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Abstract: The Global Human Settlement Layer (GHSL) produces new global spatial information,
evidence-based analytics describing the human presence on the planet that is based mainly on
two quantitative factors: (i) the spatial distribution (density) of built-up structures and (ii) the
spatial distribution (density) of resident people. Both of the factors are observed in the long-term
temporal domain and per unit area, in order to support the analysis of the trends and indicators for
monitoring the implementation of the 2030 Development Agenda and the related thematic agreements.
The GHSL uses various input data, including global, multi-temporal archives of high-resolution
satellite imagery, census data, and volunteered geographic information. In this paper, we present
a global estimate for the Land Use Efficiency (LUE) indicator—SDG 11.3.1, for circa 10,000 urban
centers, calculating the ratio of land consumption rate to population growth rate between 1990 and
2015. In addition, we analyze the characteristics of the GHSL information to demonstrate how the
original frameworks of data (gridded GHSL data) and tools (GHSL tools suite), developed from
Earth Observation and integrated with census information, could support Sustainable Development
Goals monitoring. In particular, we demonstrate the potential of gridded, open and free, local yet
globally consistent, multi-temporal data in filling the data gap for Sustainable Development Goal
11. The results of our research demonstrate that there is potential to raise SDG 11.3.1 from a Tier II
classification (manifesting unavailability of data) to a Tier I, as GHSL provides a global baseline for
the essential variables called by the SDG 11.3.1 metadata.

Keywords: SDG11; Land Use Efficiency; Open Data; GHSL; Landsat; urbanization; urban expansion;
population mapping

1. Introduction

With the unanimous adoption of the United Nations (UN) General Assembly resolution 70/1
“Transforming our World: the 2030 Agenda for Sustainable Development”, the Member States agreed
upon a framework of 17 Sustainable Development Goals (SDG) to guide societal development.
The action plan, building on the experience of the Millennium Development Goals, intertwines
aspirational goals with an ambitious monitoring framework that is composed of 169 parameters
in order to monitor progress made in meeting the SDGs. The capacity to monitor such progress is
reported to be hampered by data gaps and entangled by the lack of statistical capacity to support the
monitoring framework [1–4].

In this framework, a multi-level governance of information collection, reaching across
intergovernmental institutions, national agencies, and civil society has evolved. The global partnership
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is coordinated by the UN Statistical Commission, with the mandate of implementing the indicator
framework and the review of SDG and targets [3], the Inter-Agency Expert Group on SDG Indicators,
the UN Statistical Division that hosts the Committee of Experts on Global Geospatial Information
Management (UN-GGIM), and Non-Governmental Organizations. This latter major group of
stakeholders includes the Group on Earth Observations and the Committee on Earth Observation
Satellites, which work in promoting the integration of statistical, geospatial, and other big data in
order to equip the SDG monitoring framework with the necessary data and making SDG reporting
possible and as complete as possible. In order to map the capacity in monitoring SDG indicators,
the Inter-Agency Expert Group on SDG Indicators developed a three-tier classification for the
indicators. The classification criteria are based on the simultaneous availability of an internationally
agreed methodology and standard to monitor the indicator, and the presence of data produced
by countries covering at least half the countries and representing half of the population of a
region. As a result of the 7th Inter-Agency Expert Group on SDG Indicators meeting in spring
2018 (https://unstats.un.org/sdgs/iaeg-sdgs/tier-classification/), 93 indicators are classified Tier I,
72 Tier II, and 62 Tier III. Alternative and innovative sources of data, especially derived from Earth
Observation (EO), offer significant information, and especially data to support the SDG reporting [5–7].

Since the early XXI century, the human society is predominantly urban, as more than half of global
population lives in cities [8]. In recognition of this trait of human development, the 2030 Development
Agenda devoted a specific Goal to cities: SDG 11, which aims to “Make cities and human settlements
inclusive, safe, resilient and sustainable”. Despite that human nature is so intertwined with the urban
condition [9], mankind is currently able to monitor less than half of the SDG 11 indicators for its own
man-made artificial environment. Many SDG 11 indicators require fine scale local data that need to be
sourced locally, which often result in inadequate data availability, especially in countries in transition
and in data-poor territories.

EO have the capacity to make up for this information deficit, at a large scale, at high
spatial resolution, repeatedly over time, and over wide geographical areas that serve multiple
applications [10,11], especially in the SDG framework [6,12,13] or for generic urban development
indicators [14].

In this contribution, we analyze the ways in which the above support can be enacted. In the
paper, we analyze the principles and the architecture of the Global Human Settlement Layer (GHSL)
and the application of GHSL to the SDG 11.3.1. The GHSL is a framework of data and tools that was
developed from EO, census data, and volunteered geographic information that produces global maps
of built-up areas, resident population, and settlement typologies for four epochs (1975, 1990, 2000,
and 2015). GHSL layers have global coverage and they are released as open and free data. GHSL data
and derived scientific information to inform policy decisions were released in 2016 at the Habitat III
conference with the aim of supporting the 2030 Development Agenda and its thematic agreements
(Sendai Framework for Disaster Risk Reduction, United Nations Framework Convention on Climate
Change, and the New Urban Agenda). GHSL information is particularly salient in the contexts of
disaster risk reduction, urbanization, and human settlement dynamics, where fine scale information on
the presence of people and built-up areas are of high importance [15]. GHSL data served to quantify
the process of urbanization [16], observe population density [17], over 40 years of human settlements
development [18], and the exposure to natural hazards [19]. In this paper, the GHSL contributes to
estimating SDG 11.3.1, which aims to measure the “ratio of land consumption rate to population
growth rate”. This indicator requires data on the spatial extent of the settlement and its population.
Furthermore, information is needed with a fine scale level of detail, and it must be consistent across the
world and over time in order to provide a comprehensive global overview. The article focuses on the
Tier II nature of SDG 11.3.1, for which an agreed methodology exists. However, it is not implemented,
as the necessary data are not yet established. With the use of GHSL data, we provide evidence to
suggest that SDG 11.3.1 could be raised from its Tier II classification.

https://unstats.un.org/sdgs/iaeg-sdgs/tier-classification/
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First, we present the principles of the GHSL and its data layers; second, we explain how this
information is used to feed the SDG 11.3.1 formulation. The results of data analysis present the process
of spatial expansion and demographic change in urban centers across the globe between 1990 and 2015,
the Land Use Efficiency (LUE) value of urban centers (LUE value or LUE is used in this research to
indicate the ratio of land consumption rate to population growth rate –LCRPGR, as per the United Nations
SDG 11.3.1 Metadata), and the change in built-up areas per capita by region of the world.

2. Materials and Methods

In Section 2.1, we briefly introduce the GHSL concept, its three geospatial layers that map
built-up areas (GHS-BUILT), resident population (GHS-POP), and settlement typologies (GHS-SMOD).
In Section 2.2, we present the methodology that was applied in this study to estimate SDG 11.3.1
according to the internationally agreed methodology.

2.1. The Global Human Settlement Layer Principles

The GHSL concept was introduced by the European Commission (EC), Joint Research Centre
(JRC) during the years 2008–2011, in the frame of the program named “Information Support for Effective
and Rapid External Action”, developing new image information mining technologies that are in support
of geo-spatial information analysis for global security and stability [20,21]. At that time, the application
areas setting the requirements for the GHSL were framed inside the post-natural-disaster and
post-conflict damage, needs and reconstruction assessment, including refugee camps and temporary,
rapidly-changing human settlement monitoring [21–23]. In this frame, the notion of “built-up area” was
introduced after a critical revision of the available satellite-derived land-use/land-cover information
categories. [24,25]. The data and the semantic requirements of these initial application areas strongly
influenced the design of the GHSL information production system. In particular, they were influencing
the design of the automatic satellite image information mining methods that were outlined under a set
of pragmatic principles, as summarized below:

• robustness against real-world Big Earth Data scenarios [26–28] involving large-volume, largely
heterogeneous/unstructured data sources, and rapidly changing data specifications [29],

• enhanced semantic interoperability and robustness against multi-stakeholder international
information decision support scenarios, and

• effectiveness in time-critical image-derived analytics requirements that are set by crisis
management applications.

Early GHSL proof-of-concept was provided using European medium resolution ENVISAT
ASAR data—Mapping Human Settlements Globally, European Union Science Hub News, 21/3/2011,
an extensive global sample of image data that were collected from optical sensors ranging from 0.5 to
10 meters of spatial resolution [25], and a seamless pan-European image data layer at 2.5 m of spatial
resolution in support to the European Cohesion policy [30]. During 2014, the process of applying the
GHSL concept in support to post-2015 international frameworks was initialized. They included: the
UN Third Conference on Housing and Sustainable Urban Development (Habitat III, 2016), the 2030
Agenda on sustainable development goals (SDGs), the UN Framework Convention on Climate Change,
and the Sendai Framework for Disaster Risk Reduction (DRR) 2015-2030.

The setting of this new area of application introduced three new general requirements in the
GHSL concept, aligned with the principles that were published in 2014 by the United Nations
Secretary-General’s Independent Expert Advisory Group on a Data Revolution for Sustainable
Development (IEAG) [7]:

• operates in an open and free data and methods access policy (open input, open method,
open output),

• facilitates reproducible, scientifically defendable, fine-scale, synoptic, complete, planetary-size,
and cost-effective information production, and
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• facilitates information sharing and multilateral democratization of the information production
and collective knowledge building.

The first and second requirements are linked to the need of public control of the data-driven policy
decisions, and they are aligned to the Data Sharing Principles of the inter-ministerial Group of Earth
Observation (GEO) and the Global Earth Observation System of Systems (GEOSS) [31]. The second and
third requirements are necessary to process fine-scale global data, lowering the information production
cost and thus enlarging the floor of the potential information producers, and consequently improving
the inclusiveness and multi-laterality of the global information production ecosystem.

Nowadays, information is abundant, redundant, and also (in general) largely
contradictory—typically not being harmonized. It is rapidly changing, heterogeneous, and only
partially structured, because multilateral actors with a multiplicity of different objectives create it.
According to [32], “Big data” are high-volume, high-velocity, and high-variety information assets
that demand cost-effective, innovative forms of information processing for enhanced insight and
decision making. In this scenario, the GHSL takes a pragmatic adaptive perspective. Artificial
intelligence is used to find the relevant associations between different data streams at different
level of abstraction/semantics and different scales with the minimal set possible of assumptions.
In the new method that was proposed by the GHSL for the classification of remotely-sensed
data [33], causal deterministic models are largely complemented by data-driven inductive inferential
reasoning—analogously as argued by [34]. The whole data volume (samples =all) is typically used for
making the inferences: this improves their reliability in noisy and unstructured information, and data
environments where the assumptions needed for the correct sampling and stratification procedures
are often largely violated or too expensive to be implemented. The GHSL methodological focus is
provided on a computationally efficient search of associative rules between large comprehensive data
series describing the whole universe [29,33,35]. This is in contrast to a computationally expensive
search of laws explaining few carefully sampled points in the same data universe. In these (big,
complex) data scenarios, the resilience (model transferability) of the eventually-found laws to new
data segments that were recorded in the continuous information flux is considered to be generally low,
consequently not paying-off the cost of their production.

The lack of Terminological Consistency, Semantic Consistency, and Cartographic Consistency
of available land cover classification systems and land cover products that were generated
from EO data at the global, national, and local scales are well known and related to the
multilateralism of the observations that were made from different and not fully translatable
perspectives, including different aims, methodology, and domain of the observers [36]. The above is
emphasized by the rapid technological development of new EO sensors and new data classification
paradigms, enlarging the spectrum of the possible EO-derived information content and cartographic
specifications (scale, generalization). In order to face this abstraction complexity, the GHSL selects
an “open-and-low-abstraction-level” methodological approach, improving the capacity of public
discussion of the assumptions behind the GHSL-data-derived findings. The GHSL data categories
are designed in a hierarchical abstraction schema allowing for the discussion of part of them
without impacting the whole automatically generated categorical system. The rules translating input
baseline data streams to GHSL information and high-level abstractions are open, humanly readable,
and publicly discussable.

The repeatability of measurements refers to the ability to repeat measurements that were made
regarding the same subject under identical conditions [37]. The measurements that were generated
by the GHSL system are fully repeatable. The same input data and the same information extraction
method produces identical numerical results. This is necessary to maintain full control of data,
methods, and results lineages in the “Real-word (Big) Data Scenarios”, as described above. A corollary
of this principle is that GHSL avoids the use of Artificial Intelligence methods that are based on
stochastic iterative optimization processes, such as Random Forest [38], Deep Learning [39], and similar
frameworks. Such approaches may provide effective results under specific conditions (for example,
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under the condition of low levels of noise in the training set), but by definition they cannot be fully
repeatable unless the initial set of arbitrary stochastic conditions (seeds) are saved and then re-used.
The stochastic arbitrariness of these methods and their difficulty in generating a human-understandable
set of decisional criteria (or classification rules) translating data streams into information make them
difficult to apply to information support for public policies. This is especially evident in cases where
prescriptive policies are involved. The data classification method must provide a univocal set of
explicit rules that must be publicly controllable and make sense for the human impacted by these
policy decisions [40].

2.2. The GHSL Data Layers

Since 2014, various pre-releases of the GHSL data were shared among the GEO partnership.
The first public release of the GHSL was announced at the Habitat III conference of Quito, in October
2016. The data are freely accessible from the JRC Open Data Portal (https://data.jrc.ec.europa.eu/)
and the GEOSS portal (http://www.geoportal.org). Since 2017, the GHSL data and tools have been
contributing to the GEO Human Planet Initiative, supporting the GEO Strategic Plan 2016–2025.

The GHSL suite contains three main grid-based layers (Table 1) covering four epochs:
1975–1990–2000–2015. GHS-BUILT [41] (Figure 1a) is an EO derived product, mapping built-up
areas (density). The information is extracted from 40 years of Landsat imagery archives [42] through
Symbolic Machine Learning workflows [25,33,43]. The process is based on a training set owning
heterogeneous completeness (geographical and temporal coverage), thematic definitions, and reliability.
The training set includes MERIS Globe Cover [44], LandScan population grids [45], Open Street Map,
GeoNames, and MODIS 500 [46]. The result is a series of global maps of built-up areas in grid format
for the four epochs in World Mollweide projection (EPSG: 54009):

• at 250 m resolution in which values are expressed as decimals from 0 to 1 (density);
• at 1 km resolution in which values are expressed as decimals from 0 to 1 (density); and,
• at 30 m resolution in Spherical Mercator (EPSG: 3857), a multi-temporal layer where the presence

of built-up areas per epoch is classified in numbers ranging from 6 (built-up area mapped 1975)
to 3 (built-up area mapped in 2015), with additional classes for the non-built-up land (2), presence
of water (1), and no data (0).

Table 1. Synthesis and features of Global Human Settlement Layer (GHSL) data.

Name Semantic Grid Resolution Epoch 1 Main Input Data

GHS-BUILT Density of built-up area
per grid cell 30 m, 250 m, 1 km 2015,

2000,
1990,
1975

Satellite imagery

GHS-POP Population counts per
grid cell 250 m, 1 km Census data,

GHS-BUILT

GHS-SMOD

Classification of each grid
cell into one of the

Settlement Model classes:
high density cluster, low
density cluster, and rural

cells

1-km GHS-BUILT,
GHS-POP

1 Temporal dimension.

https://data.jrc.ec.europa.eu/
http://www.geoportal.org
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Figure 1. Example of GHSL data, three geospatial layers that map built-up areas (GHS-BUILT) (a),
three geospatial layers that map resident population (GHS-POP) (b), three geospatial layers that map
settlement typologies (GHS-SMOD), and (c) displayed at 1km spatial resolution in the area of Tokyo
(Japan) and compared to the imagery base map.

GHS-POP [47] maps the estimated resident population on the basis of built-up area presence
(Figure 1b). They are based on CIESIN GPWv4 demographic data (derived from census or
administrative units), and population is distributed using GHS-BUILT. GHS-POP is available at
two resolutions for the four epochs in World Mollweide (EPSG: 54009):

• at 250 m resolution; and,
• at 1 km resolution.

In both layers, the value of each grid cell reports the absolute number of inhabitants in the cell
(density, as float).

GHS-SMOD (Figure 1c) [48] combines GHS-BUILT and GHS-POP to represent the Degree of
Urbanisation [49] in the GHSL environment. In the GHS-SMOD, grid cells are classified in three classes:
Urban Centre, Urban Cluster, and Rural Area, according to population density and population thresholds
(of individual cells and group of cells) [50]. GHS-SMOD is available at 1km resolution for the four
epochs, in World Mollweide (EPSG: 54009). In the layer, cells are classified as rural cells (1), urban
cluster (2), and urban centers (3). Urban centers are the human settlements with more than 50,000
inhabitants. Urban centers are delineated according to the Degree of Urbanisation methodology—as
group of cells of 1km with population density (1,500 inhabitants per km2), population size (50,000
people), and 50% built-up areas density. The dataset that we built to conduct this study consists of circa
10,000 urban centers, delineated from the GHS-SMOD layer for the epoch 2015, and it is a precursor of
the GHSL Urban Centre Database (GHS-UCDB).

In 2017, a revised image processing workflow was implemented in the JRC Earth Observation
Data and Processing Platform (JEODPP) and then applied to the Landsat multi-temporal imagery
collection. As a result, an updated version of the GHSL (GHS-BUILT, GHS-POP, and GHS-SMOD) [51]
was released in the community of the GEO Human Planet Initiative and it has been tested in this study.

The GHSL framework serves multiple applications and analytics methods. GHSL baseline data,
GHS-BUILT, and GHS-POP are especially used as exposure layers in the disaster risk reduction sector
in support of emergency management services (i.e., Copernicus EMS) [52], alert systems [53], and risk
management decision support indexes (i.e., INFORM) [54]. GHS-POP and GHS-SMOD were applied
to estimate the carbon footprints of human settlements [55], travel time to major cities [56], and global
patterns of human domination [57] and presence on the planet [18]. Through these applications,
GHSL has become an established source supporting studies on the human interaction with and the
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modification of the environment over time. More importantly, the GHSL baseline data (GHS-BUILT,
GHS-POP, and GHS-SMOD layers) can be injected in Sustainable Development Goals metadata to
estimate SDG indicators. Below, we explore the use of GHSL to estimate the SDG 11.3.1.

Multi-Temporal and Spatial Harmonization of Information

GHSL layers are continuous global raster data, with information on the spatial footprint of
settlements—built-up areas that are processed using Landsat imagery at corresponding epochs and a
population that is modeled on the basis of the Gridded Population of the World (GPW). The information
on built-up areas is extracted through the open workflow [43], and it is fed with multi-temporal
imagery from Landsat at corresponding epochs [41,58]. Information on population is derived from
GPW, which is a fine scale, spatially disaggregated layer that is produced from population and
housing censuses from which estimates for past epochs are derived and made to be consistent with,
and adjusted to, United Nations World Population Prospects [59]. The availability of consistent and
harmonized data across the globe and epochs makes the analysis of long term process of human
settlement changes (1975–2015) providing valuable tools for urban development analytics, including a
new lens with which to observe global urbanization, possible [16].

2.3. SDG 11.3.1 Methodology

The methodology for SDG 11.3.1 is established and referenced in the SDG indicators Metadata
Repository managed by UNDESA (https://unstats.un.org/sdgs/metadata). SDG 11.3.1 is classified
as a Tier II indicator (meaning that an indicator is conceptually clear and with a methodology for its
monitoring, but for which data are not regularly produced or available). To perform our experiments,
we applied the established methodology using GHSL as input data. LUE monitors the “Ratio of land
consumption rate to population growth rate” and it is entrusted to quantify the sustainable land use in
the face of urban expansion pressures [60], both demographic and economic [61]. To estimate LUE,
it is first necessary to quantify the rate of land consumption (LCR) and the population growth rate
(PGR) in a given spatial unit over a time span. The two rates (LCR and PGR) are computed, as follows:

LCR =
LN (Urbt+n

Urbt

)
y

PGR =
LN (

Popt+n
Popt

)
y

(1)

where LN is the Natural Logarithm, Urbt and Urbt+n is the total areal extent of the land consumed
(extent of the human settlement—quantified as built-up areas) at the initial reference year (t—in this
study 1990), and at the final reference year (t+n—in this study 2015), respectively, Popt and Popt+n

input the total population of the spatial unit at the initial reference year (t) and at the final reference
year (t+n), respectively, and y is the number of years between t and t+ n. The estimate of the ratio of
land consumption rate to population growth rate (LUE) is obtained with:

LUE =
LCR
PGR

(2)

To complement LUE that is a dimensionless value with a spatially explicit metric, we also
calculated the built-up areas per capita (BpCt in 1990 and BpCt+n in 2015—in Equation (3) below) per
urban center in 1990 and 2015 and the corresponding change (BpCc as in Equation (4)).

BpCt =
URBt

POPt
(3)

BpCc =
(BpC t+n−BpCt

)
BpCt

(4)

https://unstats.un.org/sdgs/metadata
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2.4. Estimation of SDG 11.3.1 Using GHSL Baseline Data

In this paper, the GHSL baseline data is used for assessing the LUE over the period 1990–2015 for
all cities worldwide. This is implemented, as follows:

• GHS-SMOD is used to delineate the extent of cities worldwide, defined as the areas classified as
urban centers in the GHS-SMOD in the 2015 layer,

• for each of the spatially delineated city boundaries, GHS-BUILT for the epochs of 1990 and 2015
are used to assess the land consumption (LCR) over a period of 25 years, and

• for each of the spatially delineated city boundaries, GHS-POP for the epochs 1990 and 2015 are
used to derive the PGR over a period of 25 years.

To perform analyses by region of the world, urban centers received a geographical attribute
representing their unique regional location (the aggregation of countries adopted is the one reported
in the UN World Urbanization Prospects 2018 [62] on the basis of the Global Administrative Map
–V2.8 (https://gadm.org/data.html). The extraction of statistics on built-up areas and population
was implemented in a Geographic Information System environment (ArcGIS) through zonal
statistics operations.

3. Results

The results of the analysis report about: (a) the extent and demographics of urban centers between
1990 and 2015 (in Section 3.1); (b) the development trajectory analyzed with the Land Use Efficiency
indicator sourcing the LUE value at urban centers level (in Section 3.2); and, (c) the differentiation of
built-up areas per capita across regions of the world clustering urban centers in classes of LUE value
(in Section 3.3). LUE has been estimated in circa 10,000 urban centers, as defined in the GHS-SMOD.

3.1. Spatial Expansion and Demographic Growth in Urban Centers

According to GHSL data, urban centers account in 2015 for a population exceeding 3.53 billion
people and their built-up areas extend over almost 295 thousand km2 (Figure 2a). In 25 years
(1990–2015), urban centers built-up areas expanded by 30% and the population increased by 44%.
Trajectories of growth follow clear regional dynamics (Figure 2b): the highest demographic change in
size and absolute spatial expansion takes place in Asia (+637 million inhabitants and +35.7 thousand
km2), while the most significant population growth has occurred in Africa (the population of urban
centers has almost doubled).

The interdependence between spatial expansion and demographic change manifests itself in
terms of change in population density in urban centers. Population density has globally increased by
11%, moving from 10,800 inhabitants per km2 in 1990 to 12,000 inhabitants per km2 in 2015. The most
significant processes of densification took place in Africa (+40%) and Oceania (+36%). Population
density is stable in Asia (+1% and equivalent to 17,000 inhabitants per km2 in 2015). A modest
reduction in density took place in Europe (-6% and 6,300 inhabitants per km2 in 2015) and a density
increase occurred in Northern America (+4% and 2,500 inhabitants per km2) and Latin America and
the Caribbean (+8% and 12,200 inhabitants per km2).

https://gadm.org/data.html
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3.2. LUE in 10,000 Urban Centers

To synthetically report on the LUE trajectories of this vast dataset, we clustered the urban centers
into five classes of LUE values: LUE ≤ −1; −1 < LUE ≤ 0; 0 < LUE ≤ 1; 1 < LUE ≤ 2; LUE > 2. This is
to identify centers where demographic decline is simultaneous to spatial expansion −1 < LUE ≤ 0
(and to substantial spatial expansion LUE ≤ −1), where population densification takes place (0 < LUE
≤ 1), and where the rate of spatial expansion is greater than the demographic growth (1 < LUE ≤
2), and where spatial expansion takes place at a pace that is at least double the one of demographic
growth (LUE > 2).

Figure 3 below displays the geographical distribution of urban centers and their related LUE
class (1990–2015). It emerges that 13% of the centers in the world developed between 1990 and 2015,
with a substantially negative LUE value (<−1), particularly in countries in central and western Europe,
central China, and south India. Values in the range of −1 < LUE ≤ 0 are accounted for by 6% of urban
centers of the world and this share reaches 21% in Europe (especially in eastern Europe and Russia),
and 18% in Asia (mainly Japan). The most frequent LUE class across the world is that ranging 0 < LUE
≤ 1 (39% of the centers in the dataset). On a regional basis, this class represents 65% of the centers in
Africa, more than half of the ones in Latin America and the Caribbean, 39% the centers in Oceania,
and almost 1/3 of the ones in Asia and Europe. The class 1 < LUE ≤ 2 includes 20% of the centers in the
world, but almost 1/3 the ones in Latin America and the Caribbean, 1

4 the ones in Northern America,
and for 22% of the ones in Africa. The last class (LUE > 2) globally accounts for 22% of the centers;
the share increases in Asia –31%, especially including centers in India and northeast and south China.
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3.3. Built-Up Areas per Capita and Land Use Efficiency

The LUE indicator (that is a dimensionless value) has been further characterized observing the
built-up area per capita in the year 2015 (BpCt+n) in the LUE classes that were considered in the
previous section. This operation presents an example of the spatial implications of the LUE indicator
(Figure 4). The following arguments are based on the average built-up areas per capita that were
calculated for each of the 10,000 urban centers and then averaged by the regional collocation of the
center. Results demonstrate that in continents like Europe and North America in the class of LUE > 2,
in which spatial expansion takes place at a rate that is at least double that of population growth,
the built-up areas per capita exceed, respectively, 180 and 490 m2 per inhabitant. Great variations are
also observed in comparing the built-up area per capita in the same LUE class across regions. In the
case of a development trajectory of population densification (0 < LUE < 1), the built-up areas per capita
are almost 450 m2 per person in Northern America and 175 m2 per person in Europe. This drops by
almost 50% in Latin America and the Caribbean (90 m2 per person), to almost 70 m2 per person in
Asia, and to 52 m2 per person in centers in Africa.

In terms of average change of built-up areas per capita between 1990 and 2015, the values are also
diverse. In the class 0 < LUE < 1, the built-up areas per capita shrink between 10% (in Europe) and
26% (in Africa). In the class of LUE > 2, built-up areas per capita more than doubled in Latin America
and the Caribbean, Asia, and Africa, increased by half in Northern America, by 15% in Europe, and by
6% in Oceania.

As a comprehensive overview of the SDG 11.3.1 quantified with GHSL data over the 25 years
between 1990 and 2015, the results show that urban centers follow a development trajectory in which
the rate of population growth prevailed over that of spatial expansion, with a LUE that is equivalent to
0.72. In absolute terms, the urban centers expanded globally over a land surface that is equivalent to
almost 67,800 km2 (approximately the surface of Ireland) to settle about 1.1 billion new people (almost
the population of India in 2015).
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4. Discussion

In the following section, we develop two main strands of arguments. One analyzes GHSL fitness
for purpose of supporting SDG indicators and intergovernmental agreements with open data to fill
the present gaps. In Section 4.1, we discuss the GHSL architecture and design features that enable
an action-oriented support to SDG monitoring, in particular thanks to a full open and free data cycle
(input data, methods, output/results) and the capacity to handle big-data scenarios by harmonizing
data across space and time.

The other argument focuses on the implications of the empirical findings of this research in
contributing to selected intergovernmental policy literature on urban development (Section 4.2).

4.1. Open Data and Tools Filling Gaps of a Tier II Indicator

The action oriented outcome of the GHSL framework architecture that was demonstrated by our
results is that indicator 11.3.1 was estimated for the year 0 of the 2030 Development Agenda (2015)
against 25 years of spatial and demographic change in urban centers.

In practice, using open and free data, it could be possible to raise SDG 11.3.1 from its Tier II status
using the GHSL approach to fill the present data gap. With respect to UNDESA metadata, the GHSL
operationalization of the SDG 11.3.1 estimation has been performed with two key premises. Firstly,
the adoption of the Degree of Urbanisation people based “Global Harmonized Definition of Cities and
Settlements" allowed for the delineation of the spatial units of analysis (the extent of urban centers
in the epoch 2015). Secondly, LCR and PGR were defined, respectively, as the change in the built-up
areas (from GHS-BUILT derived from Landsat) and in population (from GHS-POP) between epochs in
these spatial units.

This is a pragmatic approach to implement the conceptual definition of “land consumption”
intended as “the expansion of built-up area which can be directly measured” (SDG 11.3.1 metadata,
p.2). This application was made possible by the GHSL principles and key characteristics:

• global geographical coverage;
• multi-temporal (diachronic) information;
• demographic and spatial (built-up areas) information;
• open and free data; and,
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• capacity to adapt to user requirements and hierarchical abstraction concepts.

In particular, the GHS-SMOD allowed for the identification of urban centers in a spatially
consistent way (meeting the requirement of the stakeholders that are involved in the global
commitment to develop a “harmonized definition of cities and settlements”—the European Union,
the Organisation for Economic Co-operation and Development, the World Bank, and UN-Habitat),
and to derive their population and built-up areas extent in a harmonized manner across epochs and
areas of the world. This approach excludes forms of sampling, while it captures urban centers of any
size greater than 50,000 inhabitants in 2015. Sampling methods to reduce the complexity of “real world
big data scenarios” to limit the population of the dataset (the number of cities to ease information
handling and production) may introduce aberrations and reveal patterns that are caused by the set of
assumptions of the sampling methodology. Within the GHSL framework, the user is empowered to
set its own user requirements (i.e., demographic criteria to define urban centers), replicate analyses,
and information production.

Further to the above motives, the GHSL framework offers a suite of free tools, especially the
MASADA (Massive Spatial Automatic Data Analytics), DUG (Degree of Urbanisation Grid), and LUE
(Land Use Efficiency) tools. The MASADA Tool is developed to support the production of local
and regional settlement layers by automatic classification of satellite imagery (both high and very
high-resolution data). Using as a training set, land cover information or a coarse settlement map
(to incorporate in the workflow radiometric, textural, and morphological features), a supervised
classification of remotely sensed data (through SML classifier) extracts built-up area information.
The tool is primarily devoted to the extraction of built-up areas with a preset of workflows for
SPOT-5, SPOT-6/7, RapidEye, and CBERS-4, yet it can be applied to other imagery sources (i.e.,
GeoEye-1, WorldView-2/3, Pléiades, and Quickbird) to derive other land cover maps—provided that
the appropriate training set is given in input. The second tool supporting the SDG estimate is dedicated
to the delineation of urban areas, as defined in the Degree of Urbanisation definition [49]. Urban centers,
urban clusters, and rural areas can be delineated using the DUG tool. The tool is designed to work with
GHS-BUILT and GHS-POP, but other spatial and demographic layers could also be used. With this
tool, the user is free to use proprietary data on built-up and population and to set ad hoc population
criteria and threshold to define settlement typologies. The LUE Tool (a Qgis plugin) [63] enables the
estimation of the SDG 11.3.1 in GIS environment with an input of spatial multi-temporal information
on the spatial extent of the settlement and its demography at the corresponding epochs.

While this study proposes a comprehensive retrospective estimation of the LUE indicator across
the globe, it is challenged by the input data being used.

• The definition of land consumption according to the GHSL data: in the GHSL concept and
datasets, built-up areas that correspond to all man-made roofed constructions are used as proxies
to Land Consumption. The latter, according to the UN definition, may be extended to cover other
man-made features, such as roads, parking lots, or other artificial and impervious surfaces (and
more closely align to SDG15.3.1);

• despite the use of increased spatial resolutions for built-up areas detection (as compared to
precedent EO derived urban maps), some settlements can still be omitted due to their size or
construction materials and some false detections may still be observed, especially over rocky bare
lands; and,

• moreover, because the method for mapping built-up areas is based on physically observable
built-up structures, as collected from satellite-borne sensors, some settlements could not be
detected. Examples of invisible settlements as from the satellite remote sensing sensors that were
adopted in this study include: small built-up structures below dense tree canopy, settlements
carved in rock cliffs or underground, scattered huts in rural areas built with traditional materials,
such as straw or clay (not distinguishable from the background soil and vegetation patterns),
and some temporary settlements, such as tent refugee camps.
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In that context, the validation of built-up areas is essential for achieving a comprehensive and
systematic description of the quality and validity of the GHSL built-up areas product. Continuous
activities are performed in that direction in order to provide quality metrics that may allow for them to
model, retro-fit, and compare the results that were obtained from the different GHSL products.

Despite these caveats, the GHSL suite of data and tools encompasses a wide spectrum of
functionalities to support the SDG monitoring, both within its own resources (especially data), but also
by offering free tools to users, empowering them to use third party or proprietary information
sources, especially in the context of SDG 11.3.1. In particular, the GHSL architecture retains potential
for the estimation of LUE to 2030. With the entry into service of the Sentinel-1 and Sentinel-2
constellations and the conception of workflows to process their data for built-up areas extraction
in GHSL environment [64,65] it is to foresee a community-based capacity to periodically update LCR
estimates for the entire Earth.

4.2. EO Derived Information on Human Settlements

In recent times, the remote sensing and EO technology to acquire, process, and manage data has
significantly improved. In particular, significant advances to the instruments to acquire information
from space have taken place. The spatial resolution of new sensors has increased, as has temporal
revisit time. Early EO derived products to map the extent of human settlement relied on coarse
resolution imagery (MODIS or Landsat 1-3 MSS) or on a combination of the latter and nighttime lights
(i.e., DMSP/OLS).

Although EO-based methods of settlement information extraction have helped in expanding
the scientific understanding of human presence on the planet [16,60,66,67], the lack of extensive
validation and training sets covering multiple epochs and diverse geographical areas may limit
accuracy assessments. The GHSL data have been validated in order to assess both the built-up
areas detection (GHS-BUILT) [68,69] and the population map [70]. The results of the validation
demonstrate that GHSL is one of the most reliable global, open, and free data, with the layer accuracy
increasing over time and growing with development intensity. Albeit that GHS-BUILT and GHS-POP
provide multi-temporal information mapping the extent and resident population of human settlements
around the globe and representing a substantial improvement when compared to earlier EO derived
products [46], recent satellites are expected to significantly improve this information. For example,
the use of Sentinel 1 (GHS BUILT-UP Sentinel-1 Grid) as a training set for the Landsat, as implemented
in [51], has enhanced the global delineation of human settlements from 40 years of Landsat satellite
data archives.

Recent platforms equipped high-resolution (i.e., Sentinel-2) and very-high-resolution optical (i.e.,
SPOT) or synthetic-aperture radar technology (i.e., TerraSAR-X and Sentinel-1) proved to be effective
in delivering maps of human settlements [30,64,65,71].

This new generation of information support researchers and policymakers in the understanding
of the new geographies of human settlements in the era of a predominantly urban society. In particular,
the finer spatial resolution of sensors contribute to the improvement of the detection of small
roofed surfaces and urban features extraction [72], reducing omission and commission errors [64,73],
and improving settlement mapping in territories subject to intense and fast transformations (especially
in Africa and Asia).

The SDG 11.3.1 methodology requires globally comparable information to analyze the
interdependence between spatial expansion of settlements and their demographic changes. Most of the
existing geospatial data does not possess the characteristics that are necessary to estimate SDG 11.3.1
These are: (1) multi-temporal/diachronic information with global coverage; (2) demographic (PGR)
and spatial (LCR) information; (3) harmonized urban-rural classification of settlements (to delineate
areas of interests); and, (4) open and free data with open input, process, and output to fully support
public policy.
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Our research findings support rationales on urbanization that allege that urban areas are efficient
in terms of use of land resources [74], and that urban development is highly unequal across regions of
the world [75]. Estimating a LUE < 1 corresponding to 25 years of urban development (1990–2015),
we empirically illustrate that the rate of demographic growth in urban centers has exceeded the
growth in space. Although GHS-BUILT does not account for the vertical dimension of built-up
areas, this value could validate a dense/compact pattern of development that implies population
densification, the diversity of LUE values across regions of the world, and the corresponding built-up
areas per capita may reinforce the signals of widening urban divide, in terms of inequality in
development. In particular, the comparison of built-up areas per capita in 2015 broken down into LUE
classes and regions of the world manifests the traits of unfairness. When considering the least efficient
LUE class (LUE > 2), built-up areas per capita in urban centers in Northern America are 10 times
that in centers in Africa. Similar patterns are also found in the other LUE classes. This fact implies
that substantially heterogeneous patterns of development can be captured by comparable—even the
same—LUE values. By formulation, the LUE indicator does not retain a spatially explicit nature
(dimensionless), yet it could be a proxy for a spatial and demographic trajectory of change. The Land
Use Efficiency estimates seem to suggest that several territories encountering extensive population
growth (i.e., Sub-Saharan Africa and South-East Asia) develop with LUE values that are between 0
and 1, corresponding to population densification, while negative LUE values (LUE < −1) is frequent
in countries with low—or even negative—population growth rates (i.e., Eastern Europe, Japan, and
some converging regions of the European Union).

5. Conclusions

In this article, we provide a concrete example of the contribution of Earth Observation and
innovative geospatially derived data in support of the Sustainable Development Goals. The SDGs
were negotiated in parallel to a comprehensive and ambitious monitoring framework. This framework
is currently hampered by shortcomings in data availability and the statistical capacity for monitoring
it, with only 93 indicators with a Tier I classification. Earth Observations set out as a key source of
information to service SDG monitoring: by improving the availability of required data, supplying
suitable and accurate data that cover long time series, and having wide/planetary geographical scope
are compatible/complimentary with traditional statistical methods.

To provide a practical application of this service, we estimated, at the global level, Land Use
Efficiency (SDG indicator 11.3.1), which is currently classified as a Tier II indicator due to the
presence of an internationally agreed methodology, but in the absence of data. The GHSL provides
the necessary data, harmonized in space and time, on the spatial distribution of built-up areas
(GHS-BUILT), population (GHS-POP), and settlement typologies (GHS-SMOD), fulfilling the UNDESA
metadata requirements for the indicator. In addition to the above, we also discussed the principles
and architecture of the Global Human Settlement Layer that by design embraces an open input,
open method, open output policy, has a modular hierarchical structure of information, tests and
applies real-word (big) data scenarios, produces evidence based output analytics, and facilitates
the repeatability of results. In particular, we emphasize the role of multi-temporal and spatial
harmonization of information to enable comparative studies and analyses on development trajectories.

The quantitative results of the experimental application of GHSL data in support of the SDG
indicator 11.3.1 show that urban centers developed between 1990 and 2015 with an LUE that was
equivalent to 0.72, whereas the rate of population growth has been greater than that of spatial expansion.
In absolute terms, urban centers expanded over the terrestrial land surface to almost 67,800 km2

(approximately the area of Ireland) to settle almost 1.1 billion new people (almost the population of
India in 2015). To further characterize LUE, we compared the built-up areas per capita in the epoch
2015 achieved in centers that developed in common LUE classes in various regions of the world.
It emerges that there might be inequalities in the trajectories of development of centers that develop
with comparable LUE values, but are located in different geographical areas. This is perceived, in
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particular, in comparing the changes in built-up areas per capita between 1990 and 2015. With the
estimate of the LUE, we enacted UNGGIM instruction to test GHSL for the purpose. In this context,
we reaffirm that, while GHSL data could support data-poor territories, they could also back data-rich
parties for harmonization and comparison purposes. Our research concludes that the GHSL framework,
with its tools and data, enables users to generate built-up area layers that can be used directly with
UNDESA compiled demographic data to quantify LUE. New satellites (Sentinel constellation) are
sources of information to map built-up areas for recent years and for the future with a higher resolution
when compared to the open and free platforms of the past. The workflows that were generated in the
open and free GHSL environment to map built-up areas, including the MASADA tool, could support
the estimation of the Land Consumption Rate to 2030 with open data and open tools.
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