are merged with DEMs at higher
accuracy. However, the fusion of DEMs for the same region, acquired with different procedures, time
windows, densities, scale, resolutions and accuracies is still not an easy assignment for achieving the
desired results [25]. A short synopsis about the extraction of DEMs using different data sources are
presented in Table 2.

Table 2. Examples of few DEMs data sources, exploited methods and achieved accuracies.

References Region Area
(Km2) DEM Data Sources Exploited Methods

Vertical Accuracy in
Root Mean Square

Error (RMSE)

Weng, (2002) [26] Georgia, USA 13

Topographic contour
maps SURFER Interpolation

package 4.4–9.8 mScale 1:24,000,
contour interval 20 ft

Chang et al., (2004)
[27] Australia 35

ALS DEM
Comparison of DEMs with

RTK GPS data

0.09–0.3 m
Photogrammetric

DEM 1.35–2.4 m

InSAR DEM 4.26–19.4 m

Webster et al.,
(2006) [28]

Nova Scotia,
Canada

360
Aerial Laser

scanning (LiDAR), Surface construction using
TIN method

0.15–0.25 m
Point spacing 3 m

Zhang and Fraser,
(2008) [29]

Hobart,
Australia

120
IKONOS Image Matching using

bi-cubic interpolation
approach

2–6 mGeo Stereo Images

Soycan and Soycan,
(2009) [14]

Istanbul
metropolitan
city, Turkey

0.8

Topographic paper
map sheets TPS Interpolation technique 0.02–0.40 mScale 1:1000,

contour interval 1 m

Capaldo et al.,
(2012) [30]

Trento, Italy 50
GeoEye-1 and RPF and RPC models for

Optical & SAR Imagery 2.3–7.5 mTerraSAR-X

Mohd et al., (2014)
[31]

Ampang &
Hulu Langat,

Malaysia

85
IfSAR, Digitization, Correlation of

height points, Profiling, 1.5–3.0 m
Topo map DEM Visual comparison

Wu et al., (2015)
[32]

Hong Kong 900
ZY-3, Pleiades-I, Geometric Integration model

for HRSI and LiDAR
3.3 m and 2.6 mLiDAR data

Yu et al., (2016) [33] Guangyuan
city, China 26,000 Google Earth Images Terrain data extraction 55–80 m

Leitão and
de Sousa, (2018)

[34]

Switzerland 1
UAV imagery DEM, Mergence of DEMs using

MBlend method
0.4–0.6 mLiDAR DEM with 0.5

m spacing

Akturk and
Altunel, (2018) [35]

Kastamonu,
Turkey 0.02

UAV imagery, 3D point cloud generation
using Pix4D software 0.5 mGPS point data

This table shows that accuracy increases with the decrease in spatial extent of study area and LiDAR based DEMs
achieved better vertical accuracy amongst all. It also gives an overview of the spatial extent of extracted DEMs
using different methods and vertical accuracy achieved in different parts of the world.

1.2. Geo-Spatial Information Science and Disasters

Space-based information is an effective and reliable source for disaster management, risk
reduction, hazard observation, emergency response actions, evacuation, relief actions, and rehabilitation
monitoring. However, for developing countries with limited resources, access to these types of datasets
is limited. To cater the needs of disaster management authorities across the globe, the United Nations
General Assembly has passed a resolution (61/110 of 14 December 2006) with the establishment of
the United Nations Platform for Space-based Information for Disaster Management and Emergency
Response [36], as a program of the United Nations Office for Outer Space Affairs [37]. This platform
facilitated to conduct a study report of the Value of Geo-information for Disaster Risk Management
(VALID) [38], which provides assessment data along with scientific background information for
geo-spatial products and services. This study traces the importance given by user community to
geospatial information applications not only in emergency response but also for disaster-risk monitoring
in terms of lowering public losses and refining risk reduction plans. In this report, they also discussed
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scientific and technical background of landslide hazard assessment and mapping based on DEMs
using Geographic Information System (GIS). The mission statement of United Nations platform reads:

“Ensure that all countries and international and regional organizations have access to and develop the
capacity to use all types of space-based information to support the full disaster-management cycle.”

With this mission statement and aid, developing countries can respond to catastrophic situations
and disasters with efficient mitigation measures exploiting maximum available resources. Geo-spatial
information enables city planners or management authorities to assess potential risks and devise
appropriate policies to guide future urban growth [39,40]. High-resolution (both spatial and temporal)
Earth observation satellites and innovations/developments in remote-sensing techniques/equipment,
have enhanced the quality of landslide vulnerability assessments significantly [41,42], but timely
DEM products at higher scale and accuracy are needed for these applications [43]. DEMs are not
only applied in three-dimensional modeling of the Earth’s topography but also in the analysis of
geospatial phenomena [3,44]. DEMs are widely used as geospatial information sources for various
remote-sensing applications, including precise ortho-rectification of high resolution satellite images,
urban development studies, archeology, topography, tsunami assessments, glacier observations,
geomorphology, plant cover research, 3D spatial analyses, multi-criteria decision support systems,
hydrographic modeling, and deformation monitoring [45–47].

1.3. Landslide Hazards

The International Federation of Red Cross [48] has defined natural disasters as naturally occurring
physical phenomena caused either by rapid or slow onset events, which can be geophysical (earthquakes,
landslides, tsunamis and volcanic activity), hydrological (avalanches and floods), climatological
(extreme-temperatures, drought and wildfires), meteorological (cyclones and storms/wave surges) or
biological (disease epidemics and insect/animal plagues). In this paper, we consider only geophysical
natural disasters (landslides) for discussion.

A landslide is defined as, “movement of a mass of rock or debris or earth down a slope” [49],
and is considered as a catastrophic event across the globe, resulting in enormous damage to property
and human life [50]. Considering their destructive nature, an effective mitigation plan for landslides
should exist to minimize the loss of infrastructure, economic assets, and human life [42]. Landslides are
often triggered by earthquakes or massive rainfalls in an area. However, these are not the only factors
responsible for the initialization of landslides. Other factors can also play a role in the occurrence of
such hazards. Interconnected factors such as lithology, topography, ground water conditions, ground
stability, terrain morphological parameters (slope angle, orientation, altitude and curvature) and land
cover are important for triggering landslides induced as result of earthquakes [51].

In the past, landslides occurred without warning and resulted in substantial damage to human
settlements and life e.g., Las Colinas flow-like landslide triggered by the 2001 earthquake in El Salvador
(Figure 1), caused a landslide of 800 m with a huge volume of 183, 500 m3 claiming the lives of
485 people [52]. Similarly, almost 60,000 individual landslides were triggered by the Wenchuan
earthquake in Sichuan Province, China on 12 May 2008 resulting in 20,000 deaths [53]. Due to the
devastating nature of landslide hazards, landslide hazard mapping or risk assessment of such hazards
has become a motivating area of research. In order to lessen the damages caused by landslides, land
developers must identify areas that are more susceptible to future landslide events in order to avoid
such disasters in future; however, rapid climate changes and unplanned urban growth has increased the
devastating risk for urban areas population and infrastructure day by day. The National Aeronautics
and Space Administration (NASA) reported 11,033 landslide events triggered by rainfall across the
globe (Figure 2) for the period 2007–2019 [54].



ISPRS Int. J. Geo-Inf. 2019, 8, 545 5 of 25

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 5 of 27 

 

devastating nature of landslide hazards, landslide hazard mapping or risk assessment of such 
hazards has become a motivating area of research. In order to lessen the damages caused by 
landslides, land developers must identify areas that are more susceptible to future landslide events 
in order to avoid such disasters in future; however, rapid climate changes and unplanned urban 
growth has increased the devastating risk for urban areas population and infrastructure day by day. 
The National Aeronautics and Space Administration (NASA) reported 11,033 landslide events 
triggered by rainfall across the globe (Figure 2) for the period 2007–2019 [54]. 

 
Figure 1. Landslide hazards events triggered by earthquake, occurred in El Salvador, 2001 [52]. 

 
Figure 2. Rainfall triggered landslide hazard events catalog issued by the National Aeronautics and 
Space Administration (NASA) across the globe for the period 2007–2019 [54]. 

Computational models developed by researchers for prediction and monitoring of natural 
phenomena e.g., erosions, landslide occurrence, hydrological modeling, etc. are generally dependent 
on the digital elevation models acquired from different sources [55]. DEMs along with their 
attributes and properties including topographic index, curvature, drainage network, slope, aspect, 
etc. make available the parameters for information extraction and assessment of any process 
involving terrain analysis [56]. Combination of various photogrammetric procedures, 
remote-sensing algorithms and GIS tools make possible to some extent the identification of areas 
vulnerable to future landslide events through the development of landslide inventories along with 
parameters. DEMs, either developed form a single source or obtained through fusion of multi-source 
data, are most suitable for creating the models required for such risk assessments. In the following 

Figure 1. Landslide hazards events triggered by earthquake, occurred in El Salvador, 2001 [52].

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 5 of 27 

 

devastating nature of landslide hazards, landslide hazard mapping or risk assessment of such 
hazards has become a motivating area of research. In order to lessen the damages caused by 
landslides, land developers must identify areas that are more susceptible to future landslide events 
in order to avoid such disasters in future; however, rapid climate changes and unplanned urban 
growth has increased the devastating risk for urban areas population and infrastructure day by day. 
The National Aeronautics and Space Administration (NASA) reported 11,033 landslide events 
triggered by rainfall across the globe (Figure 2) for the period 2007–2019 [54]. 

 
Figure 1. Landslide hazards events triggered by earthquake, occurred in El Salvador, 2001 [52]. 

 
Figure 2. Rainfall triggered landslide hazard events catalog issued by the National Aeronautics and 
Space Administration (NASA) across the globe for the period 2007–2019 [54]. 

Computational models developed by researchers for prediction and monitoring of natural 
phenomena e.g., erosions, landslide occurrence, hydrological modeling, etc. are generally dependent 
on the digital elevation models acquired from different sources [55]. DEMs along with their 
attributes and properties including topographic index, curvature, drainage network, slope, aspect, 
etc. make available the parameters for information extraction and assessment of any process 
involving terrain analysis [56]. Combination of various photogrammetric procedures, 
remote-sensing algorithms and GIS tools make possible to some extent the identification of areas 
vulnerable to future landslide events through the development of landslide inventories along with 
parameters. DEMs, either developed form a single source or obtained through fusion of multi-source 
data, are most suitable for creating the models required for such risk assessments. In the following 

Figure 2. Rainfall triggered landslide hazard events catalog issued by the National Aeronautics and
Space Administration (NASA) across the globe for the period 2007–2019 [54].

Computational models developed by researchers for prediction and monitoring of natural
phenomena e.g., erosions, landslide occurrence, hydrological modeling, etc. are generally dependent
on the digital elevation models acquired from different sources [55]. DEMs along with their attributes
and properties including topographic index, curvature, drainage network, slope, aspect, etc. make
available the parameters for information extraction and assessment of any process involving terrain
analysis [56]. Combination of various photogrammetric procedures, remote-sensing algorithms and
GIS tools make possible to some extent the identification of areas vulnerable to future landslide events
through the development of landslide inventories along with parameters. DEMs, either developed
form a single source or obtained through fusion of multi-source data, are most suitable for creating the
models required for such risk assessments. In the following sections of this paper, the relationship
between parameters derived from DEMs and their impact on risk assessment for landslide hazard will
be discussed.
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2. DEMs Parameters Exploited for Landslide Hazards Risk Assessment

Risk assessment for geophysical hazards like landslides, depends on probability estimation of
frequency, magnitude of future events, and their adverse consequences [57]. Urban settlements in flat
areas are generally not affected by landslide hazards but settlements in hilly areas or near to hilly areas
are often affected by these hazards. Risk is defined as a function of both hazard and vulnerability [50],
and it can be calculated as:

R = P f .v.np (1)

where P f represents the regional probability of a slope failure, ranked from 0 (not possible) and 1
(certain); v represents the physical and socioeconomic fragilities of the affected communities in terms
of degree of loss, ranked from 0 (no loss) to 1 (complete loss); and np represents the number of people
exposed to potential landslides.

Landslide risk is expressed as a probability that an area will undergo substantial levels of damage
from a landslide event [50]. To assess the risk of landslide hazard in an area, the topography is
visualized in a digital environment as DEMs and their extraction through several existed procedures
is important. Being an important source of information for many other applications, DEMs have
also found applications in identifications of topographic settings susceptible to land sliding [58].
Further derivations from DEMs are usually employed for the assessment of landslide hazard risk.
Employment of these derivations are further utilized in statistical analysis at regional scales (slope
gradient, slope direction, slope length and curvature), in landslide run out modeling (flow path
and rock fall movement), in empirical analysis at small scales (internal relief, drainage density and
hill-shading images). Basic mapping units of these derived maps are exploited for analysis within many
statistical approaches. These mapping units are either grid cells, slope aspects or exceptional units
which are made by other landslide inventory elements e.g., land cover, slope gradient, curvature and
lithology [59]. In the modern digital environment, DEMs are considered as an important source of data
for provision of critical indicators, which have imperative and basic role during the risk assessment
of landslide hazards [60]. A short introduction of few of these indicators, is presented here in the
following sub-sections.

2.1. Slope (Angles, Gradient and Aspect)

Digital elevation models are exploited efficiently for prediction of regional distribution of slope
angles in order to assess slope instability levels for the region [61]. Elevation being the variable in
elevation models, therefore slope is considered as first derivative of the elevation, which is calculated
to quantify variation in elevation over a distance. Slope is an imperative indicator of a DEM for certain
applications e.g., water flow management, landslide feasibility, etc. Geometrically, slope is a property
attached with the line and is defined as, “flexible tangent of the angle made by a straight line with the
x-axis” [62]. Slope of a line can be positive, negative, nil, etc. (Figure 3). [63] defined slope based on
their categorized representations and are described hereunder:

Slope = Rise/Run (Geometric Ratio) (2)

= (y2 − y1)/(x2 − x1) (Algebraic Ratio)

= mx + b (Parametric Ratio)

This parameter was used in Ref. [64,65] to measure image intensity and reflectance for a given
surface orientation. In terms of surface modeled by a DEM, slope is defined as tangent plane to that
surface at a point [66]. Slope was classified in Ref. [67] into two components i.e., gradient and aspect,
whereas, gradient is defined as maximum rate of change in altitude and aspect is the compass direction
of this maximum rate of change. The author applied and compared six algorithms for calculating
gradient and aspect for a DEM generated for a medium topography with regular 30 m grid spacing.
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One of the algorithms made use of second-order finite difference method for a 2 × 2 moving window.
After initial steps, the gradient is calculated with the help of following formula:

tan G =

√
(δz/δx)2 + (δz/δy)2 (3)

where G represents slope gradient at point (i, j). Aspect, which is the direction of maximum slope is
calculated as;

tan A = (δz/δx)/(δz/δy) (4)

where, [
δZ
δx

]
(i, j)

=

[(
Zi+1, j+1 + 2Zi+1, j + Zi+1, j−1

)
−

(
Zi−1, j+1 + 2Zi−1, j + Zi−1, j−1

)]
8∆x

,

[
δZ
δy

]
(i, j)

=

[(
Zi+1, j+1 + 2Zi, j+1 + Zi−1, j+1

)
−

(
Zi+1, j−1 + 2Zi, j−1 + Zi−1, j−1

)]
8∆y

The topographic parameters obtained from DEMs are slope and aspect (direction of slope),
and these parameters can be further used to calculate upslope area and topographic index [68]. It was
proclaimed by Ref. [50] that slope stability level is highly influenced by not only intrinsic factors (soil
composition, moisture level, etc.) but also extrinsic factors (rainfall intensity, seismic activity, etc.).
Another factor related with slope angles is their distribution in the area. According to [69], slope angles
are important indicator for slope stability and regional landslide hazards are critically dependent upon
slope angles distribution throughout the region. In a digital environment, DEMs are stored as regular
or irregular gridded cells, and the adjacency of these cells forms a surface for provided elevation values.
Slope angle for each cell is estimated using elevation values in relation to its neighboring cells. Values
of slope angles derived from DEM are dependent upon the resolution of DEM [61]. Slope angles,
gradient and aspect values obtained from a DEM have placed these data in a focal position in landslide
hazard risk assessment.
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2.2. Curvature

The curvature parameter is computed from the existing slopes between two elevational surface
points. It was initially proposed by [70], for quantitative analysis of land surface topography. Curvature
is a second derivative of elevation and measure of change of slope between two points over a distance
(Figure 4). Curvature is used to measure deviation from a straight line [62]. Let A be the arc length
between two points P1 and P2 and angle between both slopes (tangents) is α, then the curvature
between two points can be calculated as;

κ = lim
A→0

(α/A) = dα/dA (5)
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If A becomes so small, physically meaning that both points are almost at the same location (in this
case height), the resultant deviation becomes also negligible and curvature for those points becomes
zero. The curvature between two points located on a flat surface always has a zero value, since the slope
between these points is parallel. Like slope, curvature also has positive (concave) and negative (convex)
values, depending upon the terrain. Curvature has been used extensively by several researchers
e.g., [67–72], etc. in previous studies conducted for the prediction of zones prone to future land slide
hazards events. For example, [72] used curvature along with other parameters for the evaluation of
frequency ratio and logistic regression model in order to create GIS-based landslide-susceptible maps.
Three types of curvature functions are defined in the GIS environment [73]. They highlight different
aspects of the slope and include profile, plan, and standard curvature. Profile curvature and plan
curvature are parallel and perpendicular to the direction of maximum slope, respectively indicating
the direction of maximum slope. Profile curvature measures the flow acceleration/deceleration, while
plan curvature is related with convergence/divergence of flow across the surface. Standard curvature
combines both the profile and plan curvatures, which provides better understanding of flow across
the surface.
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2.3. Topographic Position Index (TPI)

The topographic position index (TPI) is computed as difference between the cell elevation and the
mean elevation of neighboring cells [74]. However, to categorize existing topographic landforms i.e.,
valley, slope, and ridge, specific values of thresholds are needed to be defined. The concept of TPI
was presented by [75] for landforms analysis with the notion that landform classifications are derived
from the ranges of TPI values. TPI along with lithology is an effective factor for debris flow and also
describes the expression of the geomorphological settings (slope, ridge, valley, etc.) in a quantitative
way [60]. It is also considered as a geomorphological landslide conditioning parameter, as landslide
events usually take place on the ridges [76]. Like other indices, TPI has also been exploited extensively
in many functions, models, and methods developed by researchers e.g., [72–77], etc. for landslide
susceptibility. A detailed method was developed by [78] for the calculation of TPI in their study of
land facet corridor design and has been added in ArcGIS software as an extension [79]. Recently, [80]
published their research about the effective identification of terrain positions from gridded DEM, which
includes local and regional terrain attributes based classification methods. TPI was used in their study
to identify terrain positions, ridge, shoulder, lower flat, valley, hillock, and side slope, etc.; these values
were found to be consistent with the actual local and regional topography of the area.

2.4. Topographic Wetness Index (TWI)

The topographic wetness index (TWI) is dependent on slope largely and is generally exploited in
studies of hydrological processes. It is a commonly used tool to forecast the amount of soil moisture
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at the catchment scale and allows the analysis of topographic control on hydrologic response of a
watershed [78–80]. Topography is a factor for landslide hazards, and therefore indices related with
topography have always been employed for data analysis performed for various applications [55].
Ref. [81] derived TWIs using dynamic hydrological model to predict spatial patterns of saturated areas
and claimed the improvement in prediction of spatial distribution of wetlands substantially better than
the TWIs derived by other means in catchments. Ref. [82] developed a modified TWI computation
procedure for depression-dominated areas exploiting DEM. Statistical analyses of TWI reveals that
an interpolated DEM led to wrong quantity and distribution of TWI for depression dominated
landscapes. TWI was initially proposed by [83], along with the topography based hydrological model
(TOP-MODEL) and can be calculated as:

TWI = ln(a/ tan β) (6)

where a is the local upslope area draining through a certain point per unit contour length and tan β
defines the local slope. Many researchers evaluated TWI in terrain analysis. Ref. [84] claimed that the
topographic wetness index is reliable not only to examine the pattern of potential soil moisture in the
field but also reliable for the detection of changes in soil texture caused by an erosion process. Ref. [85]
suggested modifications in the existing algorithms for TWIs, concluding that TWI ability was sensitive
with the algorithms used for upslope calculation contributing area and slope gradient in order to
foresee observed patterns. Similarly, [86] equated computation methods of TWI, and evaluated them
with measuring variables using correlation techniques. Ref. [87] computed TWI using multi-resolution
DEMs and proposed an approach by adapting a multiple flow routing algorithm to utilize maximum
downslope gradient as β. Ref. [88] also calculated TWIs using multi resolution DEMs with different
vertical accuracies at central NY, USA, for agricultural landscapes.

2.5. Topographic Roughness Index (TRI)

As appeared from the nomenclature, the topographic roughness index (TRI) is in contrast to the
TWI and is responsible for quantifying ruggedness of the terrain. TRI is considered as a morphometric
measure which describes heterogeneous condition of a land surface [89]. TRI extracted from DEM
facilitate in characterizing the terrain as smooth or rugged landforms and it portrays the local variance
of surface gradients or curvatures [90]. Computation of TRI was initially proposed by [91], to quantify
topographic heterogeneity through estimation of variability of elevation or slope in a local neighborhood.
Their model simply computed TRI values for each grid cell of DEM using a Data Only Cells “DOCELL”
command in ArcGIS, which calculates the sum change in elevation between a grid cell and its eight
neighboring grid cells. Later on, other researchers have modified their approach by using other
statistical measures for different analyses. Ref. [92] modified it through computation of root mean
square of elevation, relief and slope. Similarly, [93] proposed a method to compute roughness by
estimating the standard deviation of local slope of every cell according to its neighbors. In order to
compute roughness, [94] introduced a method by calculating standard deviation of difference between
topographic elevation and locally smoothed derivatives.

2.6. Sediment Transport Index (STI)

Another factor attached with DEM is called the sediment transport index (STI) or sometimes
termed as the sediment transport capacity index. This index is directly related to the delivery of
sediments from terrain into the channel during landslide events. The amount of sediment in a
catchment indicates the potential sediment supply to the debris at the catchment mouth [57]. This
potential varies according to the terrain, maximum slope angle distribution, rock formation, catchment
area size, quantity and span of event, length of the debris movement. Ref. [95] proposed an approach
to compute sediment transport capacity index through proposing an equation based on dimensional
analysis. In their approach, rainfall data is also taken into account as a realistic feature, therefore a
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new equation is termed as a function of rainfall impacted stream power and slope. The estimation
of sediment transport capacity index is necessary to develop soil erosion models [95]. It was first
introduced by [96] in their work on unit stream power. It is dependent on catchment area and slope
angle and can be computed as:

STI = (m + 1)∗ (a/22.13)m
∗ (sin β/0.0896)n (7)

where a is the local upslope area (catchment area), β is the slope angle, m is 0.6 and n is 1.3 [97].
It remained part of the assessment for susceptibility mapping for the last two decades and a short
summary is presented here for an overview. Qualitative examination of the applicability of sediment
transport capacity models was performed by [98], using main variables i.e., unit stream power, stream
power and shear stress. This analysis reveals that the unit stream power model gives better simulation
outcome on mild slopes, whereas stream power and shear stress models works fine with steep slopes.
Along with other conditioning factors, [99], used STI in their study of susceptibility mapping of
landslide hazards using bivariate (certainty factor and index of entropy) and multivariate (logistic
regression) models. Factors used in their study were computed through topographic map, drainage
map, road map and geological map. Similarly, [100] evaluated the results obtained through a statistical
index and index of entropy methods for landslide susceptibility mapping. They have exploited STI
along with twelve other landslide responsible factors in their analyses and their results have shown
that success rate of index of entropy method is slightly better than statistical index using the area under
the curve (AUC) method.

2.7. Stream Power Index (SPI)

The stream power index (SPI) is a conditioning factor related with DEM and used extensively
for landslide susceptibility models along with other factors. It is a measure of the erosive power of
flowing water. It was initially put forward by [101]. Later, [55] further examined this factor and also
proclaimed that both SPI and TWI, when used jointly are trustworthy indicators of temporary gullies
in agricultural watersheds. SPI can be computed as;

SPI = a ∗ tan β (8)

where a is the local upslope area (catchment area) and β is the slope angle. The SPI parameter is widely
used [67,69,78,102–107].

After the extraction of parameters/factors responsible for landslide event, already developed
models/algorithms have been used for final output (susceptibility mapping). However, due to dissimilar
dimensions of factors, simple summation is not possible and this is being done through statistical
measures. Initially, different models (probability analysis, frequency ratio (FR), etc.), are exploited to
establish a relationship between the landslide location and each landslide conditioning parameter.
Correlation scores have been computed from the analysis of relationship between the landslides and
related factors. On the basis of correlation scores, each factor’s type or range has been finalized
and rating of that factor has been made. For example, in the FR method, the rating of each factor is
computed through an analysis of the relationship between the landslide and that factor’s type. This
value is ratio of number of cells where events did not take place to number of cells where landslide
events did take place. The landslide susceptibility index (LSI) can be quantified by summation of each
factor’s rating/score through equation [104,105]:

LSI =
∑

LCFi (9)

where, LSI is landslide susceptibility index and LCFi is rating/score of each landslide conditioning
factor/parameter. Parameters or indicators derived from or used with DEMs are discussed, which
have been developed, refined, exploited and evaluated over the last two decades for landslide hazards
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susceptibility mapping. Interdisciplinary advancement and development of new approaches/models
bring more factors in this domain. Other parameters used by the researchers include geological,
and environmental parameters, e.g., distance to roads, distance to rivers, drainage density, distance to
faults, land use, land cover, soil, cumulative rainfall, normalized difference vegetation index (NDVI),
and lithology of an area.

3. Impact of Scale, Resolution and Accuracy of DEM on Parameters

Landslide susceptibility and landslide risk assessment studies depend on the resolution, scale
and accuracy of a DEM, since these models serve as basic source to extract the parameters used for
these studies. Landslide conditioning parameters are interconnected and dependent on each other
i.e., curvature is dependent on the slope. Derivation of these parameters and their interpretation
depends on the DEM resolution and scale. The DEM resolution refers to horizontal and vertical
spatial information recorded in the database [108]. A large-scale DEM at fine resolution, can depict
detailed topographic features of the terrain, therefore indicators extracted from finer DEMs are more
reliable. Similarly, regions identified by high-resolution DEMs are considered more trustworthy due
to the reliability of the parameters. The spatial resolution of an elevation model has a direct effect
on the accuracy and quality of landslide susceptibility maps [109]. Ref. [110] documented resolution
dependencies in terrain analysis using DEMs and their variation across landscape locations. Terrain
attributes slope, plane curvature, profile curvature, north-south slope orientation, east-west slope
orientation and topographic index, were evaluated as a function of DEM resolution. In terms of
location and elevation values, sampled points matched exactly in the compared resolutions, however a
regression analysis showed sensitive responses for each multi-resolution attribute. Further expanding
their work, relationship of topographic parameters and spatial resolution was determined [2] finding
that change in spatial resolution, affects not only point-specific terrain attributes but it also changed the
meanings of topographic attributes at each point (Figure 5). Therefore, the impact of DEM resolution
on terrain attributes could not be predicted through spatially aggregated statistical analysis, thus
a spatially explicit approach is required. Furthermore, resolution resampling yielded a substantial
difference in number and location of points, which weakened the accuracy of aggregated comparisons
between different resolutions.
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Figure 5. Scale effects of terrain analysis. Slope gradients (β1, β2 and β3) for the same point X are
defined in different ways due to the change of spatial resolution. The resultant slope gradients are
different not only in magnitude but also in topographic meaning (Deng et al., 2008).

Ref. [61] argued that slope angle for each cell is estimated using elevation values in relation to its
neighboring cells, therefore slope angle values derived from DEMs depend upon the DEM resolution.
Ref. [69] analyzed the critical scale related with landslide hazard, whereas critical scale is defined as a
scale at which slope failures occur; the minimum size that a landslide event takes place and results in
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visible damage. Slope-gradient maps for landslide hazard assessment are dependent on the resolution
of DEMs; a landslide is not disastrous if slope failure occurs in 1 m × 1 m cell size but not in surrounding
cells and considered catastrophic if it happens for a cell of 1000 m × 1000 m. Ref. [82] assessed DEM
resolution impact on developed TWI method for the depression dominated areas and concluded that
filled DEM led to misleading quantity and distribution of TWI for such landscapes. Ref. [88] used
mixed effects modeling approach, with the claim that finer DEM are suitable for parameter extraction
than coarser DEM. Resolution and scale not only affect the topographic parameters in these studies but
DEM source also influences the desired parameters.

Vertically accurate DEMs yields realistic results but an error in grid elevation can lead to wrong
model predictions or can affect the values of conditioning factors derived from a DEM. Quality of
hydrological features was compared by [111], using 25 m contour-based DEM and 25 m re-sampled
LiDAR-derived DEM. This comparison showed that LiDAR-based DEM depicted better presentation
of hydrological features even after resampling of model. Ref. [112] examined the mean slope variation
of a DEM using its resolution and LiDAR point density (2 m–10 m). Sensitivity analysis between
modeled terrain slope and LiDAR point density exposed that the deviation between the mean slope
and modeled mean slope decreases with thick point density and finer resolution. They concluded that
the mean slope of elevation behaves as a linear function in relation to the cell size and as a logarithmic
function with point-spacing. However, cell size influences the mean slope more than the point density.
Other modern technologies are also being used by the researchers along with LiDAR based DEMs for
landslide monitoring studies. For example, [113], used persistent scatterer interferometric synthetic
aperture radar (PSInSAR) to analyze the effectiveness of LiDAR data for landslide study. Resolution
and vertical accuracies exploited by the researchers with different data sources of DEMs for landslide
monitoring evaluation studies are presented in Table 3.

Table 3. Resolution and vertical accuracies of DEMs for landslide monitoring evaluation studies.

References Data Sources Data Format Resolution Vertical Accuracy

Pesci et al., (2004) [114]

Aerial Photogrammetry 1:5000 Regular grid 6–12 cm 20–30 cm

1:35,000 Regular grid 0.5–1.0 m >1.0 m

Terrestrial
Photogrammetry

1:500 Regular grid 7–15 mm ~3 cm

1:2000 Regular grid 2.5–5.0 cm >5 cm

Terrestrial Laser
Scanning Irregular grid ~0.5 cm <5 cm

Aerial Laser Scanning Irregular grid ~10 cm >10 cm

GPS Kinematic Irregular grid ~20 cm ~10 cm

Vaze et al., (2010) [111] LiDAR Irregular grid 1.0 m ~30 cm

Mclean, (2011) [69] SRTM Regular grid 90 m ~10 m

Dlugosz, (2012) [108] Aerial Photogrammetry 1:13,000 Irregular grid 1.0 m 1.5 m

Ciampalini et al.,
(2016) [113]

Contour line
interpolation Irregular grid 20.0 m -

LiDAR 4–8 pt/m2 Irregular grid 1.0 m and 2.0 m -

Mahalingam et al.,
(2016) [115] Re-sampled LiDAR 7 pt/m2 Irregular grid 10.0 m ~4 cm

Chang et al., (2016) [116] ASTER GDEM Regular grid 30.0 m -

Pawluszek and
Borkowski, (2016) [103] LiDAR 4–6 pt/m2 Regular grid 5.0 m ~0.20 m

DEM accuracy, resolution and scale influence landslide monitoring evaluation studies. Resolution
and vertical accuracies of previously used DEMs involved in landslide mapping studies are presented in
Table 3. LiDAR based DEMs are the best elevation models for these studies and a trend of involvement
of other datasets with LiDAR datasets is also underway [113]. Crucial information is extracted
from high resolution elevation models but often results in inaccurate interpretations of landslide
susceptibility maps across a larger scale [115]. Furthermore, higher spatial resolution does not always
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guarantee a higher rate of prediction accuracy [109]. Therefore, an optimum DEM resolution for
susceptibility studies depends upon the available data sources, methods, and terrain. Data acquisition
methods are not free from measurement or systematic errors, therefore subsequent products like DEM
interpolation models are also affected by inherited errors or may be a source for the propagation of
errors [9,23]. DEMs quality is dependent on field survey data collection techniques and the contour
insertion/plotting, scanning quality, digitization accuracy, map scale, and interpolation techniques [117].
This dependency affects the quality of DEM based parameters used in susceptibility studies. Therefore,
DEM sources selection and methods for extraction or attachment of parameters should be consistent
with the terrain, spatial extent, and requirements of the application.

4. Landslide Hazards Susceptible Mapping Based on DEM Parameters

Disaster management authorities want to optimize the probability of accurate zonation mapping
for landslide hazard events. Topography of an area prone to these hazards plays a significant role. In a
GIS environment, zonal mapping of landslide hazards depends on accuracy, resolution, and the scale
of the DEMs used for parameter extraction. Several algorithms have been developed using DEMs
and parameters obtained from or attached to the susceptibility mapping of landslide hazards and risk
assessment. Trends in this field for the last two decades are discussed in the upcoming paragraphs.

Ref. [118] described use and effectiveness of GIS in prediction and monitoring of landslide
hazards. [119] made use of fuzzy relations for the production of landslide susceptibility maps using
a landslide inventory database which is compiled by field surveys and aerial photographs analysis.
Ref. [120] used rough set theory to extract rules describing the bond between landslide-conditioning
factors and landslide events. In their study, landslide susceptibility is derived from decision rules in
rough set analyses and presented maps of areas with roads and without roads. Advancements in the
machine learning field attracted researchers, therefore, [121] compared logistic regression and neural
networks methods for a medium scale study to produce susceptible maps. Due to a higher compatibility
rate between field observations and the results obtained through analyses, neural networks results
seems more realistic for the study area. Similarly [122] used artificial neural networks (ANN) for
landslide susceptibility through computation of parameters on ASTER DEM. Ref. [72] evaluated the
performance of FR and logistic regression (LR) models with the claim that the LR model performed
better than the FR model in comparison to its accuracy for ratio of landslide validation. Ref. [123]
integrated frequency ratio (FR) and certainty factor (CF) techniques to validate spatial prediction
models by structural similarity and processing eight factors. In their approach, FR performs better
than CF in terms of validation. Ref. [124] used a certainty factor (CF) model and logistic regression
(LR) model for large-scale assessment of landslide hazards risks and vulnerability. In the last three
discussed research works, three models i.e., FR, LR and CF were integrated with different combinations
for landslide susceptibility.

To present an overview of the topographical parameters using statistical measures, the research
work of [125], is discussed here as a case study. Ref. [125] configured the alterations to seed cell
sampling strategy for landslide susceptibility assessments in order to generate landslide susceptible
maps. A DEM was generated through digitization of contours (25 m interval) existing on topographical
maps of scale 1:25,000. Sensitivity analyses were conducted on the topographical parameters derived
from the DEM. Thematic and tabular forms of these parameters/indicators are depicted in Figure 6
and Table 4, respectively. Neighboring regions of maximum altitude values share high values for
the slope, LS and SPI values, whereas TWI shows an inverse behavior. Plane and profile curvature
involves positive and negative values, indicating the concavity and convexity of the terrain. Mean
elevation and slope values of a landslide area and seed cells of 100 m are almost identical, which shows
that landslides in the study area occurred in grid cells with lower altitudes with lower slope angles.
The discussed values are made bold and underlined in Table 4.

Complexities of models or algorithms and number of parameters are enhanced to obtain more
reliable results about landslide hazards susceptibility mapping. Ref. [126] evaluated the performance
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of three approaches i.e., statistical index (SI), index of entropy (IoE) and weight of evidence (WoE) using
systematic comparison and validation by exploiting 13 parameters. Ref. [127] used a weight of evidence
(WoE) method exploiting 12 parameters and claimed that performance of WoE approach remains the
most accurate when training datasets and validating datasets for a study area. A comprehensive review
of statistically-based landslide susceptibility models was conducted by [128]. Recently, Ref. [129]
exploited 18 parameters i.e., elevation, slope aspect, slope angle, profile curvature, plan curvature,
STI, SPI, TWI, land use, NDVI, rainfall, lithology, distance to faults, fault density, distance to roads,
road density, distance to rivers, and river density. They employed population-based evolutionary
algorithms and a neuro-fuzzy approach to model landslide susceptibility. Parameters employed within
the last three decades for susceptibility using different DEMs data sources and exploited methods or
algorithms are summarized in Table 5. Qualitative measures are also presented for different models
presented here which indicates the quality of results obtained for landslide hazards studies.
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Plan Curvature −3.20 2.51 −0.02 0.31 0.10 −0.49
Profile Curvature −2.27 3.49 0.03 0.35 0.12 0.90

TWI 4.14 7.91 5.43 0.53 0.28 0.98
SPI 0.03 2.16 0.65 0.31 0.28 0.77
STI 0.92 8.40 1.67 0.87 0.76 1.50

Seed cell
(buffer distance

d = 100 m)

Elevation 0 312.82 114.59 57.62 3320.26 0.63
Slope 0 41.47 10.08 5.48 30.04 0.82

Plan Curvature −3.65 3.48 0.032 0.36 0.13 −0.60
Profile Curvature −3.51 3.17 −0.06 0.40 0.16 −0.01

TWI 4.01 9.47 5.33 0.51 0.26 0.77
SPI 0 2.11 0.47 0.33 0.11 1.09
STI 0 7.92 1.44 0.95 0.90 1.49

TWI: Topographic Wetness Index, SPI: Stream Power Index, STI: Sediment Transport Index.
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Table 5. Selected references showing exploited parameters, DEMs data sources, methods and obtained results for landslide susceptibility mapping in the past.

References
Parameters DEMs Method

Results
Exploited Data Source Used

Carrara et al., (1991)
[130]

Altitude, Slope aspect, Geological units
Topographic maps of scale
1:25,000 with 20 m contour

interval

Discriminant Landside hazard risk is evaluated in each slope unit and is declared a cost-effective
approach.

analyses Classification Results:
83.4% correctly classified

16.6% misclassified.

Gao (1993) [58]
Slope orientation, Topographic maps of scale

1:24,000 with 24 m contour
interval

Analyses of landslide and
topographic data,
chi-squares test

Topographic variable are statistically significant to spatial distribution of the sites
disturbed by landslide paths.Slope gradient,

Slope form/curvature

Pesci et al., (2004)
[114]

Landslide morphology, Vegetation, Atmospheric
environment and shadows

Photogrammetry, GPS and
Laser scanning

Residual comparison
analyses

Discussed three techniques are efficient to define landslide topography and
morphological changes.

Nichol and Wong,
(2005) [131]

Slope, Land cover, Satellite Imagery,
Topographic maps with 10

m contour interval

Change detection and Image
fusion

Detailed interpretation of landslides and attached features by combining two levels of
survey for regional scale landslide monitoring. 70% of landslides were detected in the

area with 20 m SPOT images.
Geology

Yilmaz, (2009) [104]
Elevation, Slope angle, Slope aspect, TWI, SPI,

Geology, Faults, Drainage System
Topographic Maps of Scale

1:25,000
Frequency ratio, Logistic

regression, ANN

Susceptibility map obtained from ANN model is more accurate than other models.
Validation Results:

FR ~82.6%, LR ~84.2%,
ANN ~85.2%

Miner et al., (2010)
[132]

Slope aspect and degree of slope, Plan and profile
curvature, Flow accumulation, Terrain

hill-shading, TWI, TRI

LiDAR based Landslide recognition
process using DEM

LiDAR-derived DEM has proven itself a cost effective approach against traditional
Aerial Photo Interpolation (API) and 10 times large area can be assessed.DEM

Pourghasemi et al.,
(2012) [133]

Slope degree, Slope aspect, Altitude, Lithology,
Distance to faults, Distance to rivers, Distance to

roads, TWI, SPI, Slope Length, Land use, Plan
Curvature

Topographic Maps of Scale
1:25,000 with 10 m contour

interval

Index of Entropy and
Conditional probability

models in GIS

Index of Entropy (IoE) model performed slightly better than conditional probability.
Validation Results:
IOE model ~86.08%,
CP model ~82.75%,

Oh et al., (2012) [107] Slope, Aspect, Curvature, Lineaments, Land cover
and NDVI

Aster
Frequency Ratio and

Logistic Regression Model

Landslide susceptibility map produced by ASTER DEM is reasonably good with
observed accuracy of 25.77 m RMSE. Therefore, ASTER imagery could be exploited

for susceptibility.
imagery Validation Results:

FR model ~84.78%,
LR model ~84.20%,

Slope, Curvature,
LiDAR derived DEM Review for landslide, rock

fall and debris flow
High resolution DEMs are increasingly being used in landslide community and LiDAR

sensors will become a standard tool for landslide analysis in the coming years.
However, it will need development of more sophisticated tools for data processing.

Jaboyedoff et al.,
(2012) [134] TRI, STI

Bagherzadeh and
Mansouri, (2013)

[135]

Geology formations, slope angles, slope aspect,
elevation, land use, land cover, mode of failure,

rainfall data, drainage network

Digitization survey data,
Topographic maps,

Satellite images

Factor maps production,
Analytic hierarchy process

(AHP)

Landslides events are strongly correlated with the slope angle of the basin. Active
landslide zones have a high correlation (R2 = 0.769) to slope classes over 30◦ and 53.85%

of the basin is prone to landslides.
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Table 5. Cont.

References
Parameters DEMs Method

Results
Exploited Data Source Used

Martha et al., (2013)
[136]

Slope angle, Slope aspect, Land use, Geology,
Lithology, Soil depth, Relative relief

Cartosat-I imagery data
with 10 m resolution

Semi-automated methods
from post-event satellite

images, Weights-of-evidence
method

Semi-automatically prepared inventories can be used for landslide hazard and risk
assessment in a data-poor environment.

Pawluszek and
Borkowski, (2016)

[103]

Elevation, Slope, Morphological gradient, Aspect,
Area Solar Radiation, TRI, TWI, TPI, SPI, Shaded

relief, Lithology, Distance to road, Drainage
networks, Land use

LiDAR derived DEM

Principal component
analyses, Weights

assignment through
Analytical Hierarchy

Process (AHP)

Topographic factors play a significant role in landslide susceptibility, however AHP
enhanced the results substantially, while adding lithology and environmental factors.

B Pradhan and
Sameen, (2017) [109]

Slope, Aspect, Altitude, TWI, TRI, NDVI,
Vegetation density, Land use, Distance to road,

Distance to river, Distance to fault, Plan curvature,
Profile Curvature

LiDAR based DEMs, ROC method, Kappa
coefficient, Landslide

density graphs,
Multicollinearity analysis,

Sensitivity analysis

No significant differences have been observed among the prediction and success rates
for spatial resolution less than 10 m. LiDAR DEM contains more information even if it
has been resampled from 0.5 m DEM. Optimal spatial resolution is 2 m based on the

accuracy metrics.
ASTER based DEMs Overall Accuracy:

ASTER DEM = 82.29%
LiDAR DEM = 94.02%

Oh et al., (2018) [77]

Slope, Plan curvature, Aspect, TPI, TRI, SPI, TWI,
thickness, slope length, Land use, Tree diameter,
Tree age, Forest density, Convexity, Mid-Slope

position

Topographic maps of scale
1:5000 with 5 m contour

interval

Evidential Belief function
(EBF),

Training accuracy and prediction accuracy of the LR model was higher than the EBF
and SVM model.

Logistic Regression (LR),
Support Vector Machine

(SVM) models
Validation Results:

EBF model ~92.25%,
LR model ~94.59%,

SVM model ~81.78%

A. Zhu et al., (2018)
[137]

Elevation, Slope, Aspect, Plan Curvature, Profile
Curvature, Distance to rivers, Distance to road,

Lithology, Distance to faults, Land Cover

Topographic maps of scale
1:50,000

Presence-only method,
Presence-absence method,
Support Vector Machine
(SVM), Kernel Density

Estimation (KDE), Artificial
Neural Networks (ANN)

Two-class SVM method has the best performance in susceptibility study among the
applied methods. Landslide absence data method controlled the over-prediction of the

models.
Validation Results:

1class-SVM ~70.50%,
KDE ~ 72.00%, ANN ~92.90%

2class-SVM ~95.10%

Dou et al., (2019)
[138]

Slope angle, Slope aspect, Curvature, Distance to
drainage network, Drainage density

Satellite imagery based
DEM with spatial
resolution of 10 m

Advanced Random Forest
(RF) and Decision Tree (DT)

algorithms

Methods were tested for rainfall-induced landslide susceptibility and overall efficiency
of ARF is found better the DT results.

Validation Results:
ARF model ~95.60%,
DT model ~92.80%

Juliev et al., (2019)
[105]

Slope, Aspect, Elevation, Distance to Lineaments,
Geology, Soil, Land use, Land cover, Distance to

faults, Distance to roads, Distance to streams

ASTER30 Statistical Index (SI),
Frequency Ratio (FR) and

Certainty Factor (CF) model

Landslide susceptibility maps were categorized into five classes i.e., very low, low,
moderate, high and very high. Training and prediction accuracies for SI remained

higher than the other models.
DEM Validation Results:

SI ~80%, FR ~70%, CF ~71%
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Landslide conditioning parameters will keep their prominence in susceptibility studies and their
quality and complexity affects the reliability of results achieved. With the help of the review presented
by [128] and literature shown in Table 5, an increasing trend can be observed towards involvement
of machine learning methods in development of landslide-susceptibility models. However, complex
models with more conditioning factors or parameters are interesting research area for the researchers to
optimize the reliability of susceptibility mapping. Landslide susceptibility based on DEMs is extremely
helpful for the authorities responsible for future development especially in terms of human settlement
expansion management. Therefore, it seems beneficial to involve geo-spatial researchers or consider
geo-spatial information research for disaster risk assessment and management.

5. Concluding Remarks and Future Perspectives

DEM development from different sources with required accuracy is an intricate process and
needs lots of care. Landslide susceptibility based on DEMs, starts from the DEM development,
parameters’ derivation from them and attachment of additional landslide-conditioning factors, which
are all not easy and simple tasks. However, DEMs have facilitated the researchers for risk assessment
of landslide hazards by estimating the probability of landslide event using derived topographic
attributes. Landslide hazards susceptibility mapping depends on the quality of utilized DEMs, targeted
parameters, and adopted models, therefore it is a sensitive process and its implications towards human
settlements and life makes it even more sensitive. Slope angle is declared as the most influential factor
for landslide susceptibility among all other factors. Parameters associated with DEMs are mostly
interconnected and dependent on their resolution e.g., slope angles are highly dependent upon DEM
resolution. The ideal resolution of a DEM used for landslide risk assessment studies is considered to be
resolution <10 m. Parameters involved in susceptibility mapping together with different DEMs data
sources using different models or algorithms are discussed. A trend towards increasing the number of
parameters or landslide conditioning factors along with the mixing of various models or methods will
enhance the truthfulness of landslide susceptibility further. Parameters or conditioning factors derived
from DEMs are responsible for zonal mapping of areas vulnerable for landslide hazard events in the
future. Inventory lists include landslide-conditioning parameters derived from or used in addition
to DEMs to identify the regions prone to such events. Geological and environmental parameters are
additional and attached with each cell of DEMs to make landslide susceptibility mapping more precise.
This study proposed two parameters to be used with DEMs for refinement of landslide susceptibility.
Based on literature reviewed in this paper, future perspectives in this field are described here;

• Liquefaction is a phenomenon, usually triggered by the earthquakes and is considered as a disaster
alone. Soil liquefaction is accompanied by the landslide events in hilly areas after an earthquake
and depends on water quantity within the soil particles and soil type of that area [139]. Landslides
occur in hilly areas, therefore it is a complicated task to attach ground water conditions to each
cell in a DEM. Moreover, to achieve the true shape of hilly region, high resolution DEM is also
necessary, which demands an abundance of field work to collect data for postulation of ground
water conditions. Ground liquefaction is itself a disaster and related to groundwater conditions;
therefore, we purpose that ground water condition can be an interesting conditioning factor or
landslide inventory-parameter for susceptibility. It will be helpful if ground water or the landfill
conditions are indexed with each cell of DEM for landslide risk assessments in the future.

• Deforestation or cutting the existing plantations (change in land cover) might be a factor for
impact assessment of landslide events to quantify spatial extent of landslide event. Therefore,
deforestation information of an area that is likely to be hit by a landslide event should be used with
the DEMs to ascertain the spatial extent of landslide debris movement in future. Deforestation
rates in this particular region can be quantified and used with a DEM to assess the spatial-extent
of landslide event before it occurs.
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Landslide events depend upon the topography of area and, to assess their risk in a digital environment,
DEMs are basic and useful source of information related with the terrain topography. This information
is further exploited in susceptibility studies and for risk assessment of such hazards. Areas identified
in result of statistical analysis of the topographic parameters obtained from DEMs or attached with
them using several models or methods, should be eluded for future development or if necessary
than special measurements should be adopted to avoid effects (especially human life loss) of such
disasters in future. Topographical, environmental, geological and lithological parameters have been
used extensively previously by developing models and algorithms for susceptibility studies. However,
due to rapid climate change of the Earth and other related disasters, the probability of landslide hazards
and other hazards has increased; therefore, it is emphasized that more and more such parameters
or landslide conditioning factors should be studied in future for their evaluation and refinement
of susceptibility mapping. This discussion will conclude with the argument that in the last two
decades, major advancements can be seen in the field of landslide susceptibility, risk assessment and
management. Parameters of ground water conditions and deforestation rate can be linked to DEMs
(Figure 7) as landslide-conditioning factors and risk-assessment factors, respectively.
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