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Abstract: The Internet has become a major dissemination and sharing platform for 3D content.
The utilization of 3D measurement methods can drastically increase the production efficiency of
3D content in an increasing number of use cases where 3D documentation of real-life objects or
environments is required. We demonstrated a developed, highly automated and integrated content
creation process of providing reality-based photorealistic 3D models for the web. Close-range
photogrammetry, terrestrial laser scanning (TLS) and their combination are compared using available
state-of-the-art tools in a real-life project setting with real-life limitations. Integrating photogrammetry
and TLS is a good compromise for both geometric and texture quality. Compared to approaches using
only photogrammetry or TLS, it is slower and more resource-heavy but combines complementary
advantages of each method, such as direct scale determination from TLS or superior image quality
typically used in photogrammetry. The integration is not only beneficial, but clearly productionally
possible using available state-of-the-art tools that have become increasingly available also for
non-expert users. Despite the high degree of automation, some manual editing steps are still required
in practice to achieve satisfactory results in terms of adequate visual quality. This is mainly due to the
current limitations of WebGL technology.

Keywords: 3D modeling; 3D reconstruction; laser scanning; photogrammetry; WebGL; web-based
3D; automation; integration; multi-sensor; photorealism

1. Introduction

The Internet has become a major dissemination and sharing platform for 3D model content and
3D graphics have become an increasingly important part of the web experience. This is mainly due
to the rise of browser-based rendering technology for real-time 3D graphics that has been under
development since the mid-nineties. Most notably, the adaptation of WebGL [1] has enabled plug-in
free access to increasingly powerful graphics hardware across multiple desktop and mobile computing
platforms—without forgetting the development of various commercial and non-commercial approaches
to publishing and managing 3D content on the web [2–4].

WebGL is a JavaScript application programming interface (API) that enables interactive 3D graphics
with advanced rendering techniques like physically based rendering within a browser. It is based on
OpenGL ES (Embedded Systems) [5] and natively supported by most modern desktop and mobile
web browsers. There are high-level JavaScript libraries such as Three.js [6] and Babylon.js [7] that are
designed to make WebGL more accessible and to help in application development. In practice, the 3D
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model formats supported in WebGL are dependent on these high-level libraries. While no standard
format exists for web-based 3D content creation, several authors have utilized the glTF (GL Transmission
Format) format [8–10]. Several pipelines have been suggested for creating and optimizing 3D content
for the web [11,12]. Key advantages of web-based 3D compared to desktop applications are cross
platform availability and straightforward deployment without separate installing. These advantages
and the increasing user readiness have accelerated web-based 3D application development in many
fields, e.g., data visualization, digital content creation, gaming, education, e-commerce, geoinformation
and cultural heritage [2].

In recent years, many web-based and plug-in free 3D model publishing platforms have been created and
have become increasingly popular, hosting millions of models for billions of potential users. For example,
Sketchfab (Sketchfab SAS, Paris, France) [13], Google Poly (Google LLC, Mountain View, CA, USA) [14] or
Facebook 3D Posts (Facebook Inc., Menlo Park, CA, USA) [15] have helped in popularizing the creation and
publishing of 3D models for non-expert users. Perhaps the most notable example is Sketchfab, a powerful
platform for sharing and managing 3D content with modern features such as support for virtual reality
(VR)/augmented reality (AR) viewing, interactive animations and annotations, physically based rendering
(PBR), a 3D model marketplace and a selection of exporters and APIs [16]. Sketchfab offers several pricing
plans from free to enterprise level. Some have considered Sketchfab as the de-facto standard for publishing
3D content on the web [4]. Google Poly is a free web service for sharing and discovering 3D objects
and scenes. It was built to help in AR and VR development and offers several APIs e.g., for application
development in game engines. Facebook 3D Posts is a free feature that allows users to share and display
3D models in Facebook posts. All these platforms are based on WebGL and have an emphasis on high
visual quality rather than accurate geometric representation.

The challenge in utilizing these web-based 3D publishing platforms is that they are subject
to several technical constraints, including the memory limits of web browsers, the varying GPU
performance of the device used and the need to maintain limited file sizes to retain tolerable download
times. In addition, 3D assets must be converted to a supported format beforehand. The detailed
requirements vary from platform to platform. For example, Sketchfab supports over 50 3D file formats
including common formats like OBJ, FBX, GLTF/GLB [17]. They recommend models to contain up to
500,000 polygons and a maximum of 10 texture images [18]. Facebook requires models in GLB-format
with a maximum file size of 3 MB [19]. Google Poly accepts OBJ and GLTF/GLB-files up to 100 MB in
size and textures at a maximum of 8196x8196 [20]. This implies that the platforms cannot be utilized to
view any 3D models available, but the platform specific requirements have to be acknowledged in the
content creation phase.

Traditionally 3D content has been produced by 3D artists, designers or other professionals more
or less manually by relying on diverse workflows and various 3D modeling solutions: e.g., 3ds
Max (Autodesk Inc., Mill Valley, CA, USA) [21], Maya (Autodesk Inc., Mill Valley, CA, USA) [22],
Blender (Blender Foundation, Amsterdam, Netherlands) [23], ZBrush (Pixologic Inc., Los Angeles, CA,
USA) [24] or CAD software: e.g., AutoCAD (Autodesk Inc., Mill Valley, CA, USA) [25], Microstation
(Bentley Systems Inc., Exton, PA, USA) [26], Rhinoceros (Robert McNeel & Associates, Seattle, WA,
USA) [27] and SketchUp (Trimble Inc., Sunnyvale, CA, USA) [28]. Often the creation of web-compatible
3D content has been considered inefficient and costly and is seen as a barrier to entry for both the
developers and end users [2].

The utilization of 3D measurement methods, primarily laser scanning and photogrammetry,
have the potential to drastically increase the efficiency of 3D content production in use cases where
3D documentation of real-life objects or environments is required. This reality-based 3D data is
used in numerous applications in many fields such as cultural heritage [29], 3D city modeling [30],
construction [31,32], gaming [33] and cultural production [34].

The potential of reality-based 3D data collection technology has also been increasingly noted and
promoted in the 3D graphics and gaming communities as a way to automate content creation processes
(e.g., [35,36]). Furthermore, the global trend towards virtual and augmented realities (VR and AR)
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has increased the demand for creating high quality and detailed photorealistic 3D content based on
real-life objects and environments. In addition to the detailed 3D geometry, the quality of the texture
data also plays a crucial role in these photorealistic experiences of often unprecedentedly high levels
of detail. Despite development efforts, the lack of compelling content is considered one of the key
challenges in the adoption of VR and AR technologies [37].

Both laser scanning and photogrammetry have become increasingly available and have advanced
significantly over the last few decades thanks to the development leaps made towards more powerful
computing and automating various aspects of 3D reconstruction. Laser scanners produce increasingly
detailed and accurate 3D point clouds of their surroundings by using laser-based range finding [38].
Compared to camera-based methods, laser scanning is an active sensing technique that is less dependent
on the lighting conditions of the scene. However, laser scanning lacks color information which is
required by many applications that rely on photorealism. This is usually solved by utilizing integrated
digital cameras to colorize the point cloud data. Photogrammetry is a technique based on deriving 3D
measurements from 2D image data. Additionally, the model geometry and the color information used
in model texturing can be derived from the same set of images. Photogrammetry has benefited greatly
from the advances made towards approaches such as structure-from-motion (e.g., [39]), dense image
matching (e.g., [40]) and meshing (e.g., [41]) in the 21st century. In its current state it is an increasingly
affordable and highly portable measuring technique capable of recording extremely dense colored 3D
point cloud and textured 3D model data sets.

This development has spawned many open source and commercial software solutions for creating
reality-based 3D mesh models automatically or semi-automatically from photogrammetric imagery:
e.g., 3DF Zephyr (3Dflow srl., Udine, Italy) [42], RealityCapture (Capturing Reality s.r.o., Bratislava,
Slovakia) [43], Metashape (Agisoft LCC, St. Petersburg, Russia) [44], Meshroom [45], COLMAP [46], Pix4D
(Pix4D S.A., Lausanne, Switzerland) [47] or from arbitrary point cloud data: e.g., SEQUOIA (Amazon Web
Services Inc., Seattle, WA, USA) [48], CloudCompare [49] for further use in 3D modeling software suites,
3D game engines or web-based 3D model publishing platforms etc. The emergence of these solutions has
also made the creation of reality-based 3D content increasingly available for non-expert users [50].

A number of papers have been published on the integration of laser scanning and photogrammetry on
many levels [51,52]. Generally, this integration is considered the ideal approach since no single technique
can deliver adequate results in all measuring conditions [29,53–55]. Differences and complementary
benefits between photogrammetry and laser scanning have been discussed by [52,55–58]. Evaluation of
modeling results has been typically focused on analyzing the geometric quality of the resulting hybrid
model. Assessing texture quality has gained surprisingly little attention (e.g., [58]). Furthermore, the actual
hybrid model has been rarely compared to the modeling approaches that rely on single methods.

Over the years, integration of laser scanning and photogrammetry has been developed for diverse
use cases. For example, for reconstructing the details of building façades [59,60], improving the
extraction of building outlines [61] or improving accuracy [62], registration [55] and visual quality [63]
of 3D data. Many approaches require user interaction that is time consuming and labor intensive or
suitable for specific use cases and data, e.g., simple buildings with planar façades [64].

In many cases related to 3D modeling, the integration of these two techniques is merely seen as
colorizing the point cloud data [65], dealing with texturing laser derived 3D models [58,66] or merging
separately generated point cloud, image or model data [54,67–71] at the end of the modeling pipeline
where the weaknesses of each data source becomes more difficult to overcome [51,72].

Despite being an avid research topic, very few data integration solutions exist outside of the
academic world that would be applicable and available for people to use in their real-life projects.
Some approaches that rely on widely available solutions have been described by [69–71]. In many
of these cases, the integration of laser scanning and photogrammetry has been achieved by simply
merging separately generated point cloud data sets, often with the purpose of acquiring 3D data from
multiple perspectives to ensure sufficient coverage [70,71]. When looking at freely or commercially
available solutions (see Table 1), RealityCapture is the most suitable to integrate laser scanning and
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photogrammetry in a highly automated 3D reconstruction and texturing process. Laser-scanned
point clouds can also be imported into 3DF Zephyr. However, in 3DF Zephyr, laser scans have to be
interactively registered as part of a separate process after the creation of a photogrammetric dense
point cloud. An example of this type of approach is presented in [70]. RealityCapture allows the
import of the laser-scanned point clouds to be done in earlier phases of the 3D reconstruction pipeline
and thus benefits the process with the inherited dimensional accuracy of laser scanning.

Table 1. Features of open source and commercial automated 3D reconstruction software.

Software Photogrammetric 3D Reconstruction Point Cloud Based 3D Meshing Texturing

3DF Zephyr x x x
CloudCompare x

COLMAP x
Meshroom x x
Metashape x x

Pix4D x x
RealityCapture x x x

SEQUOIA x x

Web-based 3D technologies have been applied for visualization and application development in
various cases where the data originates from various 3D measurement methods (e.g., [73]). Related to
web applications, 3D measurement methods have also been utilized for producing 3D data for
environmental models [74], 3D city models [75,76], whole body laser scans [77] or indoor models [34].
The evaluation of the geometric quality of various 3D measurement methods is a mainstay in the
research literature (e.g., [78]). In some cases, this evaluation has been done in projects aiming for
web-based 3D (e.g., [34]). Related to web applications and reality-based models, the need for 3D
model optimizations and automation has been stressed by [79] but the workflow for the automatic
optimization is rarely presented in this context. Nevertheless, very little literature exists demonstrating
the integration of laser scanning and photogrammetry in a complete workflow aiming to achieve
photorealistic and web-compatible 3D models. Furthermore, assessing both the quality of the model
geometry and texturing within the different data collection methods has not been done in previous
studies, especially in the context of web-compatibility and automation.

Our aim is to demonstrate a highly automated and integrated content creation process of
providing reality-based photorealistic 3D models for the web. 3D reconstruction results based on
close-range photogrammetry, terrestrial laser scanning (TLS) and their combination are compared
considering both the quality of the model geometry and texturing. In addition, the visual quality
of the compared modeling approaches is evaluated through an expert survey. Our approach
is a novel combination of web-applicability, multi-sensor integration, high-level automation and
photorealism, using state-of-the-art tools. The approach is applied in a real-life project called “Puhos
3D”, an interdisciplinary joint project between Aalto University and the Finnish national public service
broadcasting company Yle, with the main goal of exploring the use of reality-based 3D models in
journalistic web-based story telling [80].

2. Materials and Methods

2.1. Case: The Puhos Shopping Mall

An old shopping mall named Puhos in the Itäkeskus district in eastern Helsinki was used as a test
site for this research (see Figure 1). The data was collected in July 2017 in a field campaign as part of an
interdisciplinary project between Aalto University and the Finnish broadcasting company Yle. The aim
of the project was to study the usage of a reality-based 3D environment in a journalistic web story:
“Puhos: Take a look around a corner of multicultural Finland under threat” [80]. Photorealism and
web-compatibility were the two key requirements set by the project.



ISPRS Int. J. Geo-Inf. 2019, 8, 221 5 of 21

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  5 of 22 

 

 
Figure 1. Test site: the Puhos shopping mall in Helsinki. Project area marked with a red circle. Image 
courtesy of the City of Helsinki. 

The selected test site in the Puhos shopping mall consisted of a partially open two-storied space 
around an oval-shaped courtyard. From the perspective of taking 3D measurements, the site is a 
combination of indoor and outdoor space, with difficult lighting conditions and includes challenging 
materials (e.g., prominent glass and metal surfaces) and complex geometries (curved structures, 
railings, staircases, escalators etc.). Furthermore, as the measurement data was acquired in a real-life 
case on a fixed schedule, there were partly sunny weather conditions and a consistently large number 
of people that were beyond our control. 

2.2. Data Acquisition Campaign 
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Figure 1. Test site: the Puhos shopping mall in Helsinki. Project area marked with a red circle.
Image courtesy of the City of Helsinki.

The selected test site in the Puhos shopping mall consisted of a partially open two-storied space
around an oval-shaped courtyard. From the perspective of taking 3D measurements, the site is a
combination of indoor and outdoor space, with difficult lighting conditions and includes challenging
materials (e.g., prominent glass and metal surfaces) and complex geometries (curved structures,
railings, staircases, escalators etc.). Furthermore, as the measurement data was acquired in a real-life
case on a fixed schedule, there were partly sunny weather conditions and a consistently large number
of people that were beyond our control.

2.2. Data Acquisition Campaign

The data sets were collected using close-range photogrammetry and terrestrial laser scanning
methods. Both techniques were used simultaneously in a real-life setting within a time window of
approximately three hours and involved a group of three operators. Simultaneous data acquisition
helped to mitigate the effects of the changing weather and lighting conditions at the scene.

Terrestrial laser scanning data was collected with two scanners, a Faro Focus S120 and Trimble
TX5 with the specifications and parameters listed in Table 2. Both scanners basically shared identical
specifications. The choice of two scanners enabled us to complete the data collection in half the time
and helped to mitigate the effects of changing conditions at the scene. The scan parameters were kept
identical throughout the scanning procedures with one exception: one scan station in the middle of the
test site was scanned at a higher resolution setting specially to improve the quality of registration.

Table 2. Specifications and parameters for the terrestrial laser scanning (TLS) campaign.

Scanner Specifications Faro Focus 3D S120/Trimble TX5

Scan rate 976,000 points/s
Range 0.6–120 m

Ranging error ±2 mm at 10 m (90% reflectivity)
Ranging noise 0.6 mm at 10 m (90% reflectivity)

Total image resolution Up to 70 Mpix
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Table 2. Cont.

Scan Parameters

Scanning resolution setting 12 mm at 10 m (one with 6 mm at 10 m)
Number of scan stations 22/21

The photogrammetric close-range imagery was collected with a Nikon D800E digital single-lens
reflex (DSLR) camera using a Nikkor AF-S 14–24 mm lens with following parameters (Table 3):

Table 3. Specifications and parameters for close-range photogrammetric imaging.

Camera Specifications Nikon D800E

Image resolution 7360 × 4912 (36 Mpix)
Sensor size Full frame (35.9 × 24 mm)

Lens Nikkor AF-S 14–24 mm f/2.8 G the focus and zoom locked at 14 mm
Focal length (fixed) 14 mm

F-stop (fixed) f/8
Number of images 433
Image file format NEF (Nikon Electronic File)

Since the project focused on photorealistic web visualization, no separate ground reference was
required for georeferencing or quality control purposes, for example. Additionally, the main focus
during the data acquisition was on ensuring as good a data overlap as possible and thus minimizing
any gaps in the data rather than focusing on coordinate accuracy.

2.3. Data Pre-Processing

Raw, laser scanned, point cloud data was pre-processed in SCENE (version 6.0.2.23), a scan data
processing and registration computer program (FARO Technologies Inc., Lake Mary, FL, USA) [81].
The process involved checking the laser data for errors and then registering all the scanning stations in
the same unified coordinate system using both automatic and manual registration tools in SCENE.
The registration was done using top view and cloud-to-cloud tools in the software. After the registration,
the point cloud had a mean point error of 3.7 mm and a maximum point error of 16.5 mm. The point
cloud data was colorized using the image data collected by the scanners. For further processing,
the pre-processed TLS point clouds were exported without any subsampling as ordered files in the
PTX point cloud format with data records including position, intensity and RGB color information for
single scan points derived from the scanner images.

The resulting registered point cloud was also used as a reference data set for evaluating the
geometric quality of the final web-compatible 3D models. In addition to registration, the reference
point cloud (Figure 2) was checked for errors and outliers and points outside the project area were
filtered. All the observations caused by moving objects, such as people, in the scene were cleaned
manually using both SCENE and CloudCompare (version 2.10-alpha), an open source 3D point cloud
and mesh processing program [49].
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Figure 2. The prepared TLS-based reference point cloud based on 43 scans and consisting total of
260,046,266 points.

The collected close-range photographs we processed using Photoshop Lightroom (version 6.12)
(Adobe Inc., San Jose, CA, USA) [82]. The image tonal scales were adjusted to recover details suffering
from overexposure or underexposure in the images. Additionally, all blurred or otherwise failed
photographs were excluded from the image set. Finally, the images were converted from Nikon’s raw
image format (NEF) into JPEG files for further processing.

2.4. Multi-Source Photorealistic 3D Modeling for the Web

3D modeling from photogrammetric imagery, laser scans and their combination was done in
RealityCapture (version 1.0.3.5735 RC) [43]. This is a versatile photogrammetry computer program that
allows automatic registration, filtration, coloring, texturing and meshing of laser scanned point cloud
data. RealityCapture applies the work published by [41]. For processing the laser data the supported
ordered PTX scans were converted into a proprietary format with a .lsp file extension. Each spherical
laser scan was converted and divided into six .lsp files. During the data import, the registration settings
were set as “exact” in RealityCapture because the scans had already been registered using SCENE.

Throughout the 3D modeling process, the settings and parameters were kept the same for the
three compared approaches. Image data was automatically self-calibrated by the software without any
manual control points or special a priori calibration procedures. All three of the compared 3D models
were reconstructed and textured using the following workflow (Figure 3):
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Figure 3. The 3D reconstruction process in RealityCapture.

Whenever possible during the process, all manual editing steps were omitted in order to test
as straightforward a workflow as possible. All the resulting models were checked for defects such
as non-manifold vertices and edges, holes or isolated vertices using the automated model topology
checking tool in RealityCapture. The target specifications for the final exported 3D models were set
according to the viewer performance guidelines of the selected web publishing platform, Sketchfab [18].
Thus, the originally much denser 3D models were simplified into 500,000 polygons and a maximum of
ten 4096 × 4096 (4k) sized texture files were generated per model.

The resulting web-compatible 3D models (photogrammetry, TLS and hybrid) were finally exported
from RealityCapture as 3D mesh files in the widely supported Wavefront OBJ format including the 4k
texture files in PNG format. Furthermore, to support the geometric analyses done in CloudCompare,
the models were exported as ASCII point clouds (.xyz) that consisted of an XYZ coordinate and RGB
color information per vertex in the 3D mesh model.

2.5. Geometric and Texture Quality Evaluation

The resulting three compared 3D models (photogrammetry, TLS and hybrid) were analyzed from
both geometric and texturing perspectives. Additionally, the numeric data analyses were supported
with visual comparisons and an expert quality evaluation on both the geometric and texture quality of
the three web-compatible 3D models.

In order to ensure a sufficiently large common feature apparent in each data set and to omit
differences caused by varying surface materials and complex details, the geometric analysis was
focused on analyzing deviations in the ground floor surfaces in respect to the TLS-based reference.
The geometric analysis was done using CloudCompare and all three comparable data sets were
prepared as follows:

1. An initial alignment to the TLS-based reference was carried out using a point pairs picking tool
(based on [83]) and iterative closest point (ICP) algorithm (based on [84]).

2. An initial ground floor area segmentation was done.
3. A final alignment to the TLS-based reference was performed using point pairs picking and

ICP tools.
4. The final segmentation for all models was done to achieve one-to-one correspondence between

the compared models to mitigate the effects of data completeness and to remove the need for
using any cut-off distances in the analysis.

Floor surface deviations were analyzed by comparing the segmented ground floor surfaces of
all three models to the reference data using a multiscale model-to-model cloud comparison (M3C2)
method [85] implemented in CloudCompare. M3C2 is a robust method suited for comparing point
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cloud data with variable roughness levels. Local 3D distances can be computed without any gridding
or meshing. Essentially this cloud-to-cloud comparison method outputs a result as a 3D distance
between two-point clouds that, in our case, represented the vertices in the 3D mesh of the comparable
models. The M3C2 is more robust towards noise and changes in point density compared to more
common cloud-to-cloud (C2C) methods. Additionally, the comparison results were adjusted according
to the pre-existing registration error in the data.

The texture quality analysis was focused on comparing the histograms of the resulting texture
atlases. For all three comparable models, a histogram per model was calculated using all the texture
atlases with ImageJ2 [86]. The mean, standard deviation and mode values per histogram were included
in the analysis. Furthermore, the number and percentage of both white and black pixels (8-bit) were
calculated from the histogram values.

2.6. Expert Evaluation on Visual Quality

An expert evaluation focusing on the perceived visual quality of the models was organized in
the form of an online survey. A total of 33 experts from the fields of 3D measuring and modeling,
geoinformatics, computer graphics and computer gaming participated in the survey. The respondents
were contacted via professional networks, e-mail and direct contact.

The respondents were asked to open the three models uploaded into Sketchfab (provided as links)
and choose which of the models they liked best in terms of photorealism and visual appeal and which
model had the best geometric or texturing quality. The respondents were not given any pre-existing
knowledge about any of the models or their production processes. The questions were multiple-choice,
followed by open questions in which the respondents were asked to provide the reasoning for their
choice. The detailed questions are provided in Appendix A.

3. Results

The three compared web-compatible models (photogrammetry, TLS and hybrid) were processed
with RealityCapture using as automated a workflow as possible. A summary of the compared
models during the data processing is presented in Table 4. All the models were processed to the final
web-compatible specifications.

Table 4. An overview of the modeling approaches during data processing in RealityCapture.

Alignment Photogrammetry TLS Hybrid

Total input data file size 6.5 GB 21.1 GB 27.6 GB
Number of automatically registered images 306/433 - 363/433

Number of automatically registered laser scans - 43/43 43/43
Number of tie points 1,234,116 1,514,454 2,628,226

Mean projection error (pixels) 0.416 Not
applicable 1 0.429

Metric scale No Yes Yes

Reconstruction

Number of vertices 193,590,937 159,837,170 347,794,658
Number of polygons 386,145,064 318,875,950 693,603,980

Final web-compatible models

Number of vertices 249,380 232,146 227,664
Number of polygons 500,000 500,000 500,000

Number of 4k textures 10 10 10
1 TLS scan data was registered in the pre-processing phase and set as “exact” in RealityCapture.

The resulting web-compatible reality-based 3D models are presented in Figure 4.
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A visual comparison of the level of detail of the resulting models is presented in Figure 5 and
visually detectable quality issues between the created models are demonstrated in Figure 6.
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Figure 6. Quality issues on the textured 3D models. The photogrammetry-based model (a) suffers from
holes in the data in shiny and non-textured surfaces such as taped windows. In the TLS-based model
(b) the lack of data underneath the scanning stations causes circular patterns in the texture. In addition,
the illumination differences in the scene cause abrupt differences between the textured areas. Many of
these problems are fixed in the hybrid model (c).

3.1. Computing Times

The computing times needed for model production were collected for each model, based on values
that RealityCapture natively records and outputs as a report variable. Pre-processing and, therefore,
the alignment phases were omitted from the analysis since they were affected by manual work and
were, thus, difficult to reliably measure and analyze. The processing of all three models was done
with the same PC workstation (AMD Ryzen 7 2700X eight core processor, 32 GB RAM, Nvidia GeForce
1070 GTX GPU) using the Windows 10 operating system (×64 version 1803) and RealityCapture
(1.0.3.5735 RC). The computing times for each model in the meshing and texture generation steps of
the data processing workflow are presented in the Table 5 below.
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Table 5. Computing times for each model from pre-processed and aligned data into web-compatible
textured mesh models.

Photogrammetry TLS Hybrid

Meshing time 07 h: 07 min: 50 s 00 h: 43 min: 06 s 19 h: 51 min: 23 s
Texturing time 00 h: 22 min: 15 s 00 h: 01 min: 51 s 00 h: 34 min: 15 s

Total time 07 h: 30 min: 05 s 00 h: 44 min: 57 s 20 h: 25 min: 38 s

3.2. Geometric Quality

The results of the ground floor surface analysis between the three web-compatible 3D models and
the reference are presented in Figure 7. A quantitative summary of the analysis is presented in Table 6,
including the mean and standard deviation of the calculated M3C2 distance values for each model.
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Figure 7. Ground floor surface deviations of all modeling approaches vs. the reference: (a) the
photogrammetry approach; (b) the terrestrial laser scanning approach; and (c) the hybrid approach.
The color scale for the M3C2 distance values is ±2.5 cm.

Table 6. Summary of the ground floor surface deviation analysis.

Photogrammetry TLS Hybrid

Mean distance (signed) 0.41 mm −0.15 mm −0.05 mm
Std. dev. 6.20 mm 2.72 mm 3.18 mm

Number of observations 35,897 20,104 20,741

The histograms of the M3C2 distance values of all three models vs. the TLS-based reference
are presented in the Figure 8. Both Table 6 and the histograms in Figure 8 show that the distance
values of the TLS-based model have the smallest standard deviation and the distance values of the
photogrammetry-based model have the highest standard deviation.
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3.3. Texture Quality

An overview of the histogram analysis including all the resulting texture atlases for all three
models is presented in Figure 9.
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Figure 9. A histogram analysis including all 8-bit pixel values of all texture atlases for the three
modeling approaches: photogrammetry (green), TLS (red) and hybrid (blue). The significant peak in
the hybrid model (pixel value 95) is caused by a grey-colored empty space between the texture islands
on the texture atlases. This has no perceivable impact on the visual quality of the model.

A quantitative summary of the histogram analysis is presented in Table 7. The results of
the histogram analysis (Figure 9 and Table 7) show that the TLS model suffers clearly from both
overexposure and underexposure. This is clearly visible as the prominent spiking on the ends of the
histogram (Figure 9) and as the distinctly higher number of white and black pixels in the texture images
(Table 7). The histograms were calculated from a total of ten (4096 × 4096) texture atlases with a total
of 167,772,160 pixel values per model. The numbers and percentages of black and white pixels indicate
the level of underexposure and overexposure in the texture data.
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Table 7. Summary of the image histogram analysis.

Photogrammetry TLS Hybrid

Mean (8-bit) 92 126 100
Std. dev. (8-bit) 43 59 49

Mode (8-bit) 79 254 1 95
Number of black pixels 1533 1,768,527 4921
Number of white pixels 1609 3,864,622 909,088

Percentage of black pixels 0.00091% 1.05% 0.0029%
Percentage of white pixels 0.00096% 2.30% 0.54%

1 The 8-bit value of 254 appears as the maximum pixel value in the resulting texture images generated
in RealityCapture.

3.4. Expert Evaluation on Visual Quality

According to the experts who participated in the survey, the hybrid approach appeared clearly
superior in all aspects: overall visual appearance (91%), geometry (82%) and texturing (79%).
Whereas the photogrammetry-based model had the worst performance in geometric quality (0%),
the TLS-based model performed the worst in texturing quality (6%). A summary of the evaluation
results is presented in Figure 10 below:
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photogrammetry (green), TLS (red) and hybrid (blue).

In total, 30 respondents (out of 33) chose the hybrid model as the most photorealistic and visually
appealing, mentioning good texturing, good lighting or exposure, good geometry, high level of detail
or simply a more realistic and clear appearance.

When asked to evaluate the geometric quality, the hybrid model appeared the best to most of the
respondents. However, some choosing the TLS-based model found the hybrid model only slightly
worse and almost as good as the TLS-based model. Similarly, some of the respondents choosing
the hybrid model described the overall appearance of the TLS-based model to be almost as good,
even though the TLS-based model was described as weaker, e.g., in the completeness of the details.
The results clearly did not favor the photogrammetry-based model and the respondents described it as
significantly weaker and less homogenous in terms of geometric quality. The respondents noted that
the photogrammetry-based model had more holes and problems with the model details. e.g., with
railings, a-frame signs and ceilings.

The majority of the respondents chose the hybrid model as the best in terms of texturing quality.
Many considered it generally the clearest and of better quality in terms of the details. However, there
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was some dispersion in the responses considering the texturing quality. Some of the respondents
stated that the distinction between the hybrid model and photogrammetry-based model was not
straightforward. The TLS-based model was the least favored, stated repeatedly as being “blurry” with
overexposed textures.

4. Discussion

We compared three 3D reconstruction approaches: close-range photogrammetry, terrestrial laser
scanning and their combination using available state-of-the-art tools in a real-life project setting.
We presented an approach that is a novel combination of web-applicability, multi-sensor integration,
high-level automation and photorealism. Furthermore, we assessed the visual quality of web-based
3D content with an expert evaluation.

Despite the recent developments, web-compatibility remains a key challenge in the creation of
reality-based 3D models. All the compared approaches produced vast amounts of data and the models
had to be heavily decimated in order to meet the limitations of browser-based WebGL applications.
For example, the polygon count of the hybrid model had to be decimated to 0.07% of its full size of
almost 694 million polygons to achieve the target of 500,000 polygons. This means that some details
are inevitably lost in the process. Even though web-compatible models can be created almost fully
automatically, the results are still far from optimal.

The emphasis on photorealism and visual aesthetics places high demands on the visual quality of
the models. Both the geometry and the textures need to be as free from errors and visible artifacts
as possible. The desired high level of visual quality would practically result in some level of manual
editing and optimization for either the model geometry (e.g., cleaning and fixing errors, UV-mapping,
retopologizing), the textures (e.g., de-lighting, cleaning and fixing errors) or both. Basically, the higher
the visual quality requirements are, the more difficult the work becomes to automate it. This is
especially so, if a high degree of photorealism and detail has to be attained on a browser-based platform
with limited resources.

The integrated hybrid approach appeared as a good compromise compared to approaches relying
solely to terrestrial laser scanning or photogrammetry. These results were also well in line with the
previous research. The hybrid model improved the geometric quality of the photogrammetric model
and improved the texture quality of the TLS-based model. However, there was a clear tradeoff in
computing performance and the data volume. As a further downside, the addition of laser scanning
naturally comes with a significant added cost and manual labor compared to highly affordable
and more automated photogrammetry. Despite development, laser scanning is still far from being
consumer friendly.

Using photogrammetry alone appeared to be the most affordable, accessible and portable option
with a superior texturing quality compared to laser scanning. However, it lacks the benefits of
laser scanning, such as direct metric scale determination and better performance on weakly textured
surfaces, as well as independence regarding illumination in the scene. According to the analyses,
the photogrammetry-based model clearly had the weakest geometric quality that deteriorated especially
in the shadowy areas outwards from the center of the scene. Notably, not all images were automatically
registered by RealityCapture and the total number of 306 aligned images can be considered a lightweight
data set of images. The results could have likely improved by increasing the number of images.

The computing time for the TLS-based model was significantly faster than that of the
photogrammetry or hybrid approaches. However, it was difficult to assess the complete workflow.
The pre-processing steps were excluded from the analysis because we could consider only the parts of
the process that were automated and mutually overlapping. In practice, the registration and filtering
of the TLS data can require a significant amount of manual work, thus potentially being by far the
most time-consuming step in the whole processing chain. This is the case particularly when modeling
heavily crowded public spaces such as the Puhos shopping mall in our case.
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In terms of texturing, the inclusion of photogrammetry clearly improved the texture quality.
The analyses showed that the TLS-based model suffered greatly from both underexposure and
overexposure. This was mainly due to the weaker quality of the built-in camera in the laser scanner
(see Figure 11). Utilization of high dynamic range (HDR) imaging, a common feature in many modern
TLS scanners, would have improved the texturing quality but also would most likely have made the
data collection significantly slower and therefore increased the problems with moving shadows in
the scene, for example. Additionally, the possibilities for editing the raw images are limited with TLS
when it comes to aspects such as adjusting the tonal scales or the white balance of the images prior to
coloring the point cloud data. Moreover, in all three approaches the lights and the shadows in the
scene are baked into the textures and reflect the specific lighting conditions over the time when the
data was acquired. In many use cases, an additional de-lighting process would be required to allow
the 3D model to be used in any lighting scenario.
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Figure 11. Visual comparison of the raw images of TLS (a) and photogrammetry (b). The raw TLS
image (a) suffers clearly from overexposure. The quality of the image data is directly transferred into
texture information in the content creation process.

The results from the expert evaluation were even more favorable towards the hybrid approach
than our numeric quality analyses. The quality of the geometry and texturing appear to go hand
in hand. Good geometry appears to improve the visual appeal of the texturing and good texturing
positively affects the visual appeal of the geometry. Furthermore, it appears that the people evaluating
the visual quality are prone to focus on coarse errors and artifacts in the models. In our case these were
elements such as holes in the photogrammetric model or texture artifacts in the TLS-based model (see
Figure 6). These types of errors are often inherited from the quality issues (e.g., weak sensor quality,
weak data overlap, changes in the environment during data collection) in the raw data and are thus
very challenging to fix automatically at later stages of the modeling process.

Limitations in our approach included the real-life characteristics of our case study. Data acquisition
was limited by uncontrollable and suboptimal weather conditions, a fixed time frame and the
consistently large numbers of people in this public space. However, these limitations reflected a
realistic project situation where some factors are always beyond control. It is also worth noting that
our emphasis was on photorealistic web visualization where the accuracy, precision and reliability
of the models was not prioritized. More robust ground reference should have been used if the use
case would have been for an application such as structural planning. Furthermore, our focus on
complete automation meant compromising on the quality of the models. The results would have been
improved if manual editing steps such as point cloud processing or model and texture editing were
included. Alternatively, the 3D reconstruction phase could have been accomplished with 3DF Zephyr
but this would have resulted in reduced level of integration and increased manual work, as in [70].
Separate processing of laser scans and photogrammetric reconstruction could have been applied with
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mesh generation tools to produce somewhat similar, but significantly more manual, results as in [87].
A different web platform with support for streaming 3D models of multiple levels of details (LODs)
might have allowed the use of larger and more detailed models. However, such platforms were
unavailable as a free service.

Further research directions include comparing the results of an automated 3D reconstruction
process with a traditionally created reality-based 3D model that has been manually optimized for
the web. Future development of web-based real-time rendering and streaming of 3D graphics will
enable larger and larger data sets and reduce the need to heavily decimate mesh model data sets.
Additionally, the development of point-based rendering may advance the direct use of 3D point cloud
data, streamlining the modeling processes by minimizing the actual need for any modeling.

With the rapid development of mobile data acquisition methods, namely SLAM (Simultaneous
localization and mapping), integration will be handled more on a sensor-level. This tighter level
integration could enable further automation and quality control on the roots of the potential problems.
Currently, many available SLAM-based 3D mapping systems utilize laser scanners but lack the tight
integration of photogrammetry, e.g., for producing textured 3D models. Moreover, further developed
integration of laser scanning and photogrammetry could potentially advance semantic modeling, where
objects in the scene could be segmented automatically into separate 3D model objects. This would be
beneficial in numerous application development cases that currently rely on segmenting the scene
manually into meaningful objects.

In addition to color, the type of reflection is an important attribute of a surface texture. 3D models
with physically based rendering (PBR) of lighting would benefit from reality-based information on the
surface reflection type: which proportion of the light is reflected diffusely and which is reflected specularly
from the surface. However, there is no agile and fast method for capturing the reflection type in the area of
measurement. Hence, developing this method would accelerate the adaptation of reality-based PBR 3D
models, since models with high integrity could be produced with less manual labor.

5. Conclusions

The Internet has become a major dissemination and sharing platform for 3D model content.
The utilization of 3D measurement methods can drastically increase the efficiency of 3D content
production in numerous use cases where 3D documentation of real-life objects or environments is
required. Our approach is a novel combination of web-applicability, multi-sensor integration, high-level
automation and photorealism. We compared close-range photogrammetry, terrestrial laser scanning
and their combination using available state-of-the-art tools in a real-life project setting.

Our study supports the view that creating web-compatible reality-based 3D models by integrating
photogrammetry and TLS is a good compromise for both geometric and texture quality. Compared to
approaches using only photogrammetry or TLS, it is slower and more resource heavy but combines many
complementary advantages of both methods, such as direct scale determination from TLS or superior image
quality typically used in photogrammetry. This paper shows that the integration is not only beneficial,
but clearly productionally possible using available state-of-the-art tools that have become increasingly
available also for non-expert users. In its current state, the integration functions almost fully automatically
for pre-processed scan and image data. Despite the high degree of automation some manual editing steps
are practically still required to achieve results that would be not only satisfactory from the perspective
of visual aesthetics, but also from the perspective of quality. This is especially true when considering the
current limitations of aspects such as the polygon count and textures set by the WebGL technology.

The increasing demand for 3D models of real-life objects and scenes is driven by global trends of
digital transformation, building information modeling (BIM), VR/AR, industry 4.0 and robotization to
name a few. This rapid development will continue to increase the technical maturity and will enable
larger audiences to produce 3D models for wider use cases of diverse requirements. This will result in
the need for consistent quality control and well-informed and skilled people who create and use these
reality-based 3D models.
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Appendix A

The questions in the expert evaluation on visual quality:

1a. From the perspective of photorealism and visual appeal, which model did you like the best?
(multiple-choice question)
1b. Why? Explain briefly. (open question with a text box)
2a. Which model has the best geometric quality? (multiple-choice question)
2b. Why? Explain briefly. (open question with a text box)
3a. Which model has the best texturing quality? (multiple-choice question)
3b. Why? Explain briefly. (open question with a text box)
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